Biofunctionalization of Cork with Moringa oleifera Seeds and Use of PMA Staining and qPCR to Detect Viability of Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Growth Kinetic and Selection of the Reporter Gene
2.2. Genomic DNA Extraction
2.3. Real-Time PCR for Detection of E. coli
2.3.1. LacZ Gene Amplification
2.3.2. LacZ Gene Standard Curves
2.3.3. Quantitative Real-Time PCR
2.4. Sample Concentration, PMA Treatment and Relevant Test Controls
Viability Test (vqPCR) with PMA Treatment
2.5. Live/Dead Cell Viability Assays
2.6. Functionalization of Cork with MoSe
2.7. Biofiltration System with Filter Cartridges
2.7.1. Fractional 27−4 Experimental Design Using Cork as Filter Material
2.8. Antimicrobial Activity of Cork Functionalized with MoSe
2.9. Statistical Analysis
3. Results
3.1. Growth Kinetic of E. coli and Amplification of LacZ Gen
3.2. Functionalization of Cork with MoSe and Effect on InhEc
3.3. LacZ vqPCR Assay
3.4. Live/Dead Bacterial Cell Viability Test Using Cork as Filter Material
4. Discussion
4.1. Growth Kinetic of E. coli and Amplification of LacZ Gene
4.2. Functionalization of Cork with MoSe and InhEc
4.3. LacZ vqPCR Assay
4.4. Live/Dead Bacterial Cell Viability Test Using Cork as Filter Material
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guidelines for Drinking-Water Quality. 2017. Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 3 March 2021).
- Rusiñol, M.; Hundesa, A.; Cárdenas-Youngs, Y.; Fernández-Bravo, A.; Pérez-Cataluña, A.; Moreno-Mesonero, L.; Moreno, Y.; Calvo, M.; Alonso, J.; Figueras, M.J.; et al. Microbiological contamination of conventional and reclaimed irrigation water: Evaluation and management measures. Sci. Total Environ. 2020, 710, 136298. [Google Scholar] [CrossRef]
- Motlagh, A.M.; Yang, Z. Detection and occurrence of indicator organisms and pathogens. Water Environ. Res. 2019, 91, 1402–1408. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Chen, F.; Lin, Y.; Zhu, H.; Yuan, F.; Kuang, D.; Jia, Z.; Yuan, Z. Microbial Indicators and Their Use for Monitoring Drinking Water Quality—A Review. Sustainability 2020, 12, 2249. [Google Scholar] [CrossRef] [Green Version]
- Brennan, F.P.; O’Flaherty, V.; Kramers, G.; Grant, J.; Richards, K.G. Long-Term Persistence and Leaching of Escherichia coli in Temperate Maritime Soils. Appl. Environ. Microbiol. 2010, 76, 1449–1455. [Google Scholar] [CrossRef] [Green Version]
- Alegbeleye, O.O.; Sant’Ana, A.S. Manure-borne pathogens as an important source of water contamination: An update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. Int. J. Hyg. Environ. Health. 2020, 227, 113524. [Google Scholar] [CrossRef]
- Oral, H.V.; Carvalho, P.; Gajewska, M.; Ursino, N.; Masi, F.; van Hullebusch, E.D.; Kazak, J.; Exposito, A.; Cipolletta, G.; Andersen, T.R.; et al. A review of nature-based solutions for urban water management in European circular cities: A critical assessment based on case studies and literature. Blue-Green Syst. 2020, 2, 112–136. [Google Scholar] [CrossRef] [Green Version]
- Choy, S.Y.; Prasad, N.; Wu, T.Y.; Raghunandan, M.E.; Ramanan, R.N. Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification. J. Environ. Sci. 2014, 26, 2178–2189. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Baes, A.U.; Nishijima, W.; Okada, M. Coagulation Mechanism of Salt Solution-Extracted Active Component in Moringa oleifera Seeds. Water Res. 2001, 35, 830–834. [Google Scholar] [CrossRef] [Green Version]
- Camacho, F.P.; Sousa, V.S.; Bergamasco, R.; Teixeira, M.R. The use of Moringa oleifera as a natural coagulant in surface water treatment. Chem. Eng. J. 2017, 313, 226–237. [Google Scholar] [CrossRef]
- Jerri, H.A.; Adolfsen, K.J.; McCullough, L.R.; Velegol, D.; Velegol, S.B. Antimicrobial Sand via Adsorption of Cationic Moringa oleifera Protein. Langmuir 2011, 28, 2262–2268. [Google Scholar] [CrossRef]
- Rajan, S.; Thirunalasundari, T.; Jeeva, S. Anti—enteric bacterial activity and phytochemical analysis of the seed kernel extract of Mangifera indica Linnaeus against Shigella dysenteriae (Shiga, corrig.) Castellani and Chalmers. Asian Pac. J. Trop. Med. 2011, 4, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, E.Z. In vitro antioxidant, antimicrobial, and antitumor activities of bitter almond and sweet apricot (Prunus armeniaca L.) kernels. Food Sci. Biotechnol. 2013, 22, 455–463. [Google Scholar] [CrossRef]
- Chaudhary, D.S.; Vigneswaran, S.; Ngo, H.H.; Shim, W.G.; Moon, H. Biofilter in water and wastewater treatment. Korean J. Chem. Eng. 2003, 20, 1054–1065. [Google Scholar] [CrossRef]
- Maurya, A.; Singh, M.K.; Kumar, S. Biofiltration technique for removal of waterborne pathogens. Waterborne Pathog. 2020, 123–141. [Google Scholar] [CrossRef]
- Fernandes, E.M.; Correlo, V.M.; Chagas, J.A.; Mano, J.F.; Reis, R.L. Cork based composites using polyolefin’s as matrix: Morphology and mechanical performance. Compos. Sci. Technol. 2010, 70, 2310–2318. [Google Scholar] [CrossRef]
- Rodriguez, O.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017, 323, 361–380. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U., Jr.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellar, J.; Formosa, J.; Fernandez, A.I.; Jové, P.; Bosch, M.G.; Morató, J.; Brix, H.; Arias, C.A. Cork as a sustainable carbon source for nature-based solutions treating hydroponic wastewaters—Preliminary batch studies. Sci. Total Environ. 2019, 650, 267–276. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Ferreira, C.I.A.; Pereira, J.C.; Correia, P.; Silva, S.P.; Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. Use of cork powder and granules for the adsorption of pollutants: A review. Water Res. 2012, 46, 3152–3166. [Google Scholar] [CrossRef]
- Chubar, N.; Carvalho, J.M.R.; Correia, M.N. Cork biomass as biosorbent for Cu(II), Zn(II) and Ni(II). Colloids Surf. A Physicochem. Eng. Asp. 2003, 230, 57–65. [Google Scholar] [CrossRef]
- Olivella, M.; Jové, P.; Bianchi, A.; Bazzicalupi, C.; Cano, L. An integrated approach to understanding the sorption mechanism of phenanthrene by cork. Chemosphere 2013, 90, 1939–1944. [Google Scholar] [CrossRef]
- Francesko, A.; Blandón, L.; Vázquez, M.; Petkova, P.S.P.; Morató, J.; Pfeifer, A.; Heinze, T.; Mendoza, E.; Tzanov, T. Enzymatic Functionalization of Cork Surface with Antimicrobial Hybrid Biopolymer/Silver Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 9792–9799. [Google Scholar] [CrossRef] [Green Version]
- Nabinejad, A. Antibacterial effects of Saponaria officinalis extracts against avian pathogenic Escherichia coli (APEC). Afr. J. Agric. Res. 2013, 8, 2068–2071. [Google Scholar] [CrossRef]
- Xiong, B.; Piechowicz, B.; Wang, Z.; Marinaro, R.; Clement, E.; Carlin, T.; Uliana, A.; Kumar, M.; Velegol, S.B. Moringa oleifera f-sand Filters for Sustainable Water Purification. Environ. Sci. Technol. Lett. 2017, 5, 38–42. [Google Scholar] [CrossRef]
- Al_husnan, L.A.; Alkahtani, M.D.F. Impact of Moringa aqueous extract on pathogenic bacteria and fungi in vitro. Ann. Agric. Sci. 2016, 61, 247–250. [Google Scholar] [CrossRef]
- Taskin, B.; Gozen, A.G.; Duran, M. Selective Quantification of Viable Escherichia coli Bacteria in Biosolids by Quantitative PCR with Propidium Monoazide Modification. Appl. Environ. Microbiol. 2011, 77, 4329–4335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocker, A.; Sossa-Fernandez, P.; Burr, M.D.; Camper, A.K. Use of Propidium Monoazide for Live/Dead Distinction in Microbial Ecology. Appl. Environ. Microbiol. 2007, 73, 5111–5117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Zheng, G.; Lin, M.; Mustapha, A. Detection of viable Escherichia coli in environmental water using combined propidium monoazide staining and quantitative PCR. Water Res. 2018, 145, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Foulds, I.; Granacki, A.; Xiao, C.; Krull, U.; Castle, A.; Horgen, P. Quantification of microcystin-producing cyanobacteria and E. coli in water by 5’-nuclease PCR. J. Appl. Microbiol. 2002, 93, 825–834. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.E.; Dalposso, K.; Hackbarth, B.B.; Gonçalves, A.R.; Westphal, G.A.; De França, P.H.C.; Pinho, M.D.S.L. Molecular panel for detection of sepsis-related microorganisms. Rev. Bras. Ter. Intensiv. 2011, 23, 36–40. [Google Scholar] [CrossRef]
- Ausubel, F.M.; Brent, R.; Kingston, R.E.; Moore, D.D.; Seidman, J.G.; Smith, J.A.; Struhl, K. Current protocols in molecular biology. In Molecular Reproduction & Development; John Wiley & Sons: New York, NY, USA, 1988; Volume 1, p. 146. [Google Scholar]
- Rocha, J.; Fernandes, T.; Riquelme, M.V.; Zhu, N.; Pruden, A.; Manaia, C.M. Comparison of Culture- and Quantitative PCR-Based Indicators of Antibiotic Resistance in Wastewater, Recycled Water, and Tap Water. Int. J. Environ. Res. Public Health 2019, 16, 4217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrona, G.S.; Serpelloni, G.B.; Vieira, A.M.S.; Nishi, L.; Cardoso, K.C.; Bergamasco, R. Study of the Effect of Saline Solution on the Extraction of the Moringa oleifera Seed’s Active Component for Water Treatment. Water Air Soil Pollut. 2010, 211, 409–415. [Google Scholar] [CrossRef]
- Peña, L.V.G.; Petkova, P.; Margalef-Marti, R.; Vives, M.; Aguilar, L.; Gallegos, A.; Francesko, A.; Perelshtein, I.; Gedanken, A.; Mendoza, E.; et al. Hybrid Chitosan–Silver Nanoparticles Enzymatically Embedded on Cork Filter Material for Water Disinfection. Ind. Eng. Chem. Res. 2017, 56, 3599–3606. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons: Sedona, AZ, USA, 2012. [Google Scholar]
- ASTM E2149-01: Standard Test Method for Determining the Antimicrobial Activity of Immobilized Antimicrobial Agents under Dynamic Contact Conditions (Withdrawn 2010); ASTM International: West Conshohochen, PA, USA, 2001. [CrossRef]
- Fiksdal, L.; Tryland, I. Application of rapid enzyme assay techniques for monitoring of microbial water quality. Curr. Opin. Biotechnol. 2008, 19, 289–294. [Google Scholar] [CrossRef]
- Mohanty, S.; Torkelson, A.A.; Dodd, H.; Nelson, K.L.; Boehm, A.B. Engineering Solutions to Improve the Removal of Fecal Indicator Bacteria by Bioinfiltration Systems during Intermittent Flow of Stormwater. Environ. Sci. Technol. 2013, 47, 10791–10798. [Google Scholar] [CrossRef] [Green Version]
- Kwaambwa, H.M.; Hellsing, M.S.; Rennie, A.R.; Barker, R. Interaction of Moringa oleifera seed protein with a mineral surface and the influence of surfactants. J. Colloid Interface Sci. 2015, 448, 339–346. [Google Scholar] [CrossRef]
- Sheng, J.J. Modern Chemical Enhanced Oil Recovery, 1st ed.; Gulf Professional Publishing: Houston, TX, USA, 2011. [Google Scholar] [CrossRef]
- Dickson, J.S.; Koohmaraie, M. Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl. Environ. Microbiol. 1989, 55, 832–836. [Google Scholar] [CrossRef] [Green Version]
- Goulter, R.; Gentle, I.; Dykes, G. Issues in determining factors influencing bacterial attachment: A review using the attachment of Escherichia coli to abiotic surfaces as an example. Lett. Appl. Microbiol. 2009, 49, 1–7. [Google Scholar] [CrossRef]
- Neu, T.R. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev. 1996, 60, 151–166. [Google Scholar] [CrossRef]
- Ukuku, D.O.; Fett, W.F. Relationship of Cell Surface Charge and Hydrophobicity to Strength of Attachment of Bacteria to Cantaloupe Rind†. J. Food Prot. 2002, 65, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, A.M.; Mateus, G.A.P.; Dos Santos, T.R.T.; Filho, B.A.D.A.; Gomes, R.G.; Bergamasco, R. Functionalized magnetite nanoparticles with Moringa oleifera with potent antibacterial action in wastewater. Environ. Technol. 2020, 1–22. [Google Scholar] [CrossRef]
- Domingues, V.; Alves, A.; Cabral, M.; Delerue-Matos, C. Sorption behaviour of bifenthrin on cork. J. Chromatogr. A 2005, 1069, 127–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Losen, M.; Frolich, B.; Pohl, M.; Büchs, J. Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol. Prog. 2004, 20, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Nogva, H.K.; Drømtorp, S.M.; Nissen, H.; Rudi, K. Ethidium Monoazide for DNA-Based Differentiation of Viable and Dead Bacteria by 5′-Nuclease PCR. BioTechniques 2003, 34, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Rudi, K.; Moen, B.; Drømtorp, S.M.; Holck, A.L. Use of Ethidium Monoazide and PCR in Combination for Quantification of Viable and Dead Cells in Complex Samples. Appl. Environ. Microbiol. 2005, 71, 1018–1024. [Google Scholar] [CrossRef] [Green Version]
- Kubota, M.; Nakabayashi, T.; Matsumoto, Y.; Shiomi, T.; Yamada, Y.; Ino, K.; Yamanokuchi, H.; Matsui, M.; Tsunoda, T.; Mizukami, F.; et al. Selective adsorption of bacterial cells onto zeolites. Colloids Surf. B Biointerfaces 2008, 64, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Rashid, U.; Anwar, F.; Moser, B.; Knothe, G. Moringa oleifera oil: A possible source of biodiesel. Bioresour. Technol. 2008, 99, 8175–8179. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Cozzolino, R.; Martignetti, A.; Malorni, L.; De Feo, V.; Cruz, A.G.; D’Acierno, A. Antibacterial Activity of Three Extra Virgin Olive Oils of the Campania Region, Southern Italy, Related to Their Polyphenol Content and Composition. Microorganisms 2019, 7, 321. [Google Scholar] [CrossRef] [Green Version]
- Klein, M.P.; Scheeren, C.W.; Lorenzoni, A.S.G.; Dupont, J.; Frazzon, J.; Hertz, P.F. Ionic liquid-cellulose film for enzyme immobilization. Process. Biochem. 2011, 46, 1375–1379. [Google Scholar] [CrossRef]
- Żur, J.; Wojcieszyńska, D.; Guzik, U. Metabolic Responses of Bacterial Cells to Immobilization. Molecules 2016, 21, 958. [Google Scholar] [CrossRef] [Green Version]
- Suarez, M.; Haenni, M.; Canarelli, S.; Fisch, F.; Chodanowski, P.; Servis, C.; Michielin, O.; Freitag, R.; Moreillon, P.; Mermod, N. Structure-Function Characterization and Optimization of a Plant-Derived Antibacterial Peptide. Antimicrob. Agents Chemother. 2005, 49, 3847–3857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Factors | Level | ||
---|---|---|---|
Low −1 | High 1 | ||
Recirculation (mL/min) | Rec | 3 | 7 |
Aireation (L/min) | Air | 0 | 4 |
Seed Concentration (%) | Conc | 5 | 10 |
Electric Conductivity (µs/cm) | EC | 1700 | 4000 |
Hydraulic retention time (h) | HRT | 6 | 12 |
Cork particle size (mm) | PS | 3 | 5 |
Lysis time (h) | LT | 6 | 12 |
Treatments | Rec | Air | Conc | EC | HRT | PS | LT |
---|---|---|---|---|---|---|---|
T1 | (3)-1 | (0)-1 | (5)-1 | (1700)-1 | (12)1 | (5)1 | (2)-1 |
T2 | (7)1 | (0)-1 | (5)-1 | (1700)-1 | (6)-1 | (5)1 | (3)1 |
T3 | (3)-1 | (4)1 | (5)-1 | (1700)-1 | (12)1 | (3)-1 | (3)1 |
T4 | (7)1 | (4)1 | (5)-1 | (4000)1 | (6)-1 | (3)-1 | (2)-1 |
T5 | (3)-1 | (0)-1 | (10)1 | (4000)1 | (6)-1 | (3)-1 | (3)1 |
T6 | (7)1 | (0)-1 | (10)1 | (4000)1 | (12)1 | (3)-1 | (2)-1 |
T7 | (3)-1 | (4)1 | (10)1 | (1700)-1 | (6)-1 | (5)1 | (2)-1 |
T8 | (7)1 | (4)1 | (10)1 | (4000)1 | (12)1 | (5)1 | (3)1 |
Treatments | Rec (mL/min) | Air (L/min) | Conc (%) | EC (µs/cm) | HRT (h) | PS (mm) | LT (h) | CFU/mL Cork | CFU/mL f-Cork | InhEc (%) |
---|---|---|---|---|---|---|---|---|---|---|
T1 | 3 | 0 | 5 | 1700 | 12 | 5 | 2 | 9.9 × 105 | 2.1 × 102 | 99.98 |
T2 | 7 | 0 | 5 | 1700 | 6 | 5 | 3 | 1.7 × 105 | 1.0 × 101 | 99.99 |
T3 | 3 | 4 | 5 | 1700 | 12 | 3 | 3 | 7.1 × 105 | 7.6 × 102 | 99.89 |
T4 | 7 | 4 | 5 | 4000 | 6 | 3 | 2 | 6.6 × 105 | 1.8 × 101 | 99.99 |
T5 | 3 | 0 | 10 | 4000 | 6 | 3 | 3 | 5.3 × 104 | 1.9 × 102 | 99.98 |
T6 | 7 | 0 | 10 | 4000 | 12 | 3 | 2 | 9.9 × 105 | 8.3 × 101 | 99.99 |
T7 | 3 | 4 | 10 | 1700 | 6 | 5 | 2 | 1.7 × 105 | 1.9 × 102 | 99.98 |
T8 | 7 | 4 | 10 | 4000 | 12 | 5 | 3 | 9.9 × 105 | 5.7 × 102 | 99.69 |
Treatment | Time 0 | Time 6 | % vqPCR |
---|---|---|---|
CP | 1.26 × 107 | 8.83 × 105 | 7.03 |
CPF | 4.68 × 108 | 4.52 × 107 | - |
R1P | 4.16 × 106 | 1.03 × 103 | 0.024 |
R1PF | 1.48 × 107 | 1.78 × 103 | - |
R2P | 3.45 × 106 | 1.80 × 102 | 0.005 |
R2PF | 1.58 × 107 | 6.25 × 103 | - |
CDBP | 3.75 × 101 | 1.52 × 105 | 0 |
CDBF | 1.20 × 108 | 1.20 × 108 | - |
CLBP | 2.24 × 107 | 5.45 × 106 | 16.40 |
CLBF | 4.67 × 108 | 7.66 × 107 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Infante, N.; Rodríguez, R.; Bartolo, Y.; Sánchez, O.; Sanz, I.; Bermeo, L.; Morató, J. Biofunctionalization of Cork with Moringa oleifera Seeds and Use of PMA Staining and qPCR to Detect Viability of Escherichia coli. Water 2021, 13, 2731. https://doi.org/10.3390/w13192731
Infante N, Rodríguez R, Bartolo Y, Sánchez O, Sanz I, Bermeo L, Morató J. Biofunctionalization of Cork with Moringa oleifera Seeds and Use of PMA Staining and qPCR to Detect Viability of Escherichia coli. Water. 2021; 13(19):2731. https://doi.org/10.3390/w13192731
Chicago/Turabian StyleInfante, Nury, Refugio Rodríguez, Yaneth Bartolo, Olga Sánchez, Isabel Sanz, Lizeth Bermeo, and Jordi Morató. 2021. "Biofunctionalization of Cork with Moringa oleifera Seeds and Use of PMA Staining and qPCR to Detect Viability of Escherichia coli" Water 13, no. 19: 2731. https://doi.org/10.3390/w13192731
APA StyleInfante, N., Rodríguez, R., Bartolo, Y., Sánchez, O., Sanz, I., Bermeo, L., & Morató, J. (2021). Biofunctionalization of Cork with Moringa oleifera Seeds and Use of PMA Staining and qPCR to Detect Viability of Escherichia coli. Water, 13(19), 2731. https://doi.org/10.3390/w13192731