A Comparative Assessment of Hydrological Models in the Upper Cauvery Catchment
Abstract
:1. Introduction
2. Model Descriptions
2.1. Variable Infiltration Capacity (VIC) Model
2.2. Soil and Water Assessment Tool (SWAT)
2.3. Global Water Availability Assessment (GWAVA) Model
3. Model Applications and Comparison
3.1. Site Description
3.2. Input Data and Model Application
3.2.1. VIC
3.2.2. SWAT
3.2.3. GWAVA
3.3. Model Performance Criteria
4. Results
4.1. Reservoir Outflow Evaluation
4.2. Individual Model Performance
4.3. Ensemble Model Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Model | Calibration | Surface Runoff Routing | Channel Routing | Interception | Total Evaporation | Baseflow | Infiltration | Channel Characteristics | Groundwater | Anthropogenic Demands | Reservoir Module | Irrigation Module | Interventions |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GWAVA | Automatic | PDM | Hargreaves | PDM | AMBHAS 1D coupling | ||||||||
SWAT | Manual | SCS | Muskingum | Penman-Monteith | Steady-State | Green Ampt | |||||||
VIC | Manual | Linear Transfer | Saint-Venant | BATS | Penman-Monteith | Arno | VIC | ||||||
Included in model, utilised in study | Included in model, not utilised in study | Not included in model |
Input Data | Model | Resolution | Source |
---|---|---|---|
Climate Forcing Data | |||
Precipitation | VIC | 0.25 degree, daily, 1951–2017 | India Meteorological Department [57] |
GWAVA | |||
SWAT | 0.25 degree, daily, 1951–2017 0.14 degree, daily 34 rain gauges, monthly | India Meteorological Department [57] India Meteorological Department [57] India Meteorological Department [57] | |
Maximum and Minimum Temperature | VIC | 1 degree, daily, 1951–2016 | India Meteorological Department [57] |
GWAVA | |||
SWAT | |||
Wind speed | VIC | 0.25 degree, daily, 1971–2016 | Princeton University [67] |
SWAT | 0.25 degree, daily | India Meteorological Department [57] | |
Relative Humidity | SWAT | 0.125 degree, daily | India Meteorological Department [57] |
Sunshine hours | SWAT | 0.125 degree, daily | India Meteorological Department [57] |
Hydrological Data | |||
Streamflow gauged data | VIC | Cauvery, daily, 1971—2014 | India-WRIS |
GWAVA | |||
SWAT | Upper Cauvery, monthly | India-WRIS | |
Reservoir inflow and outflow data | VIC | Cauvery, monthly 1974–2014 | India-WRIS |
GWAVA | |||
Water transfers | SWAT | Upper Cauvery, monthly | India-WRIS |
GWAVA | Cauvery catchment | ATREE | |
Interventions | GWAVA | Karnataka, 2006–2012 | Catchment Development Department, Karnataka |
SWAT | |||
Land Surface Data | |||
Elevation | VIC | 30 m × 30 m | NASA Shuttle Radar Mission Global 1 arc second V003 [70] |
GWAVA | |||
SWAT | 90 m × 90 m | Shuttle Radar Topography Mission [71] | |
Soil type | VIC | 250 m | International Soil Reference and Information Centre (ISRIC) world soil information [72] |
GWAVA | 30 arc second | Harmonized World Soil Database v1.2 [73] | |
SWAT | 1: 250,000 | National Bureau of Soil Survey and Land Use Planning (NBSS & LUP). | |
Land Cover Land Use | VIC | 100 m × 100 m, 1985, 1995, 2005 | Decadal land use and land cover across India 2005 [74] |
GWAVA | |||
SWAT | 1:250,000 | National Remote Sensing Centre (NRSC) | |
Crops | GWAVA | Talak, 2000 | National Remote Sensing Centre (NRSC) |
SWAT | 1:250,000 | National Remote Sensing Centre (NRSC) | |
LAI | VIC | 1 km resolution | MODIS (United States Geological Survey (USGS) Earth Explorer, 2018) |
Albedo | VIC | 1 km resolution | MODIS (United States Geological Survey (USGS) Earth Explorer, 2018) |
Demand Data | |||
Total Population | GWAVA | Village, 2011 | Indian Decadal Census |
Rural Population | GWAVA | Village, 2011 | Indian Decadal Census |
Livestock | GWAVA | 5 km × 5 km | CGIR Livestock of the World v2 [75] |
Variable (Unit) | Parameter Name | Parameter Value | Source |
---|---|---|---|
Sand content (%) | SAND | 20 (10–30) | NBSS&LUP * |
Silt content (%) | SILT | 28 (20–35) | NBSS&LUP * |
Clay content (%) | CLAY | 53 (35–70) | NBSS&LUP * |
Bulk Density (g cm−3) | SOL_BD | 1.29 (1.24–1.33) | NBSS&LUP * |
Available Water Content (mm H2O/mm soil) | SOL_AWC | 0.14 | NBSS&LUP * |
Soil Depth (mm) | SOL_Z | 750 (300–1200) | NBSS&LUP * |
Saturated Hydraulic Conductivity (mm/hr) | SOL_K | 6.6 (6.03–7.12) | NBSS&LUP * |
Curve number | CN2 | 82 (72–92) | Calibrated |
Groundwater revapcoeff (-) | GW_REVAP | 0.02 | Default |
Threshold depth of water for revap in shallow aquifer (mm H2O) | REVAP_MN ** | 750 | Default |
Threshold depth of water in the shallow aquifer required to return flow (mm H2O) | GWQMN | 1000 | Default |
Groundwater delay time (days) | GW_DELAY | 31 | Default |
Surface runoff lag coefficient | SURLAG | 4 | Default |
Base flow alpha factor | ALPHA_BF | 0.048 | Default |
Hydraulic conductivity of the reservoir bottom (mm h-1)—For ex-situ interventions | RES_K | 4 | Measured |
Hydraulic conductivity of the reservoir bottom (mm h-1)—For in-situ interventions | RES_K | 12 | Measured |
Appendix B
References
- Schaake, J.C.; Koren, V.I.; Duan, Q.Y.; Mitchell, K.; Chen, F. Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res. Atmos. 1996, 100, 7461–7475. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Ceballos, A. Mean soil moisture estimation using temporal stability analysis. J. Hydrol. 2005, 312, 28–38. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Gaur, A.; Zwart, S.J. Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment. Agric. Water Manag. 2008, 95, 11–24. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Storm, B. Construction, Calibration and Validation of Hydrological Models, in Distributed Hydrological Modelling; Springer: Dordrecht, The Netherlands, 1990; pp. 41–54. [Google Scholar]
- Salvucci, G.D.; Entekhabi, D. Equivalent steady soil moisture profile and the time compression aroximation in water balance modeling. Water Resour. Res. 1994, 30, 2737–2749. [Google Scholar] [CrossRef]
- Graeff, T.; Zehe, E.; Blume, T.; Francke, T.; Schröder, B. Predicting event response in a nested catchment with generalized linear models and a distributed watershed model. Hydrol. Process. 2012, 26, 3749–3769. [Google Scholar] [CrossRef]
- Bárdossy, A. Calibration of hydrological model parameters for ungauged catchments. Hydrol. Earth Syst. Sci. Discuss. 2007, 11, 703–719. [Google Scholar] [CrossRef] [Green Version]
- Hassan, Z.; Shamsudin, S.; Harun, S.; Malek, M.A.; Hamidon, N. Suitability of ANN alied as a hydrological model coupled with statistical downscaling model: A case study in the northern area of Peninsular Malaysia. Environ. Earth Sci. 2015, 74, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A review on hydrological models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Tegegne, G.; Park, D.K.; Kim, Y.O. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Uer Blue Nile River Catchment. J. Hydrol. Reg. Stud. 2017, 10, 49–66. [Google Scholar] [CrossRef]
- Dee, D.P.; Uala, S.M.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Michaud, J.; Sorooshien, S. Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed. Water Resour. Res. 1994, 30, 593–605. [Google Scholar]
- Li, Z.; Yu, J.; Xu, X.; Sun, W.; Pang, B.; Yue, J. Multi-model ensemble hydrological simulation using a BP Neural Network for the uer Yalongjiang River Catchment, China. Proc. Int. Assoc. Hydrol. Sci. 2018, 379, 335. [Google Scholar]
- Doblas-Reyes, F.J.; Hagedorn, R.; Palmer, T.N. The rationale behind the success of multi-model ensembles in seasonal forecasting—II. Calibration and combination, Tellus A. Dyn. Meteorol. Oceanogr. 2005, 57, 234–252. [Google Scholar]
- Kumar, R.; Nandagiri, L. Evaluating uncertainty of the soil and water assessment tool (SWAT) model in the uer Cauvery catchment, Karnataka, India. Int. J. Earth Sci. Eng. 2015, 8, 1675–1681. [Google Scholar]
- Baker, L.; Ellison, D. Optimisation of pedotransfer functions using an artificial neural network ensemble method. Geoderma 2008, 144, 212–224. [Google Scholar] [CrossRef]
- Viney, N.R.; Borman, H.; Breuer, L.; Bronstert, A.; Croke, B.F.; Frede, H.; Gräff, T.; Hubrechts, L.; Huisman, J.A.; Jakeman, A.J.; et al. Assessing the impact of land-use change on hydrology by ensemble modelling (LUCHEM) II: Ensemble combinations and predictions. Adv. Water Resour. 2009, 32, 147–158. [Google Scholar] [CrossRef]
- Gosain, A.K.; Rao, S.; Basuray, D. Climate change impact assessment on the hydrology of Indian river catchments. Curr. Sci. 2006, 90, 346–353. [Google Scholar]
- Kumar, B.K.; Nandagriri, L. Assessment of variable source area hydrological models in humid tropical watersheds. Int. J. River Catchment Manag. 2018, 16, 145–156. [Google Scholar]
- Bhave, A.G.; Conway, D.; Dessai, S.; Stainforth, D.A. Water resource planning under future climate and socio-economic uncertainty in the Cauvery River Catchment in Karnataka, India. Water Resour. Res. 2018, 54, 708–728. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Bharath, S.; Bharath, A. Spatio-temporal dynamics along the terrain gradient of diverse landscape. J. Environ. Eng. Landsc. Manag. 2014, 22, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.S.; Ramachandran, P. A comparison of machine learning techniques for modelling river flow time series: The case of Upper Cauvery river catchment. Water Resour. Manag. 2015, 29, 589–602. [Google Scholar] [CrossRef]
- Geetha, K.; Mishra, S.K.; Eldho, T.I.; Rastogi, A. SCS-CN-based continuous simulation model for hydrologic forecasting. Water Resour. Manag. 2008, 22, 165–190. [Google Scholar] [CrossRef]
- Gupta, P.K.; Panigraphy, S. Geospatial modelling of runoff of large landmass: Analysis, aroach and results for major river catchments of India. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 63–68. [Google Scholar]
- Jaje, D.; Priya, P.; Krishann, R. Macroscale hydrological modelling approach for the study of large scale hydrologic impacts under climate change in Indian river catchments. Hydrol. Process. 2014, 28, 1874–1889. [Google Scholar]
- Meigh, J.R.; McKenzie, A.A.; Sene, K.J. A grid-based aroach to water scarcity estimates for eastern and southern Africa, Water Resources. Management 1999, 13, 85–115. [Google Scholar]
- Viney, N.R.; Croke, B.W.; Breuer, L.; Bormann, H.; Bronstert, A.; Frede, H.; Gräff, T.; Hubrechts, L.; Huisman, J.A.; Jakeman, A.J.; et al. Ensemble modelling of the hydrological impacts of land-use change. In Proceedings of the MODSIM05 International Congress on Modelling and Simulation: Advances and Applications for Management and Decision Making, Melbourne, Australia, 12–15 December 2005. [Google Scholar]
- Muhammad, A.; Stadnyk, T.A.; Unduche, F.; Coulibaly, P. Multi-model aroaches for improving seasonal ensemble streamflow prediction scheme with various statistical post-processing techniques in the Canadian Prairie region. Water 2018, 10, 1604. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.A.; Barker, L.J.; Tanguy, M.; Parry, S.; Harrigan, S.; Legg, T.P.; Prudhomme, C.; Hannaford, J. A multi-objective ensemble aroach to hydrological modelling in the UK: An alication to historic drought reconstruction. Hydrol. Earth Syst. Sci. 2019, 23, 3247–3268. [Google Scholar] [CrossRef] [Green Version]
- Wagner, P.D.; Kumar, S.; Fiener, P.; Schneider, K. Hydrological modelling with SWAT in a monsoon-driven environment: Experience from the Western Ghats, India. Trans. ASABE 2011, 54, 1783–1790. [Google Scholar] [CrossRef]
- Rickards, N.; Thomas, T.; Kaelin, A.; Houghton-Carr, H.; Jain, S.; Mishra, P.K.; Nema, M.K.; Dixon, H.; Rahman, M.M.; Horan, R.; et al. Understanding future water challenges in a highly regulated Indian river catchment—modelling the impact of climate change on the hydrology of the Uer Narmada. Water 2020, 12, 1762. [Google Scholar] [CrossRef]
- Chawla, I.; Mujumdar, P.P. Isolating the impacts of land use and climate change on streamflow. Hydrol. Earth Syst. Sci. 2015, 19, 3633–3651. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Wood, E.F.; Lettenmaier, D.P. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Glob. Planet. Chang. 1996, 13, 195–206. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Chawla, I.; Mujumdae, P.P. Partitioning uncertainty in streamflow projections under nonstationary model conditions. Adv. Water Resour. 2018, 112, 266–282. [Google Scholar] [CrossRef]
- Shah, D.; Mishra, V. Drought onset and termination in India. J. Geophys. Res. Atmos. 2020, 125, 32871. [Google Scholar] [CrossRef]
- Wu, H.; Adler, R.F.; Tian, Y.; Huffman, G.J.; Li, H.; Wang, J. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res. 2014, 50, 2693–2717. [Google Scholar] [CrossRef] [Green Version]
- Nijssen, B.; O’Donnell, G.M.; Lettenmaier, D.P.; Lohmann, D.; Wood, E.F. Predicting the discharge of global rivers. J. Clim. 2001, 14, 3307–3323. [Google Scholar] [CrossRef]
- Troy, T.J.; Wood, E.F.; Sheffield, J. An efficient calibration method for continental-scale land surface modelling. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, P.; Zhao, X.; Gao, X.; Shi, Y. Assessing the spatial and temporal variation of the rainwater harvesting potential (1971–2010) on the Chinese Loess Plateau using the VIC model. Hydrol. Process. 2014, 28, 534–544. [Google Scholar] [CrossRef]
- Lohmann, D.; Raschke, E.; Nijssen, B.; Lettenmaier, D.P. Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J. 1998, 43, 131–141. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan Santhi, C.; Harmel, R.D.; Van Grensven, A.; Van Liew, M.W.; Kannan, N. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. 1.1 Overview of Soil and Water Assessment Tool (SWAT) Model. Tier B 2009, 8, 3–23. [Google Scholar]
- Dumont, E.; Williams, R.; Keller, V.; Voß, V.A.; Tattari, S. Modelling indicators of water security, water pollution and aquatic biodiversity in Europe. Hydrol. Sci. J. 2012, 57, 1378–1403. [Google Scholar] [CrossRef] [Green Version]
- Subash, Y.; Sekhar, M.; Tomer, S.K.; Sharma, A.K. A framework for the assessment of climate change impacts on. Sustain. Water Resour. ASCE 2016, 375–397. [Google Scholar]
- Horan, R.; Wable, P.; Srinivasan, V.; Baron, H.; Keller, V.; Garg, K.; Rickards, N.; Simpson, M.; Houghton-Carr, H.; Rees, G. Modelling Small-scale Storage Interventions at the Catchment Scale. Earth Space Sci. Open Arch. 2020. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Ritcher, D.D. Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.D.; Sharma, D. Water Resources of India. Curr. Sci. 2005, 89, 794–811. [Google Scholar]
- Folke, S. Conflicts over water and land in South Indian agriculture: A political economy perspective. Econ. Political Wkly. 1998, 33, 341–349. [Google Scholar]
- Palanisami, K.; Ranganathan, C.R.; Nagothu, U.S.; Kakumanu, K.R. Climate Change and Agriculture in India: Studies from Selected River Catchments; Routledge: Abingdon-on-Thames, UK, 2014. [Google Scholar]
- Jamwal, P.; Thomas, B.K.; Lele, S.; Srinivasan, A. Addressing Water Stress through Wastewater Reuse: Complexities and Challenges in Bangalore, India; Local Governments for Sustainability: Bonn, Germany, 2014. [Google Scholar]
- Chidambaram, S.; Ramanathan, A.L.; Thilagavathi, R.; Ganesh, N. Cauvery River, in The Indian Rivers, 2018, Singapore; Springer: Berlin, Germany, 2018; pp. 353–366. [Google Scholar]
- Meunier, J.D.; Riotte, J.; Braun, J.J.; Sekhar, F.; Chalié, F.; Barboni, D.; Saccone, L. Controls of DSi in streams and reservoirs along the Kaveri River, South India. Sci. Total Environ. 2015, 502, 103–113. [Google Scholar] [CrossRef]
- Sreelash, K.; Mathew, M.M.; Nisha, N.; Arulbalaji, P.; Bindu, A.G.; Sharma, R.K. Changes in the Hydrological Characteristics of Cauvery River draining the eastern side of southern Western Ghats, India. Int. J. River Catchment Manag. 2020, 18, 153–166. [Google Scholar] [CrossRef]
- Pattabaik, J.K.; Balakrishnan, S.; Bhutani, R.; Singh, P. Estimation of weathering rates and CO2 drawdown based on solute load: Significance of granulites and gneisses dominated weathering in the Kaveri River catchment, Southern India. Geochim. Cosmochim. Acta 2013, 121, 611–636. [Google Scholar] [CrossRef]
- Jain, S.K.; Agarwal, P.K.; Singh, V.P. Hydrology and Water Resources of India, 57th ed.; Springer Science & Business Media: New Delhi, India, 2007. [Google Scholar]
- Pai, D.; Latha, S.; Rajeevan, M.; Sreejith, O.P.; Satbhai, N.S.; Mukhopadhyay, B. Development of a new high spatial resolution (0.25° × 0.25°)Long-period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region, 2014. Mausam Q. J. Meteorol. Hydrol. Geophys. 2014, 65, 1–18. [Google Scholar]
- University of Washington Computational Hydrology Group, VIC Model User Guide. 2015. Available online: https://vic.readthedocs.io/en/vic.4.2.d/Documentation/UserGuide/ (accessed on 9 September 2019).
- Hurkmans, R.W.; De Moel, H.; Aerts, J.; Troch, P.A. Water balance versus land surface model in the simulation of Rhine river discharges. Water Resour. Res. 2008, 44, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cosby, B.J.; Hornberger, G.M.; Cla, R.B.; Ginn, T.R. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 1984, 20, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Kiniry, R.; Srinivasan, R.; Williams, J.R.; Hanely, E.B.; Neitsch, S.L. Soil Water Assessment Tool Input/Output Documentation Version 2012. Available online: https://swat.tamu.edu/media/69296/swat-io-documentation-2012.pdf (accessed on 3 March 2019).
- Wable, P.S.; Garg, K.K.; Nune, R. Impact of Watershed Interventions on Streamflow of Upper Cauvery Sub-Catchment. In Proceedings of the Sustainable Water Futures Conference, Bengaluru, India, 24–27 September 2019. [Google Scholar]
- UK Centre for Ecology and Hydrology (UKCEH). GWAVA: Global Water Availability Assessment Model Technical Guide and User Manual; Technical Report; UK Centre for Ecology and Hydrology: Wallingford, UK, 2020. [Google Scholar]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implicationsfor improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models. 1: Discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical note: Inherent benchmark or not? Comparing NashSutcliffe and KlingGupta efficiency scores. Hydrol. Earth Syst. Sci. 2009, 23, 4323–4331. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 2016, 19, 3088–3111. [Google Scholar] [CrossRef] [Green Version]
- Semenova, O.M.; Vinogradova, T.A. A universal approach to runoff processes modelling: Coping with hydrological predictions in data-scarce regions. IAHS Publ. 2009, 333, 11–16. [Google Scholar]
- Maheswaran, R.; Khosa, R. Wavelet–Volterra coupled model for monthly stream flow forecasting. J. Hydrol. 2012, 450, 320–335. [Google Scholar]
- NASA JPL. NASA Shuttle Radar Topography Mission Global 1 arc Second Number, 2013, Archived by National Aeronautics and Space Administration, U.S. Government, NASA EOSDIS Land Processes DAAC; NASA JPL: Pasadena, CA, USA. [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar]
- Dent, D. International Soil Reference and Information Centre (ISRIC). In Encyclopaedia of Soil Science; CRC Press: Boca Raton, FL, USA, 2017; pp. 1232–1236. [Google Scholar]
- Fischer, G.; Nachtergaele, F.; Prieler, S.; van Velthuizen, H.T.; Verelst, L.; Wiberg, D. Global Agro-ecological Zones Assessment for Agriculture. IIASA 2008, 10., 26–31. [Google Scholar]
- Roy, P.S.; Meiyappan, P.; Joshi, P.K.; Kale, M.P.; Srivastav, V.K.; Srivasatava, S.K.; Behera, M.D.; Roy, A.; Sharma, Y.; Ramachandran, R.M.; et al. Decadal Land Use and Land Cover Classifications across India, 1985, 1995, 2005. ORNL DAAC 2016. [Google Scholar] [CrossRef]
- Robinson, T.P.; Wint, G.W.; Conchedda, G.; Van Boeckel, T.P.; Ercoli, V.; Palamara, E.; Cinardi, G.; D’Aietti, L.; Hay, S.I.; Gilbert, M. Mapping the global distribution of livestock. PLoS ONE 2014, 9, e96084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sub-Catchment | Area (km2) | MAP (mm) | Predominant Land Use |
---|---|---|---|
Kudige | 1934 | 2430 | Forest |
Hemavathy | 2810 | 1423 | Forest |
M H Halli | 3050 | 1365 | Forest and agriculture |
K M Vadi | 1330 | 1448 | Forest and agriculture |
KRS | 10,619 | 1531 | Forest and agriculture |
V-VIC | F-VIC | V-SWAT | F-SWAT | GWAVA | Ensemble | |
---|---|---|---|---|---|---|
Kudige | 0.81 | 0.92 | 0.45 | 0.71 | 0.62 | 0.84 |
M H Halli | 0.15 | 0.55 | −0.66 | 0.71 | −0.11 | 0.75 |
K M Vadi | 0.37 | 0.37 | 0.46 | 0.46 | 0.21 | 0.69 |
Hemavathy | 0.59 | 0.59 | 0.79 | 0.79 | 0.53 | 0.94 |
KRS | −0.51 | −0.42 | 0.57 | 0.82 | 0.45 | 0.92 |
V-VIC | F-VIC | V-SWAT | F-SWAT | GWAVA | Ensemble | |
---|---|---|---|---|---|---|
Kudige | 0.78 | 0.85 | 0.42 | 0.56 | 0.52 | 0.71 |
M H Halli | 0.33 | 0.40 | −0.50 | 0.58 | 0.46 | 0.79 |
K M Vadi | 0.19 | 0.19 | 0.68 | 0.68 | 0.36 | 0.49 |
Hemavathy | 0.64 | 0.64 | 0.74 | 0.74 | 0.37 | 0.82 |
KRS | 0.14 | −0.31 | 0.43 | 0.78 | 0.38 | 0.81 |
V-VIC | F-VIC | V-SWAT | F-SWAT | GWAVA | Ensemble | |
---|---|---|---|---|---|---|
Kudige | −13 | 8 | −60 | −42 | −45 | −20 |
M H Halli | −42 | 55 | −100 | −30 | −5 | −12 |
K M Vadi | 66 | 66 | −6 | −6 | 1 | 22 |
Hemavathy | 30 | 30 | −24 | −24 | −60 | −18 |
KRS | 84 | 130 | −75 | −20 | −61 | 19 |
Study | Model | Catchment | ||||
---|---|---|---|---|---|---|
Kudige | M H Halli | K M Vadi | Hemavathy | KRS | ||
This study | F-VIC | 0.92 | 0.55 | 0.37 | 0.64 | 0.42 |
F-SWAT | 0.71 | 0.71 | 0.46 | 0.74 | 0.82 | |
GWAVA | 0.62 | −0.11 | 0.21 | 0.37 | 0.45 | |
Ensemble | 0.84 | 0.75 | 0.69 | 0.82 | 0.92 | |
Geetha et al. (2008) study | SCS-CN | NA | NA | NA | 0.84 | NA |
VSA | NA | NA | NA | 0.74 | NA | |
Ensemble | NA | NA | NA | 0.94 | NA | |
Maheswaran & Khosa (2012) study | WA-ANN | 0.74 | 0.77 | NA | NA | NA |
ANN | 0.65 | 0.66 | NA | NA | NA | |
Patel and Ramachandran (2015) study | ANN | 0.76 | 0.61 | 0.56 | NA | 0.63 |
SVR | 0.84 | 0.43 | 0.03 | NA | 0.28 | |
Kumar & Nandagiri (2018) | SWAT | NA | NA | NA | 0.85 | NA |
SWAT-VSA | NA | NA | NA | 0.88 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horan, R.; Gowri, R.; Wable, P.S.; Baron, H.; Keller, V.D.J.; Garg, K.K.; Mujumdar, P.P.; Houghton-Carr, H.; Rees, G. A Comparative Assessment of Hydrological Models in the Upper Cauvery Catchment. Water 2021, 13, 151. https://doi.org/10.3390/w13020151
Horan R, Gowri R, Wable PS, Baron H, Keller VDJ, Garg KK, Mujumdar PP, Houghton-Carr H, Rees G. A Comparative Assessment of Hydrological Models in the Upper Cauvery Catchment. Water. 2021; 13(2):151. https://doi.org/10.3390/w13020151
Chicago/Turabian StyleHoran, Robyn, R Gowri, Pawan S. Wable, Helen Baron, Virginie D. J. Keller, Kaushal K. Garg, Pradeep P. Mujumdar, Helen Houghton-Carr, and Gwyn Rees. 2021. "A Comparative Assessment of Hydrological Models in the Upper Cauvery Catchment" Water 13, no. 2: 151. https://doi.org/10.3390/w13020151
APA StyleHoran, R., Gowri, R., Wable, P. S., Baron, H., Keller, V. D. J., Garg, K. K., Mujumdar, P. P., Houghton-Carr, H., & Rees, G. (2021). A Comparative Assessment of Hydrological Models in the Upper Cauvery Catchment. Water, 13(2), 151. https://doi.org/10.3390/w13020151