Review on Numerical Simulation of the Internal Soil Erosion Mechanisms Using the Discrete Element Method
Abstract
:1. Introduction
2. Fluid-Particle Coupled Method in Numerical Simulations of Internal Erosion
2.1. DEM Model of Particle Migration
2.2. DEM and Fluid Flow Coupled Method
3. Research on Factors Affecting Internal Erosion and Its Mechanism
3.1. Geometric Conditions
3.1.1. Effect of Geometric Conditions on Stress Distribution
3.1.2. Effect of Soil Fabric on Pore Channels and Force Chains
3.1.3. Effect of Gap Ratio on Pore Channels and Flow Velocity
3.2. Mechanical Conditions
3.2.1. Effect of Confining Pressure
3.2.2. Effect of Anisotropic Stress State
3.3. Hydraulic Conditions
3.3.1. The Process of Soil Structure Reorganization
3.3.2. Three Effects of Hydraulic Loading Direction
3.3.3. The Critical Hydraulic Gradient
3.4. Comprehensive Mechanism of Internal Erosion at the Microscopic Level
4. Conclusions
- (1)
- Soil fabric is the primary factor affecting erosion. In the underfilled fabric, with an increase in the fines content, although the pore channels become narrower, more particles with low stress lead to a more intense erosion. In the filled and overfilled fabric, fine particles bear a higher stress than the underfilled fabric. However, a large unbalanced force induced by the detachment of force-chain particles results in a local kinetic energy burst in the soil. The combination of these effects causes the complex behavior of soils with filled and overfilled fabrics, which deserves careful investigation.
- (2)
- A critical gap ratio Gcr exists since the gap ratio impacts the local flow velocity and pore channel size, below which the erosion weakens when the gap ratio increases; otherwise, the erosion significantly intensifies. It is meaningful to fully research the relationship between Gcr and soil fabric and mechanical conditions.
- (3)
- Like the response to an increase in the fines content, the pore channels become narrower, and the contact force increases with an increase in the confining pressure. However, a larger confining pressure, resulting in a relatively large unbalanced force, can destroy the compression arches in the soil. In addition, the anisotropic stress state causes directionality of the pore channels and force chains. Therefore, it is necessary to quantify the effects of soil anisotropy coupled with seepage direction on erosion characteristics.
- (4)
- The coupling of geometric, mechanical, and hydraulic conditions affects the pore channels and force chains, influencing particle detachment, transport, and clogging, which, in turn, determine the occurrence, initiation time, and the amount of erosion, which are hard to quantify from available studies. The following mechanical effects deserve further in-depth investigations: The impact of unbalanced force on compression arch failure, the boundary of soil contraction and dilation, the relationship between soil fabric and mechanical conditions. Besides, the critical hydraulic gradient depends on the hydraulic loading rate and direction, and the soil properties, which is not quantitatively clear.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CFD | Computation fluid dynamics |
CSD | Constriction size distribution |
DEM | Discrete element method |
Dc35 | 35% of the constrictions are finer than this size |
Dr | Density |
F | Fines content |
FEM | Finite element method |
G | Gap ratio |
Gcr | Critical gap ratio |
LBM | Lattice-Boltzmann method |
SPH | Smoothed particle hydrodynamics |
S* | Critical fines content between underfilled and filled |
Smax | Critical fines content between filled and overfilled |
σ1 | Major principal stress |
σ2 | Intermediate principal stress |
σ3 | Minor principal stress |
References
- Caldeira, L. Internal Erosion in Dams: Studies and Rehabilitation. Int. J. Civ. Eng. 2018, 17, 457–471. [Google Scholar] [CrossRef]
- Zarris, D.; Lykoudi, E.; Panagoulia, D. Assessing the Impacts of Sediment Yield on the Sustainability of Major Hydraulic Systems. In Proceedings of the Protection and Restoration of the Environment VIII, Chania, Greece, 3–7 July 2006; pp. 3–7. [Google Scholar]
- Foster, M.; Fell, R.; Spannagle, M. The Statistics of Embankment Dam Failures and Accidents. Can. Geotech. J. 2000, 37, 1000–1024. [Google Scholar] [CrossRef]
- Richards, K.S.; Reddy, K.R. Critical Appraisal of Piping Phenomena in Earth Dams. Bull. Int. Assoc. Eng. Geol. 2007, 66, 381–402. [Google Scholar] [CrossRef]
- Jandora, J.; Říha, J. The Failure of Embankment Dams Due to Overtopping; Vutium: Brno, Czech, 2008; Volume 47. [Google Scholar]
- Khan, A.A.; Vrabie, V.; Beck, Y.-L.; Mars, I.J.; D’Urso, G. Monitoring and Early Detection of Internal Erosion: Distributed Sensing and Processing. Struct. Heal. Monit. 2014, 13, 562–576. [Google Scholar] [CrossRef] [Green Version]
- Sterpi, D. Effects of the Erosion and Transport of Fine Particles due to Seepage Flow. Int. J. Géoméch. 2003, 3, 111–122. [Google Scholar] [CrossRef]
- Tang, Y.; Chan, D.H.; Zhu, D.Z. Numerical Investigation of Sand-Bed Erosion by an Upward Water Jet. J. Eng. Mech. 2017, 143, 04017104. [Google Scholar] [CrossRef]
- Tang, Y.; Chan, D.H.; Zhu, D.Z. A Coupled Discrete Element Model for the Simulation of Soil and Water Flow through an Orifice. Int. J. Numer. Anal. Methods Géoméch. 2017, 41, 1477–1493. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, D.Z.; Chan, D.H. Experimental Study on Submerged Sand Erosion through a Slot on a Defective Pipe. J. Hydraul. Eng. 2017, 143, 04017026. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, D.Z.; Chan, D.H. Modeling Soil Loss by Water Infiltration through Sewer Pipe Defects. In Proceedings of the World Environmental and Water Resources Congress 2018; American Society of Civil Engineers (ASCE): Minneapolis, MN, USA, 2018; pp. 254–262. [Google Scholar]
- Indiketiya, S.; Jegatheesan, P.; Rajeev, P. Evaluation of Defective Sewer Pipe–Induced Internal Erosion and Associated Ground Deformation Using Laboratory Model Test. Can. Geotech. J. 2017, 54, 1184–1195. [Google Scholar] [CrossRef]
- Wood, D.M. The Magic of Sands. In Proceedings of the 20th Bjerrum Lecture: Oslo, Norway, 25 November 2005. Can. Geotech. J. 2007, 44, 1329–1350. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, H. Modeling the Effects of Internal Erosion on the Structural Damage of a Shield Tunnel. Int. J. Géoméch. 2020, 20, 04020053. [Google Scholar] [CrossRef]
- Yang, J.; Yin, Z.; Laouafa, F.; Hicher, P.-Y. Internal Erosion in Dike-On-Foundation Modeled by a Coupled Hydromechanical Approach. Int. J. Numer. Anal. Methods Géoméch. 2019, 43, 663–683. [Google Scholar] [CrossRef]
- Cui, Y.; Nouri, A.; Chan, D.; Rahmati, E. A New Approach to DEM Simulation of Sand Production. J. Pet. Sci. Eng. 2016, 147, 56–67. [Google Scholar] [CrossRef]
- Yang, J.; Yin, Z.-Y.; Laouafa, F.; Hicher, P.-Y. Analysis of Suffusion in Cohesionless Soils with Randomly Distributed Porosity and Fines Content. Comput. Geotech. 2019, 111, 157–171. [Google Scholar] [CrossRef]
- Tao, J.; Tao, H. Factors Affecting Piping Erosion Resistance: Revisited with a Numerical Modeling Approach. Int. J. Géoméch. 2017, 17, 04017097. [Google Scholar] [CrossRef]
- Horikoshi, K.; Takahashi, A. Suffusion-Induced Change in Spatial Distribution of Fine Fractions in Embankment Subjected to Seepage Flow. Soils Found. 2015, 55, 1293–1304. [Google Scholar] [CrossRef] [Green Version]
- Suits, L.D.; Sheahan, T.C.; Chang, D.S.; Zhang, L.M. A Stress-Controlled Erosion Apparatus for Studying Internal Erosion in Soils. Geotech. Test. J. 2011, 34, 103889. [Google Scholar] [CrossRef]
- Richards, K.; Reddy, K. Experimental Investigation of Initiation of Backward Erosion Piping in Soils. Géotechnique 2012, 62, 933–942. [Google Scholar] [CrossRef]
- Mattsson, H.; Hellström, J.G.I.; Lundström, S. On Internal Erosion in Embankment Dams: A Literature Survey of the Phenomenon and the Prospect to Model It Numerically; Luleå Tekniska Universitet: Lulea, Sweden, 2008. [Google Scholar]
- Robbins, B.; Griffiths, D.V. Internal Erosion of Embankments: A Review and Appraisal. In Proceedings of the Rocky Mountain Geo-Conference, Westminster, CO, USA, 16 April 2020; American Society of Civil Engineers: Reston, VA, USA, 2018; pp. 61–75. [Google Scholar] [CrossRef]
- Kawano, K.; Shire, T.; O’Sullivan, C. Coupled Particle-Fluid Simulations of the Initiation of Suffusion. Soils Found. 2018, 58, 972–985. [Google Scholar] [CrossRef]
- Shire, T.; O’Sullivan, C. Micromechanical Assessment of an Internal Stability Criterion. Acta Geotech. 2012, 8, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, P.-Z.; Ma, G.; Dai, Z.; Ming, R.; Cui, X.; She, R. Numerical Study on Pore Clogging Mechanism in Pervious Pavements. J. Hydrol. 2018, 565, 589–598. [Google Scholar] [CrossRef]
- Kodieh, A.; Gelet, R.; Marot, D.; Fino, A.Z. A Study of Suffusion Kinetics Inspired from Experimental Data: Comparison of Three Different Approaches. Acta Geotech. 2020, 1–19. [Google Scholar] [CrossRef]
- Shire, T.; Shire, T.; Mehdizadeh, A.; Disfani, M. DEM Modelling to Assess Internal Stability of Gap-Graded Assemblies of Spherical Particles under Various Relative Densities, Fine Contents and Gap Ratios. Comput. Geotech. 2020, 126, 103710. [Google Scholar] [CrossRef]
- Wautier, A.; Bonelli, S.; Nicot, F. Scale Separation between Grain Detachment and Grain Transport in Granular Media Subjected to an Internal Flow. Granul. Matter 2017, 19, 595. [Google Scholar] [CrossRef] [Green Version]
- Abdou, H.; Emeriault, F.; Plé, O. New Approach to Describe Hydro-Mechanical Phenomenon of Suffusion: Erosion, Transport and Deposition. Eur. J. Environ. Civ. Eng. 2020, 24, 2342–2360. [Google Scholar] [CrossRef]
- Yang, J.; Yin, Z.; Laouafa, F.; Hicher, P.-Y. Modeling Coupled Erosion and Filtration of Fine Particles in Granular Media. Acta Geotech. 2019, 14, 1615–1627. [Google Scholar] [CrossRef]
- Indraratna, B.; Vafai, F. Analytical Model for Particle Migration within Base Soil-Filter System. J. Geotech. Geoenviron. Eng. 1997, 123, 100–109. [Google Scholar] [CrossRef]
- Wautier, A.; Bonelli, S.; Nicot, F. Flow Impact on Granular Force Chains and Induced Instability. Phys. Rev. E 2018, 98, 042909. [Google Scholar] [CrossRef] [Green Version]
- Tao, H.; Tao, J. Quantitative Analysis of Piping Erosion Micro-Mechanisms with Coupled CFD and DEM Method. Acta Geotech. 2017, 12, 573–592. [Google Scholar] [CrossRef]
- Hosn, R.A.; Sibille, L.; Benahmed, N.; Chareyre, B. A Discrete Numerical Model Involving Partial Fluid-Solid Coupling to Describe Suffusion Effects in Soils. Comput. Geotech. 2018, 95, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.; Yin, Z.; Zhao, J.; Yang, Y. Investigating the Effect of Flow Direction on Suffusion and Its Impacts on Gap-Graded Granular Soils. Acta Geotech. 2020, 1–21. [Google Scholar] [CrossRef]
- Rousseau, Q.; Sciarra, G.; Gelet, R.; Marot, D. Modelling the Poroelastoplastic Behaviour of Soils Subjected to Internal Erosion by Suffusion. Int. J. Numer. Anal. Methods Géoméch. 2019, 44, 117–136. [Google Scholar] [CrossRef]
- Sjah, J.; Vincens, E. Determination of the Constriction Size Distribution of Granular Filters by Filtration Tests. Int. J. Numer. Anal. Methods Géoméch. 2012, 37, 1231–1246. [Google Scholar] [CrossRef]
- Vincens, E.; Witt, K.-J.; Homberg, U. Approaches to Determine the Constriction Size Distribution for Understanding Filtration Phenomena in Granular Materials. Acta Geotech. 2014, 10, 291–303. [Google Scholar] [CrossRef]
- Valdes, J.R.; Santamarina, J.C. Particle Clogging in Radial Flow: Microscale Mechanisms. SPE J. 2006, 11, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Moraci, N.; Mandaglio, M.C.; Ielo, D. A New Theoretical Method to Evaluate the Internal Stability of Granular Soils. Can. Geotech. J. 2012, 49, 45–58. [Google Scholar] [CrossRef]
- Chang, D.S.; Zhang, L. Critical Hydraulic Gradients of Internal Erosion under Complex Stress States. J. Geotech. Geoenviron. Eng. 2013, 139, 1454–1467. [Google Scholar] [CrossRef]
- Luo, Y.; Luo, B.; Xiao, M. Effect of Deviator Stress on the Initiation of Suffusion. Acta Geotech. 2020, 15, 1607–1617. [Google Scholar] [CrossRef]
- Bendahmane, F.; Marot, D.; Alexis, A. Experimental Parametric Study of Suffusion and Backward Erosion. J. Geotech. Geoenviron. Eng. 2008, 134, 57–67. [Google Scholar] [CrossRef]
- Wautier, A.; Bonelli, S.; Nicot, F. DEM Investigations of Internal Erosion: Grain Transport in the Light of Micromechanics. Int. J. Numer. Anal. Methods Géoméch. 2018, 43, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Zhang, Y.; Yang, Z. Suffusion-Induced Deformation and Microstructural Change of Granular Soils: A Coupled CFD–DEM Study. Acta Geotech. 2019, 14, 795–814. [Google Scholar] [CrossRef]
- Ya-yuan, H.; Pan, M. The Numerical Simulation of Piping in the Two-Dimensional Embankment. Eng. Mech. 2015, 32, 110–119. [Google Scholar] [CrossRef]
- Ya-yuan, H.; Pan, M. Mechanism Study and Finite Element Simulation of Three-Phase Coupling Seepage Erosion Piping. Rock Soil Mech. 2013, 34, 913–921. [Google Scholar] [CrossRef]
- Yulong, L.; Hua, P.; Jin, Z. Design and Validation of 1D Three-Phase Seepage Erosion Coupled Piping Program. Chin. J. Solid Mech. 2008, 29, 118–121. [Google Scholar] [CrossRef]
- Cividini, A.; Bonomi, S.; Vignati, G.C.; Gioda, G. Seepage-Induced Erosion in Granular Soil and Consequent Settlements. Int. J. Géoméch. 2009, 9, 187–194. [Google Scholar] [CrossRef]
- Cividini, A.; Gioda, G. Finite-Element Approach to the Erosion and Transport of Fine Particles in Granular Soils. Int. J. Géoméch. 2004, 4, 191–198. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Y.; Yang, Z. Suffusion-Induced Evolution of Mechanical and Microstructural Properties of Gap-Graded Soils Using CFD-DEM. J. Geotech. Geoenviron. Eng. 2020, 146, 04020024. [Google Scholar] [CrossRef]
- Yuanqiang, C.; Zhixiang, Z.; Zhigang, C.; Shuhao, Y. Mesoscopic numerical simulation for suffusion process of gap-graded sandy soil. J. Cent. South Univ. (Sci. Technol.) 2019, 50, 1144–1153. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, Y.; Yu, X. (Bill) Influence of Particle Shape on the Erodibility of Non-Cohesive Soil: Insights from Coupled CFD–DEM Simulations. Particuology 2018, 39, 12–24. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, C.; Zhang, L. Simulating Progression of Internal Erosion in Gap-Graded Sandy Gravels Using Coupled CFD-DEM. Int. J. Géoméch. 2020, 20, 04019135. [Google Scholar] [CrossRef]
- Hama, N.A.; Ouahbi, T.; Taibi, S.; Souli, H.; Fleureau, J.-M.; Pantet, A. Analysis of Mechanical Behaviour and Internal Stability of Granular Materials Using Discrete Element Method. Int. J. Numer. Anal. Methods Géoméch. 2016, 40, 1712–1729. [Google Scholar] [CrossRef]
- Hakuno, M.; Tarumi, Y. A Granular Assembly Simulation for the Seismic Liquefaction of Sand. Doboku Gakkai Ronbunshu 1988, 398, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Goodarzi, M.; Kwok, C.Y.; Tham, L.G. A Continuum-Discrete Model Using Darcy’s Law: Formulation and Verification. Int. J. Numer. Anal. Methods Géoméch. 2014, 39, 327–342. [Google Scholar] [CrossRef]
- Tsuji, Y.; Kawaguchi, T.; Tanaka, T. Discrete Particle Simulation of Two-Dimensional Fluidized Bed. Powder Technol. 1993, 77, 79–87. [Google Scholar] [CrossRef]
- Xu, B.; Yu, A. Numerical Simulation of the Gas-Solid Flow in a Fluidized Bed by Combining Discrete Particle Method with Computational Fluid Dynamics. Chem. Eng. Sci. 1997, 52, 2785–2809. [Google Scholar] [CrossRef]
- Anderson, T.B.; Jackson, R. Fluid Mechanical Description of Fluidized Beds. Equations of Motion. Ind. Eng. Chem. Fundam. 1967, 6, 527–539. [Google Scholar] [CrossRef]
- Fukumoto, Y.; Ohtsuka, S. 3-D Direct Numerical Model for Failure of Non-cohesive Granular Soils with Upward Seepage Flow. Comput. Part. Mech. 2018, 5, 443–454. [Google Scholar] [CrossRef]
- Lominé, F.; Scholtès, L.; Sibille, L.; Poullain, P. Modeling of Fluid-Solid Interaction in Granular Media with Coupled Lattice Boltzmann/Discrete Element Methods: Application to Piping Erosion. Int. J. Numer. Anal. Methods Géoméch. 2011, 37, 577–596. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Feng, Y.; Wang, C. Coupled Bonded Particle and Lattice Boltzmann Method for Modelling Fluid-Solid Interaction. Int. J. Numer. Anal. Methods Géoméch. 2016, 40, 1383–1401. [Google Scholar] [CrossRef]
- Han, Y.; Cundall, P.A. LBM-DEM Modeling of Fluid-Solid Interaction in Porous Media. Int. J. Numer. Anal. Methods Géoméch. 2013, 37, 1391–1407. [Google Scholar] [CrossRef]
- Gingold, R.A.; Monaghan, J.J. Smoothed Particle Hydrodynamics: Theory and Application to Non-spherical Stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389. [Google Scholar] [CrossRef]
- Han, Y. Construction of a LBM-DEM Coupling System and Its Applications in Modeling Fluid Particle Interaction in Porous Media Flow. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2012. [Google Scholar]
- Zhang, F.; Wang, T.; Liu, F.; Peng, M.; Furtney, J.; Zhang, L. Modeling of Fluid-Particle Interaction by Coupling the Discrete Element Method with a Dynamic Fluid Mesh: Implications to Suffusion in Gap-Graded Soils. Comput. Geotech. 2020, 124, 103617. [Google Scholar] [CrossRef]
- Tran, D.; Prime, N.; Froiio, F.; Callari, C.; Vincens, E. Numerical Modelling of Backward Front Propagation in Piping Erosion by DEM-LBM Coupling. Eur. J. Environ. Civ. Eng. 2016, 21, 960–987. [Google Scholar] [CrossRef]
- Fonseca, J.; Sim, W.; Shire, T.; O’Sullivan, C. Microstructural Analysis of Sands with Varying Degrees of Internal Stability. Géotechnique 2014, 64, 405–411. [Google Scholar] [CrossRef]
- Shire, T.; O’Sullivan, C.; Hanley, K.J.; Fannin, R.J. Fabric and Effective Stress Distribution in Internally Unstable Soils. J. Geotech. Geoenviron. Eng. 2014, 140, 04014072. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.S.; Zhang, L. Extended Internal Stability Criteria for Soils under Seepage. Soils Found. 2013, 53, 569–583. [Google Scholar] [CrossRef] [Green Version]
- Garner, S.J.; Fannin, R.J. Understanding Internal Erosion: A Decade of Research Following a Sinkhole Event. Int. J. Hydropower Dams 2010, 17, 93–100. [Google Scholar]
- Shire, T.; O’Sullivan, C.; Hanley, K.J. The Influence of Fines Content and Size-Ratio on the Micro-Scale Properties of Dense Bimodal Materials. Granul. Matter 2016, 18, 52. [Google Scholar] [CrossRef] [Green Version]
- Skempton, A.W.; Brogan, J.M. Experiments on Piping in Sandy Gravels. Géotechnique 1994, 44, 449–460. [Google Scholar] [CrossRef]
- Li, W.C.; Deng, G.; Liang, X.Q.; Sun, X.X.; Wang, S.W.; Lee, M.L. Effects of Stress State and Fine Fraction on Stress Transmission in Internally Unstable Granular Mixtures Investigated via Discrete Element Method. Powder Technol. 2020, 367, 659–670. [Google Scholar] [CrossRef]
- Tao, H. Numerical Modeling of Soil Internal Erosion Mechanism. Ph.D. Thesis, The University of Akron, Columbus, OH, USA, 2018. [Google Scholar]
- Liu, J.; Zhou, W.; Ma, G.; Yang, S.; Chang, X. Strong Contacts, Connectivity and Fabric Anisotropy in Granular Materials: A 3D Perspective. Powder Technol. 2020, 366, 747–760. [Google Scholar] [CrossRef]
- Pouragha, M.; Duriez, J.; Wautier, A.; Wan, R.; Nicot, F.; Darve, F. Preferential Growth of Force Network in Granular Media. Granul. Matter 2019, 21, 67. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.H.; Yang, Z.; Barreto, D.; Jiang, M.D. The Influence of Particle Geometry and the Intermediate Stress Ratio on the Shear Behavior of Granular Materials. Granul. Matter 2017, 19, 35. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Liu, J. Mechanical Transitional Behavior of Binary Mixtures via DEM: Effect of Differences in Contact-Type Friction Coefficients. Comput. Geotech. 2017, 85, 1–14. [Google Scholar] [CrossRef]
- Tomlinson, S.S.; Vaid, Y.P. Seepage Forces and Confining Pressure Effects on Piping Erosion. Can. Geotech. J. 2000, 37, 1–13. [Google Scholar] [CrossRef]
- Liang, Y.; Yeh, T.-C.J.; Chen, Q.; Xu, W.; Dang, X.; Hao, Y. Particle Erosion in Suffusion under Isotropic and Anisotropic Stress States. Soils Found. 2019, 59, 1371–1384. [Google Scholar] [CrossRef]
- Liang, Y.; Yeh, T.-C.J.; Wang, J.; Liu, M.; Zha, Y.; Hao, Y. Onset of Suffusion in Upward Seepage under Isotropic and Anisotropic Stress Conditions. Eur. J. Environ. Civ. Eng. 2019, 23, 1520–1534. [Google Scholar] [CrossRef]
- Foroutan, T.; Mirghasemi, A.A. CFD-DEM Model to Assess Stress-Induced Anisotropy in Undrained Granular Material. Comput. Geotech. 2020, 119, 103318. [Google Scholar] [CrossRef]
- Wautier, A.; Bonelli, S.; Nicot, F. Micro-Inertia Origin of Instabilities in Granular Materials. Int. J. Numer. Anal. Methods Géoméch. 2018, 42, 1037–1056. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Yang, Z.; Zhang, Y. CFD-DEM Modeling of Suffusion Effect on Undrained Behavior of Internally Unstable Soils. Comput. Geotech. 2020, 126, 103692. [Google Scholar] [CrossRef]
- Mahabadi, N.; Jang, J. The Impact of Fluid Flow on Force Chains in Granular Media. Appl. Phys. Lett. 2017, 110, 41907. [Google Scholar] [CrossRef]
- Gu, D.M.; Huang, D.; Liu, H.L.; Zhang, W.G.; Gao, X.C. A DEM- Based Approach for Modeling the Evolution Process of Seepage-Induced Erosion in Clayey Sand. Acta Geotech. 2019, 14, 1629–1641. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Indraratna, B. A Coupled CFD–DEM Approach to Examine the Hydraulic Critical State of Soil under Increasing Hydraulic Gradient. Int. J. Géoméch. 2020, 20, 04020138. [Google Scholar] [CrossRef]
- Wang, Y.; Chai, J.; Xu, Z.; Qin, Y.; Wang, X. Numerical Simulation of the Fluid–Solid Coupling Mechanism of Internal Erosion in Granular Soil. Water 2020, 12, 137. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, F.; Wittel, F.K.; Thielmann, M.; Trtik, P.; Herrmann, H.J. Tomographic Study of Internal Erosion of Particle Flows in Porous Media. Transp. Porous Media 2018, 122, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.-L.; Qiao, L.; Liu, X.-X.; Zhan, M.-L.; Sheng, J.-C. Hydro-Mechanical Experiments on Suffusion under Long-Term Large Hydraulic Heads. Nat. Hazards 2013, 65, 1361–1377. [Google Scholar] [CrossRef]
- Rochim, A.; Marot, D.; Sibille, L.; Le, V.T. Effects of Hydraulic Loading History on Suffusion Susceptibility of Cohesionless Soils. J. Geotech. Geoenviron. Eng. 2017, 143, 04017025. [Google Scholar] [CrossRef]
- Benamar, A. Effect of Hydraulic Load and Water Chemistry on Soil Suffusion. In Proceedings of the Scour and Erosion; Informa UK Limited: Perth, Australia, 2014; pp. 197–202. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Tang, Y.; Huang, B.; Hu, T.; Ling, D. Review on Numerical Simulation of the Internal Soil Erosion Mechanisms Using the Discrete Element Method. Water 2021, 13, 169. https://doi.org/10.3390/w13020169
Wang X, Tang Y, Huang B, Hu T, Ling D. Review on Numerical Simulation of the Internal Soil Erosion Mechanisms Using the Discrete Element Method. Water. 2021; 13(2):169. https://doi.org/10.3390/w13020169
Chicago/Turabian StyleWang, Xiukai, Yao Tang, Bo Huang, Tiantian Hu, and Daosheng Ling. 2021. "Review on Numerical Simulation of the Internal Soil Erosion Mechanisms Using the Discrete Element Method" Water 13, no. 2: 169. https://doi.org/10.3390/w13020169
APA StyleWang, X., Tang, Y., Huang, B., Hu, T., & Ling, D. (2021). Review on Numerical Simulation of the Internal Soil Erosion Mechanisms Using the Discrete Element Method. Water, 13(2), 169. https://doi.org/10.3390/w13020169