Health Risk and Geochemical Assessment of Trace Elements in Surface Sediment along the Hooghly (Ganges) River Estuary (India)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Site
2.2. Sediment Collection and Pre-Treatment
2.3. Physico-Chemical, and TEs Analyses of Sediment
2.4. Indices for Integrated Data Analysis
3. Results
3.1. Sediment Geochemical Characteristics
3.2. Spatial and Seasonal Distribution of Elements
3.3. Assessment of Sediment Contamination
3.3.1. Index of Geoaccumulation (Igeo)
3.3.2. Enrichment Factor (EF)
3.4. Potential Ecological Risks Associated with TEs
3.4.1. Hazard Quotient (HQ)
3.4.2. Modified Hazard Quotient (mHQ)
3.4.3. Toxic Risk Index (TRI)
3.5. Human Health Risk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adimalla, N.; Chen, J.; Qian, H. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicol. Environ. Saf. 2020, 194, 110406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Bai, J.; Xiao, R.; Zhao, Q.; Jia, J.; Cui, B.; Liu, X. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere 2017, 184, 278–288. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Integrated Risk Information System (IRIS). In National Center for Environmental Assessment; EPA: Washington, DC, USA, 1999. [Google Scholar]
- Adimalla, N.; Wang, H. Distribution, contamination, and health risk assessment of heavy metals in surface soils from northern Telangana, India. Arab. J. Geosci. 2018, 11, 684. [Google Scholar] [CrossRef]
- Alissa, E.M.; Ferns, G.A. Heavy metal poisoning and cardiovascular disease. J. Toxicol. 2011, 2011, 870125. [Google Scholar] [CrossRef]
- Kim, N.H.; Kim, N.H.; Hyun, Y.Y.; Lee, K.B.; Chang, Y.; Ryu, S.; Oh, K.H.; Ahn, C. Erratum: Environmental heavy metal exposure and chronic kidney disease in the general population. J. Korean Med. Sci. 2015, 30, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Wang, S.; Bai, X.; Zhou, D.; Luo, G.; Yang, Y.; Hu, Z.; Li, C.; Deng, Y.; Lu, Q. Ecological security and health risk assessment of soil heavy metals on a village-level scale, based on different land use types. Environ. Geochem. Health 2020, 42, 3393–3413. [Google Scholar] [CrossRef]
- Sadhuram, Y.; Sarma, V.V.; Murthy, T.V.R.; Rao, P.B. Seasonal variability of physico-chemical characteristics of the Haldia channel of Hooghly estuary, India. J. Earth Syst. Sci. 2005, 114, 37–49. [Google Scholar] [CrossRef]
- Samanta, S.; Dalai, T.K. Massive production of heavy metals in the Ganga (Hooghly) River estuary, India: Global importance of solute-particle interaction and enhanced metal fluxes to the oceans. Geochim. Et Cosmochim. Acta 2018, 228, 243–258. [Google Scholar] [CrossRef]
- Alam, M.; Gomes, A.; Sarkar, S.K.; Shuvaeva, O.V.; Vishnevetskaya, N.S.; Gustaytis, M.A.; Bhattacharya, B.D.; Godhantaraman, N. Trace metal bioaccumulation by soft-bottom polychaetes (Annelida) of Sundarban Mangrove Wetland, India and their potential use as contamination indicator. Bull. Environ. Contam. Toxicol. 2010, 85, 492–496. [Google Scholar] [CrossRef]
- Chatterjee, M.; Sklenars, L.; Chenery, S.; Watts, M.J.; Marriott, A.; Rakshit, D.; Sarkar, S.K. Assessment of total mercury (HgT) in sediments and biota of Indian Sundarban wetland and adjacent coastal regions. Environ. Nat. Resour. Res. 2014, 4, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Antizar-Ladislao, B.; Mondal, P.; Mitra, S.; Sarkar, S.K. Assessment of trace metal contamination level and toxicity in sediments from coastal regions of West Bengal, eastern part of India. Mar. Pollut. Bull. 2015, 101, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.K.; Priyanka, M.; Jayanta Kumar, B.; Eilhann, K.E.; Yong Sik, O.; Jörg, R. Trace elements in surface sediments of the Hooghly (Ganges) estuary: Distribution and contamination risk assessment. Environ. Geochem. Health 2017, 39, 1245–1258. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P.; de Alcântara Mendes, R.; Jonathan, M.P.; Biswas, J.K.; Murugan, K.; Sarkar, S.K. Seasonal assessment of trace element contamination in intertidal sediments of the meso-macrotidal Hooghly (Ganges) River Estuary with a note on mercury speciation. Mar. Pollut. Bull. 2018, 127, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P.; Reichelt-Brushett, A.J.; Jonathan, M.P.; Sujitha, S.B.; Sarkar, S.K. Pollution evaluation of total and acid-leachable trace elements in surface sediments of hooghly river estuary and sundarban mangrove wetland (India). Environ. Sci. Pollut. Res. 2018, 25, 5681–5699. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Sudarshan, M.; Jonathan, M.P.; Sarkar, S.K.; Sandeep, T. Spatial and seasonal distribution of multi-elements in suspended particulate matter (SPM) in tidally dominated Hooghly river estuary and their ecotoxicological relevance. Environ. Sci. Pollut. Res. 2020, 27, 12658–12672. [Google Scholar] [CrossRef]
- Sanyal, T.; Chatterjee, A. The Hugli estuary: A profile, in Port of Calcutta: 125 Years Commemorative Volume; Chakraborty, S.C., Ed.; Calcutta Port Trust: Calcutta, India, 1995; pp. 45–54.
- Das, M.K. Estuarine Dynamics, Processes and Sediment Transport: A Case Study from the Hooghly Estuary of the Ganges Delta. Ph.D. Thesis, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India, 2015. [Google Scholar]
- Mondal, P.; Schintu, M.; Marras, B.; Bettoschi, A.; Marrucci, A.; Sarkar, S.K.; Chowdhury, R.; Jonathan, M.P.; Biswas, J.K. Geochemical fractionation and risk assessment of trace elements in sediments from tide-dominated Hooghly (Ganges) River Estuary, India. Chem. Geol. 2020, 532, 119373. [Google Scholar] [CrossRef]
- MacDonald, D.D.; CIngersoll, G.; Berger, T. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, J.; Zhao, Q.; Lu, Q.; Jia, J.; Wen, X. Heavy metals in wetland soils along a wetland-forming chronosequence in the Yellow River Delta of China: Levels, sources and toxic risks. Ecol. Indic. 2016, 69, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Jafarabadi, A.R.; Bakhtiyari, A.R.; Toosi, A.S.; Jadot, C. Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran. Chemosphere 2017, 185, 1090–1111. [Google Scholar] [CrossRef]
- Kusin, F.M.; Mohd Azani, N.N.; Hasan, S.N.M.S.; Sulong, N.A. Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena 2018, 165, 454–464. [Google Scholar] [CrossRef]
- Luo, X.-S.; Ding, J.; Xu, B.; Wang, Y.J.; Li, H.-B.; Yu, S. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Sci. Total Environ. 2012, 424, 88–96. [Google Scholar] [CrossRef] [PubMed]
- IARC. A Review of Human Carcinogens: Personal Habits and Indoor Combustions; World Health Organization: Lyon, France, 2012; Volume 100. [Google Scholar]
- IRIS. Program Database. 2020. Available online: https://cfpub.epa.gov/ncea/iris/search/index.cfm (accessed on 18 September 2020).
- Sarkar, S.K.; Frančišković-Bilinski, S.; Bhattacharya, A.; Saha, M.; Bilinski, H. Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. Environ. Int. 2004, 30, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-M.; Gao, J.; Yuan, Y.-Q.; Ma, J.; Yu, S. Relationship between heavy metal contents and clay mineral properties in surface sediments: Implications for metal pollution assessment. Cont. Shelf Res. 2016, 124, 125–133. [Google Scholar] [CrossRef]
- Preda, M.; Cox, M.E. Chemical and mineralogical composition of marine sediments, and relation to their source and transport, Gulf of Carpentaria, Northern Australia. J. Mar. Syst. 2005, 53, 169–186. [Google Scholar] [CrossRef]
- Maity, S.K.; Maiti, R. Understanding the sediment sources from mineral composition at the lower reach of Rupnarayan River, West Bengal, India–XRD-based analysis. GeoResJ 2016, 9, 91–103. [Google Scholar] [CrossRef]
- Aguado-Giménez, F.; Marín, A.; Montoya, S.; Marín-Guirao, L.; Piedecausa, A.; García-García, B. Comparison between some procedures for monitoring offshore cage culture in western Mediterranean Sea: Sampling methods and impact indicators in soft substrata. Aquaculture 2007, 271, 357–370. [Google Scholar]
- Avramidis, P.; Nikolaou, K.; Bekiari, V. Total organic carbon and total nitrogen in sediments and soils: A comparison of the wet oxidation–titration method with the combustion-infrared method. Agric. Agric. Sci. Procedia. 2015, 4, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Naha Biswas, S.; Ranjit, N.G.; Bhaskar, K.S.; Bhattacharya, B.D.; Sarkar, S.K.; Satpathy, K.K. Bloom of Hemidiscus hardmannianus (Bacillariophyceae) and its impact on water quality and plankton community structure in a mangrove wetland. Clean Soil Air Water 2013, 41, 333–339. [Google Scholar] [CrossRef]
- Rakshit, D.; Sarkar, S.K.; Bhattacharya, B.D.; Jonathan, M.P.; Biswas, J.K.; Mondal, P.; Mitra, S. Human-induced ecological changes in western part of Indian Sundarban megadelta: A threat to ecosystem stability. Mar. Pollut. Bull. 2015, 99, 186–194. [Google Scholar] [CrossRef]
- Chatterjee, M.; Silva Filho, E.V.; Sarkar, S.K.; Sella, S.M.; Bhattacharya, A.; Satpathy, K.K.; Prasad, M.V.R.; Chakraborty, S.; Bhattacharya, B.D. Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ. Int. 2007, 33, 346–356. [Google Scholar] [CrossRef]
- Knight, C.; Kaiser, J.; Lalor, G.C.; Robotham, H.; Witter, J.V. Heavy metals in surface water and stream sediments in Jamaica. Environ. Geochem. Health 1997, 19, 63–66. [Google Scholar] [CrossRef]
- Rahman, M.S.; Khan, M.D.H.; Jolly, Y.N.; Kabir, J.; Akter, S.; Salam, A. Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci. Total Environ. 2019, 660, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- IARC. IARC monographs on the evaluation of carcinogenic risks to humans. Some Ind. Chem. 1994, 60, 389–433. [Google Scholar]
- Bandara, J.; Senevirathna, D.M.; Dasanayake, D.M.; Herath, V.; Bandara, J.M.; Abeysekara, T.; Rajapaksha, K.H. Chronic renal failure among farm families in cascade irrigation systems in Sri Lanka associated with elevated dietary cadmium levels in rice and freshwater fish (Tilapia). Environ. Geochem. Health 2008, 30, 465–478. [Google Scholar] [CrossRef]
- Yang, Q.; Shu, W.S.; Qiu, J.W.; Wang, H.B.; Lan, C.Y. Lead in paddy soils and rice plants and its potential health risk around Lechang Lead/Zinc Mine, Guangdong, China. Environ. Int. 2004, 30, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Song, Y.; Chen, L.; Ji, J.; Li, J.; Yuan, X.; Yang, Z.; Ayoko, G.A.; Frost, R.L.; Theiss, F. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena 2019, 175, 339–348. [Google Scholar] [CrossRef]
- Zhuang, P.; Zou, B.; Li, N.Y.; Li, Z.A. Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: Implication for human health. Environ. Geochem. Health 2009, 31, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Diami, S.M.; Kusin, F.M.; Madzin, Z. Potential ecological and human health risks of heavy metals in surface soils associated with iron ore mining in Pahang, Malaysia. Environ. Sci. Pollut. Res. 2016, 23, 21086–21097. [Google Scholar] [CrossRef]
- Karim, Z.; Qureshi, B.A. Health risk assessment of heavy metals in urban soil of Karachi, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2014, 20, 658–667. [Google Scholar] [CrossRef]
- Pan, L.; Wang, Y.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Wang, L.; Xiang, B. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ. Sci. Pollut. Res. 2018, 25, 1055–1069. [Google Scholar] [CrossRef]
- Mielke, H.W.; Gonzales, C.R.; Smith, M.K.; Mielke, P.W. The urban environment and children’s health: Soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, USA. Environ. Res. 1999, 81, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Meza-Figueroa, D.; de la O-Villanueva, M.; de la Parra, M.L. Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmos. Environ. 2007, 41, 276–288. [Google Scholar] [CrossRef]
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A. Hongbin Cao Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
Parameters | Statistical Distribution | |||||
---|---|---|---|---|---|---|
Maximum | Minimum | Mean | SD | Median | CV (%) | |
pH | 7.82 | 6.85 | 7.44 | 0.29 | 7.45 | 3.90 |
Corg (%) | 0.59 | 0.15 | 0.40 | 0.11 | 0.39 | 27.66 |
CaCO3 (%) | 14.26 | 9.08 | 11.04 | 1.18 | 10.74 | 10.72 |
Sand (%) | 27 | 7 | 14.58 | 9.92 | 12.15 | 68.07 |
Silt (%) | 34 | 23 | 29.44 | 11.32 | 27.50 | 38.46 |
Clay (%) | 72 | 50 | 55.97 | 11.93 | 54.13 | 21.31 |
TC (%) | 1.57 | 0.47 | 0.96 | 0.27 | 0.90 | 27.76 |
TN (%) | 0.71 | 0.08 | 0.34 | 0.19 | 0.30 | 56.74 |
C:N | 12.73 | 1.24 | 3.98 | 2.75 | 2.76 | 69.24 |
(a) Adults | |||||||
Trace Elements | CDI ing | CDI inh | CDI Dermal | HQ ing | HQ inh | HQ Dermal | HI |
Cd | 4.321 × 10−7 | 3.177 × 10−10 | 1.724 × 10−9 | 4.321 × 10−4 | 3.177 × 10−7 | 1.724 × 10−6 | 4.341 × 10−4 |
Cr | 8.386 × 10−5 | 6.166 × 10−8 | 3.346 × 10−7 | 2.795 × 10−2 | 2.055 × 10−5 | 1.115 × 10−4 | 2.809 × 10−2 |
Cu | 4.024 × 10−5 | 2.959 × 10−8 | 1.605 × 10−7 | 1.085 × 10−3 | 7.974 × 10−7 | 4.327 × 10−6 | 1.090 × 10−3 |
Ni | 5.397 × 10−5 | 3.969 × 10−8 | 2.153 × 10−7 | 2.699 × 10−3 | 1.984 × 10−6 | 1.077 × 10−5 | 2.711 × 10−3 |
Pb | 4.183 × 10−5 | 3.076 × 10−8 | 1.669 × 10−7 | 1.195 × 10−2 | 8.789 × 10−6 | 4.769 × 10−5 | 1.201 × 10−2 |
Fe | 4.100 × 10−2 | 3.015 × 10−5 | 1.636 × 10−4 | 5.857 × 10−2 | 4.307 × 10−5 | 2.337 × 10−4 | 5.885 × 10−2 |
Mn | 7.155 × 10−4 | 5.261 × 10−7 | 2.855 × 10−6 | 5.111 × 10−3 | 3.758 × 10−6 | 2.039 × 10−5 | 5.135 × 10−3 |
Co | 2.101 × 10−5 | 1.545 × 10−8 | 8.384 × 10−8 | 1.051 × 10−3 | 7.725 × 10−7 | 4.192 × 10−6 | 1.056 × 10−3 |
Zn | 9.671 × 10−5 | 7.111 × 10−8 | 3.859 × 10−7 | 3.224 × 10−4 | 2.370 × 10−7 | 1.286 × 10−6 | 3.239 × 10−4 |
Be | 4.489 × 10−6 | 3.301 × 10−9 | 1.791 × 10−8 | 2.244 × 10−3 | 1.650 × 10−6 | 8.955 × 10−6 | 2.255 × 10−3 |
V | 1.239 × 10−4 | 9.108 × 10−8 | 4.942 × 10−7 | 1.376 × 10−2 | 1.012 × 10−5 | 5.492 × 10−5 | 1.383 × 10−2 |
As | 9.826 × 10−6 | 7.225 × 10−9 | 3.920 × 10−8 | 3.275 × 10−2 | 2.408 × 10−5 | 1.307 × 10−4 | 3.291 × 10−2 |
B | 1.558 × 10−4 | 1.146 × 10−7 | 6.218 × 10−7 | 7.792 × 10−4 | 5.729 × 10−7 | 3.109 × 10−6 | 7.829 × 10−4 |
Ba | 4.720 × 10−3 | 1.666 × 10−7 | 9.040 × 10−7 | 1.133 × 10−3 | 8.330 × 10−7 | 4.520 × 10−6 | 1.138 × 10−3 |
(b) Children | |||||||
Trace Elements | CDI ing | CDI inh | CDI Dermal | HQ ing | HQ inh | HQ Dermal | HI |
Cd | 4.033 × 10−6 | 2.965 × 10−9 | 8.046 × 10−9 | 4.033 × 10−3 | 2.965 × 10−6 | 8.046 × 10−6 | 4.044 × 10−3 |
Cr | 7.827 × 10−4 | 5.755 × 10−7 | 1.562 × 10−6 | 2.609 × 10−1 | 1.918 × 10−4 | 5.205 × 10−4 | 2.616 × 10−1 |
Cu | 3.755 × 10−4 | 2.761 × 10−7 | 7.492 × 10−7 | 1.012 × 10−2 | 7.443 × 10−6 | 2.019 × 10−5 | 1.015 × 10−2 |
Ni | 5.037 × 10−4 | 3.704 × 10−7 | 1.005 × 10−6 | 2.519 × 10−2 | 1.852 × 10−5 | 5.025 × 10−5 | 2.526 × 10−2 |
Pb | 3.905 × 10−4 | 2.871 × 10−7 | 7.790 × 10−7 | 1.116 × 10−1 | 8.203 × 10−5 | 2.226 × 10−4 | 1.119 × 10−1 |
Fe | 3.827 × 10−1 | 2.814 × 10−4 | 7.634 × 10−4 | 5.467 × 10−1 | 4.020 × 10−4 | 1.091 × 10−3 | 5.482 × 10−1 |
Mn | 6.678 × 10−3 | 4.910 × 10−6 | 1.332 × 10−5 | 4.770 × 10−2 | 3.507 × 10−5 | 9.516 × 10−5 | 4.783 × 10−2 |
Co | 1.961 × 10−4 | 1.442 × 10−7 | 3.912 × 10−7 | 9.805 × 10−3 | 7.210 × 10−6 | 1.956 × 10−5 | 9.832 × 10−3 |
Zn | 9.026 × 10−4 | 6.637 × 10−7 | 1.801 × 10−6 | 3.009 × 10−3 | 2.212 × 10−6 | 6.002 × 10−6 | 3.017 × 10−3 |
Be | 4.190 × 10−5 | 3.081 × 10−8 | 8.358 × 10−8 | 2.095 × 10−2 | 1.540 × 10−5 | 4.179 × 10−5 | 2.101 × 10−2 |
V | 1.156 × 10−3 | 8.501 × 10−7 | 2.306 × 10−6 | 1.285 × 10−1 | 9.445 × 10−5 | 2.563 × 10−4 | 1.288 × 10−1 |
As | 9.171 × 10−5 | 6.743 × 10−8 | 1.830 × 10−7 | 3.057 × 10−1 | 2.248 × 10−4 | 6.098 × 10−4 | 3.065 × 10−1 |
B | 1.454 × 10−3 | 1.069 × 10−6 | 2.902 × 10−6 | 7.272 × 10−3 | 5.347 × 10−6 | 1.451 × 10−5 | 7.292 × 10−3 |
Ba | 2.115 × 10−3 | 1.555 × 10−6 | 4.219 × 10−6 | 1.057 × 10−2 | 7.775 × 10−6 | 2.109 × 10−5 | 1.060 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, P.; Lofrano, G.; Carotenuto, M.; Guida, M.; Trifuoggi, M.; Libralato, G.; Sarkar, S.K. Health Risk and Geochemical Assessment of Trace Elements in Surface Sediment along the Hooghly (Ganges) River Estuary (India). Water 2021, 13, 110. https://doi.org/10.3390/w13020110
Mondal P, Lofrano G, Carotenuto M, Guida M, Trifuoggi M, Libralato G, Sarkar SK. Health Risk and Geochemical Assessment of Trace Elements in Surface Sediment along the Hooghly (Ganges) River Estuary (India). Water. 2021; 13(2):110. https://doi.org/10.3390/w13020110
Chicago/Turabian StyleMondal, Priyanka, Giusy Lofrano, Maurizio Carotenuto, Marco Guida, Marco Trifuoggi, Giovanni Libralato, and Santosh Kumar Sarkar. 2021. "Health Risk and Geochemical Assessment of Trace Elements in Surface Sediment along the Hooghly (Ganges) River Estuary (India)" Water 13, no. 2: 110. https://doi.org/10.3390/w13020110
APA StyleMondal, P., Lofrano, G., Carotenuto, M., Guida, M., Trifuoggi, M., Libralato, G., & Sarkar, S. K. (2021). Health Risk and Geochemical Assessment of Trace Elements in Surface Sediment along the Hooghly (Ganges) River Estuary (India). Water, 13(2), 110. https://doi.org/10.3390/w13020110