Natural Pans as an Important Surface Water Resource in the Cuvelai Basin—Metrics for Storage Volume Calculations and Identification of Potential Augmentation Sites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. DEM Preprocessing
2.3. Modified Blue Spot Analysis
2.4. Validation
3. Results
3.1. Surface Area
3.2. Depth
3.3. Volume
3.4. Surface Area–Volume Ratio
3.5. Example and Synopsis
4. Discussion
4.1. Error Analysis
4.2. Function as a Water Resource
- (1)
- Pan must be close to a location with a high demand for water/flood protection;
- (2)
- Pan must be primarily connected to the channel network within an inundation zone;
- (3)
- Pan needs a low SA/V-ratio to counter the problem of high evaporation rates.
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sensor | Product Name | Final Pixel Spacing (m) | Coverage (km: Range × Azimuth) | Polarizations/Bands |
---|---|---|---|---|
Radar | ALOS PALSAR–FBS GEC * | 6.25 | 70 × 90 | SinglePol HH |
ALOS PALSAR–FBD GEC * | 13 | 70 × 90 | DualPol HH + HV | |
ALOS PALSAR–PLR GEC * | 12.5 | 30 × 90 | QuadPol HH + HV + VH + VV | |
ALOS2 PALSAR–SM3 FBD 1.1 * | 10 | 70 × 70 | DualPol HH + HV | |
Envisat ASAR–IMP | 12.5 | 70–90 × 110–130 | SinglePol (VV|HH) | |
Envisat ASAR–WSM | 75 | 400–450 × variable | SinglePol (VV|HH) | |
Sentinel-1B GRD | 10 | 250 × 175 | DualPol VV + VH | |
TSX-ScanSAR | 7.5 | 100 × 150 | SinglePol HH | |
TSX-Stripmap | 2.5 | 15–30 × 50–75 | SinglePol HH | |
TSX-Spotlight | 2 | 10 × 10 | SinglePol HH | |
Optical | Landsat 5 L1 | 30 (bands 1–5, 7) | 170 × 183 | 7 |
Landsat 8 L1 | 30 (bands 1–7, 9–11) | 170 × 185 | 11 |
References
- Namibia Statistics Agency. Namibia 2011 Population and Housing Census Atlas; Namibia Statistics Agency: Windhoek, Namibia, 2013. [Google Scholar]
- Namibia Statistics Agency. Namibia 2011 Census Population Projections 2011 to 2041; Namibia Statistics Agency: Windhoek, Namibia, 2014. [Google Scholar]
- Persendt, F.C.; Gomez, C. Assessment of drainage network extractions in a low-relief area of the Cuvelai Basin (Namibia) from multiple sources: LiDAR, topographic maps, and digital aerial orthophotographs. Geomorphology 2016, 260, 32–50. [Google Scholar] [CrossRef] [Green Version]
- Luetkemeier, R.; Liehr, S. Integrated responses to drought risk in Namibia and Angola. Water Solut. 2019, 3, 56–60. [Google Scholar]
- Luetkemeier, R.; Stein, L.; Drees, L.; Liehr, S. Blended Drought Index: Integrated Drought Hazard Assessment in the Cuvelai-Basin. Climate 2017, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Gaughan, A.E.; Staub, C.G.; Hoell, A.; Weaver, A.; Waylen, P.R. Inter- and Intra-annual precipitation variability and associated relationships to ENSO and the IOD in southern Africa. Int. J. Climatol. 2016, 36, 1643–1656. [Google Scholar] [CrossRef]
- Persendt, F.C.; Gomez, C.; Zawar-Reza, P. Identifying hydro-meteorological events from precipitation extremes indices and other sources over northern Namibia, Cuvelai Basin. Jàmbá 2015, 7, 177. [Google Scholar] [CrossRef]
- Reason, C.J.C.; Smart, S. Tropical south east Atlantic warm events and associated rainfall anomalies over southern Africa. Front. Environ. Sci. 2015, 3, 24. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Shifidi, V.T. Impact of flooding on rural livelihoods of the Cuvelai Basin in Northern Namibia. J. Geogr. Reg. Plan. 2016, 9, 104–121. [Google Scholar] [CrossRef] [Green Version]
- Mendelsohn, J.M.; Jarvis, A.; Robertson, T. A Profile and Atlas of the Cuvelai-Etosha Basin; RAISON and Gondwana Collection: Windhoek, Namibia, 2013; ISBN 978-99916-780-7-8. [Google Scholar]
- Seely, M.; Henderson, J.; Heyns, P.; Jacobson, P.; Nakale, T.; Nantanga, K.; Schachtschneider, K. Ephemeral and endoreic river systems: Relevance and management challenges. In Transboundary Rivers, Sovereignty and Development: Hydropolitical Drivers in the Okavango River Basin; Turton, A., Ashton, P., Cloete, E., Eds.; AWIRU: Pretoria, South Africa, 2003; pp. 187–212. [Google Scholar]
- Awadallah, A.G.; Tabet, D. Estimating flooding extent at high return period for ungauged braided systems using remote sensing: A case study of Cuvelai Basin, Angola. Nat. Hazards 2015, 77, 255–272. [Google Scholar] [CrossRef]
- Bischofberger, J.; Schuldt-Baumgart, N.; Lenzen, E. Omeya Ogo Omwenyo—Water is Life; CuveWaters Report; ISOE: Frankfurt/Main, Germany, 2016. [Google Scholar] [CrossRef]
- Filali-Meknassi, Y.; Ouarda, T.B.M.J.; Wilcox, C. Data Access, Availability and Quality Assessment for the Development of a Flood Forecasting Model for Namibia; UNESCO: Windhoek, Namibia, 2014. [Google Scholar]
- Mufeti, P.; Rientjes, T.; Mabande, P.; Maathuis, B. Application of a satellite based rainfall-runoff model: A case study of the Trans Boundary Cuvelai Basin in Southern Africa. In Proceedings of the European Space Agency Living Planet Symposium, Edinburgh, UK, 9–13 September 2013; Ouwehand, L., Ed.; ESA Communications: Noordwijk, The Netherlands, 2013. SP-722. ISBN 978-92-9221-286-5. [Google Scholar]
- Mandl, D.; Frye, S.; Sohlberg, R.; Cappelaere, P.; Handy, M.; Grossman, R. The Namibia Early Flood Warning System, a CEOS pilot project. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; IEEE: Starkville, MS, USA, 2013; pp. 3521–3524. [Google Scholar]
- Skakun, S.; Kussul, N.; Shelestov, A.; Kussul, O. Flood Hazard and Flood Risk Assessment Using a Time Series of Satellite Images: A Case Study in Namibia: Flood Hazard and Flood Risk Assessment. Risk Anal. 2014, 34, 1521–1537. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, T.; Auino, E.; Marsh, A.; Seely, M. Oshanas: Sustaining People, Environment, and Development in Central Owambo, Namibia; DRFN: Windhoek, Namibia, 1992; ISBN 978-99916-709-0-4. [Google Scholar]
- Klintenberg, P.; Mazambani, C.; Nantanga, K. Integrated Water Resources Management in the Namibian Part of the Cuvelai Basin, Central Northern Namibia, CuveWaters Papers No. 2; ISEO: Frankfurt/Main, Germany, 2007. [Google Scholar]
- Mendelsohn, J.; Weber, B. Cuvelai: The Cuvelai Basin, its Water and People in Angola and Namibia = Povos e águas da bacia do Cuvelai em Angola e Namibia; Occasional Paper; Development Workshop Angola: Luanda, Angola, 2011; ISBN 978-99916-780-6-1. [Google Scholar]
- Kluge, T.; Polak, M. Water supply infrastructure and sanitation in central-northern Namibia. In Integrated Water Resources Management in Water-Scarce Regions; Kramm, J., Jokisch, A., Müller, K., Eds.; IWA Publishing: London, UK, 2018; pp. 19–22. ISBN 978-1-78040-790-6. [Google Scholar]
- Zimmermann, M. Sustainable Transformations of Water Supply Regimes. The Cuvelai-Etosha Basin in Central Northern Namibia, Schriftenreihe IWAR; Inst. IWAR: Darmstadt, Germany, 2013; ISBN 978-3-940897-22-0. [Google Scholar]
- Faulstich, L.; Schulte, A.; Arendt, R.; Kavishe, F.; Lengricht, J. Die Qualität der intensiv genutzten Oberflächengewässer im Cuvelai-Becken (Nord-Namibia) zum Ende der Trockenzeit 2017. In Proceedings of the Beiträge zum 49. Jahrestreffen des Arbeitskreises Hydrologie, Göttingen, Germany, 23–25 November 2017; Chifflard, P., Karthe, D., Möller, S., Eds.; Universität Augsburg: Augsburg, Germany, 2018; pp. 9–21. [Google Scholar]
- Kluge, T.; Liehr, S.; Lux, A.; Moser, P.; Niemann, S.; Umlauf, N.; Urban, W. IWRM concept for the Cuvelai Basin in northern Namibia. Phys. Chem. Earth Parts ABC 2008, 33, 48–55. [Google Scholar] [CrossRef]
- Ngula Niipele, J.; Chen, J. The usefulness of alos-palsar dem data for drainage extraction in semi-arid environments in The Iishana sub-basin. J. Hydrol. Reg. Stud. 2019, 21, 57–67. [Google Scholar] [CrossRef]
- Goormans, T.; Van Looveren, R.; Mufeti, P.; Wynants, J. Building a Hydrological and Hydrodynamic Model while facing Challenges in Data availability in the Oshana Region of Central Northern Namibia. In Proceedings of the E-Proceedings of the 36th IAHR World Congress, The Hague, The Netherlands, 28 June–3 July 2015; Mynett, A., Ed.; IAHR: Madrid, Spain, 2015; pp. 5222–5233, ISBN 978-1-5108-2434-8. [Google Scholar]
- Beyer, M.; Hipondoka, M.; Hamutoko, J.; Wanke, H. Water resources in the Cuvelai-Etosha Basin. Biodivers. Ecol. 2018, 6, 84–85. [Google Scholar] [CrossRef]
- Stengel, H.W.; Wipplinger, O.; Lempp, F. Wasserwirtschaft in S. W. A. Waterwese in S. W. A. Water affairs in S. W. A.; Afrika-Verlag Der Kreis: Windhoek, Namibia, 1963. [Google Scholar]
- Müller, I.; Hipondoka, M.; Winkler, K.; Geßner, U.; Martinis, S.; Taubenböck, H. Monitoring flood and drought events—Earth observation for multiscale assessment of water-related hazards and exposed elements. Biodivers. Ecol. 2018, 6, 136–143. [Google Scholar] [CrossRef]
- McBenedict, B.; Hauwanga, W.N.; Wanke, H.; Chimwamurombe, P.M.; Hang’ombe, B.M. Seasonal Health Risks Due to Zoonotic Pathogens from Hand-dug Well Water in Ohangwena and Omusati Regions of Namibia. J. Pure Appl. Microbiol. 2019, 13, 1583–1593. [Google Scholar] [CrossRef] [Green Version]
- Wanke, H.; Beyer, M.; Hipondoka, M.; Hamutoko, J.; Gaj, M.; Koeniger, P.; Himmelsbach, T. The long road to sustainability: Integrated water quality and quantity assessments in the Cuvelai-Etosha Basin, Namibia. Biodivers. Ecol. 2018, 6, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Wanke, H.; Nakwafila, A.; Hamutoko, J.T.; Lohe, C.; Neumbo, F.; Petrus, I.; David, A.; Beukes, H.; Masule, N.; Quinger, M. Hand dug wells in Namibia: An underestimated water source or a threat to human health? Phys. Chem. Earth Parts ABC 2014, 76–78, 104–113. [Google Scholar] [CrossRef]
- Zimmermann, M. The coexistence of traditional and large-scale water supply systems in central northern Namibia. J. Namib. Stud. 2010, 7, 55–84. [Google Scholar]
- Miller, R.M.; Pickford, M.; Senut, B. The geoglogy, paleontology and evolution of the Etosha Pan, Namibia: Implications for terminal Kalahari deposition. South Afr. J. Geol. 2010, 113, 307–334. [Google Scholar] [CrossRef]
- Digital Atlas of Namibia. Available online: https://www.uni-koeln.de/sfb389/e/e1/download/atlas_namibia/haupt_namibia_atlas.html (accessed on 26 October 2016).
- United Nations Office for Coordination of Humanitarian Affairs Regional Office for South Africa. Available online: https://data.humdata.org/dataset/hotosm_nam_roads (accessed on 16 February 2018).
- Goudie, A.; Viles, H.A. Landscapes and Landforms of Namibia; World Geomorphological Landscapes; Springer: Dordrecht, The Netherlands, 2015; ISBN 978-94-017-8020-9. [Google Scholar]
- Hipondoka, M.H.T. TThe Development and Evolution of Etosha Pan. Ph.D. Thesis, Julius-Maximilians-Universität, Würzburg, Germany, 2005. [Google Scholar]
- Hüser, K.; Besler, H.; Blümel, W.D.; Heine, K.; Leser, H.; Rust, U. Namibia: Eine Landschaftskunde in Bildern; Klaus Hess Verlag: Göttingen, Germany, 2001; ISBN 978-3-933117-14-4. [Google Scholar]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Borla Tridon, D.; Bräutigam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Mukul, M.; Srivastava, V.; Jade, S.; Mukul, M. Uncertainties in the Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian Himalaya and Peninsula. Sci. Rep. 2017, 7, 41672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, B.; Sandwell, D. Accuracy and resolution of shuttle radar topography mission data. Geophys. Res. Lett. 2003, 30, 20. [Google Scholar] [CrossRef] [Green Version]
- Wessel, B. TanDEM-X Ground Segment—DEM Products Specification Document; Public Document TD-GS-PS-0021, Issue 3.1; EOC, DLR: Oberpfaffenhofen, Germany, 2016. [Google Scholar]
- Wendleder, A.; Wessel, B.; Roth, A.; Breunig, M.; Martin, K.; Wagenbrenner, S. TanDEM-X Water Indication Mask: Generation and First Evaluation Results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Arendt, R.; Faulstich, L.; Jüpner, R.; Assmann, A.; Lengricht, J.; Kavishe, F.; Schulte, A. GNSS mobile road dam surveying for TanDEM-X correction to improve the database for floodwater modeling in northern Namibia. Environ. Earth Sci. 2020, 79, 333. [Google Scholar] [CrossRef]
- Rutzinger, M.; Höfle, B.; Geist, T.; Stötter, J. Object-based building detection based on airborne laser scanning data within GRASS GIS environment. In Proceedings of the UDMS 2006: Urban Data Management Symposium, Aalborg, Denmark, 15–17 May 2006; Bodum, L., Ed.; UDMS: Delft, The Netherlands, 2006; pp. 7.37–7.48. [Google Scholar]
- Nielsen, N.H.; Larsen, M.R.A.; Rasmussen, S.F. Development of a screening method to assess flood risk on Danish national roads and highway systems. Water Sci. Technol. 2011, 63, 2957–2966. [Google Scholar] [CrossRef]
- Jenson, S.K.; Domingue, J.O. Extracting topographic structure from digital elevation data for geographic information-system analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- Balstrøm, T. Assessment of Flood Risks for Residential Areas Caused by Cloudbursts. In Proceedings of the ESRI User Conference, San Diego, CA, USA, 20–24 July 2015. [Google Scholar]
- Grim, S. Abflusslose Senken—Instrumente in der Landschaftsanalyse und Indikatoren Rezenter Krustenbewegungen. Ph.D. Thesis, Johannes-Gutenberg-Universität, Mainz, Germany, 2012. [Google Scholar] [CrossRef]
- Rättich, M.; Martinis, S.; Wieland, M. Automatic Flood Duration Estimation Based on Multi-Sensor Satellite Data. Remote Sens. 2020, 12, 643. [Google Scholar] [CrossRef] [Green Version]
- Wieland, M.; Martinis, S. A Modular Processing Chain for Automated Flood Monitoring from Multi-Spectral Satellite Data. Remote Sens. 2019, 11, 2330. [Google Scholar] [CrossRef] [Green Version]
- Twele, A.; Cao, W.; Plank, S.; Martinis, S. Sentinel-1-based flood mapping: A fully automated processing chain. Int. J. Remote Sens. 2016, 37, 2990–3004. [Google Scholar] [CrossRef]
- Martinis, S.; Kersten, J.; Twele, A. A fully automated TerraSAR-X based flood service. ISPRS J. Photogramm. Remote Sens. 2015, 104, 203–212. [Google Scholar] [CrossRef]
- Martinis, S.; Kuenzer, C.; Wendleder, A.; Huth, J.; Twele, A.; Roth, A.; Dech, S. Comparing four operational SAR-based water and flood detection approaches. Int. J. Remote Sens. 2015, 36, 3519–3543. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- McJannet, D.; Cook, F.; Burn, S. Evaporataion Reduction by Manipulation of Surface Area to Volume Ratios: Overview, Analysis and Effectiveness; Urban Water Security Research Alliance Technical Report No. 8; CSIRO: Canberra, Australia, 2008. [Google Scholar]
- Mitchell, A. The ESRI Guide to GIS Analysis; ESRI: Redlands, CA, USA, 1999; ISBN 978-1-879102-06-4. [Google Scholar]
- Kapuka, A.; Hlásny, T. Social Vulnerability to Natural Hazards in Namibia: A District-Based Analysis. Sustainability 2020, 12, 4910. [Google Scholar] [CrossRef]
- Woltersdorf, L.; Liehr, S.; Döll, P. Rainwater Harvesting for Small-Holder Horticulture in Namibia: Design of Garden Variants and Assessment of Climate Change Impacts and Adaptation. Water 2015, 7, 1402–1421. [Google Scholar] [CrossRef] [Green Version]
- Sturm, M.; Zimmermann, M.; Schütz, K.; Urban, W.; Hartung, H. Rainwater harvesting as an alternative water resource in rural sites in central northern Namibia. Phys. Chem. Earth Parts ABC 2009, 34, 776–785. [Google Scholar] [CrossRef]
Surface Area (m2) | Volume (m3) | SA/V (m−1) | Depth (m) | ||
---|---|---|---|---|---|
Iishana-System | Sum | 4,021,400,469 | 1,877,297,618 | ||
Min | 156 | 1 | 0.14 | 0.10 | |
Max | 16,846,563 | 20,776,981 | 538.95 | 27.12 | |
Median | 2500 | 612 | 4.16 | 0.24 | |
Mean | 21,096 | 9848 | 5.20 | 0.29 | |
25%/Quartil | 1094 | 254 | 2.75 | 0.16 | |
75%/Quartil | 7656 | 2073 | 6.43 | 0.36 | |
sd | 172,681 | 135,574 | 4.84 | 0.14 | |
Skew | 38 | 63 | 29.49 | 62.65 | |
pans count: 190,623 | pans/km2 = 10.4 | ||||
Angola | Sum | 2,355,694,219 | 1,259,943,689 | ||
Min | 156 | 5 | 0.60 | 0.10 | |
Max | 462,969 | 120,579 | 102.40 | 19.26 | |
Median | 1875 | 568 | 3.48 | 0.28 | |
Mean | 6207 | 1879 | 4.84 | 0.33 | |
25%/Quartil | 781 | 188 | 2.02 | 0.17 | |
75%/Quartil | 6094 | 2153 | 5.47 | 0.43 | |
sd | 154,864 | 129,934 | 46.84 | 0.15 | |
Skew | 27 | 44 | 143.53 | 47.92 | |
pans count: 84,755 | pans/km2 = 9.7 | ||||
Namibia | Sum | 1,989,113,125 | 706,824,881 | ||
Min | 156 | <1 | 0.14 | 0.10 | |
Max | 13,075,313 | 6,055,795 | 538.95 | 27.12 | |
Median | 2656 | 567 | 4.55 | 0.22 | |
Mean | 18,749 | 6663 | 5.60 | 0.25 | |
25%/Quartil | 1250 | 236 | 3.12 | 0.15 | |
75%/Quartil | 8438 | 2048 | 6.84 | 0.32 | |
sd | 126,195 | 58,909 | 5.13 | 0.13 | |
Skew | 40 | 43 | 32.58 | 43.47 | |
pans count: 106,089 | pans/km2 = 11.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arendt, R.; Reinhardt-Imjela, C.; Schulte, A.; Faulstich, L.; Ullmann, T.; Beck, L.; Martinis, S.; Johannes, P.; Lengricht, J. Natural Pans as an Important Surface Water Resource in the Cuvelai Basin—Metrics for Storage Volume Calculations and Identification of Potential Augmentation Sites. Water 2021, 13, 177. https://doi.org/10.3390/w13020177
Arendt R, Reinhardt-Imjela C, Schulte A, Faulstich L, Ullmann T, Beck L, Martinis S, Johannes P, Lengricht J. Natural Pans as an Important Surface Water Resource in the Cuvelai Basin—Metrics for Storage Volume Calculations and Identification of Potential Augmentation Sites. Water. 2021; 13(2):177. https://doi.org/10.3390/w13020177
Chicago/Turabian StyleArendt, Robert, Christian Reinhardt-Imjela, Achim Schulte, Leona Faulstich, Tobias Ullmann, Lorenz Beck, Sandro Martinis, Petrina Johannes, and Joachim Lengricht. 2021. "Natural Pans as an Important Surface Water Resource in the Cuvelai Basin—Metrics for Storage Volume Calculations and Identification of Potential Augmentation Sites" Water 13, no. 2: 177. https://doi.org/10.3390/w13020177
APA StyleArendt, R., Reinhardt-Imjela, C., Schulte, A., Faulstich, L., Ullmann, T., Beck, L., Martinis, S., Johannes, P., & Lengricht, J. (2021). Natural Pans as an Important Surface Water Resource in the Cuvelai Basin—Metrics for Storage Volume Calculations and Identification of Potential Augmentation Sites. Water, 13(2), 177. https://doi.org/10.3390/w13020177