Effects of Climatic Drivers and Teleconnections on Late 20th Century Trends in Spring Freshet of Four Major Arctic-Draining Rivers
Abstract
:1. Introduction
2. Basin Characteristics and Climatic Patterns
2.1. Basin Physiography
2.2. Flow Regulation
2.3. Regional Climate
2.4. Teleconnection Patterns
3. Data and Methods
3.1. Data Sources
3.2. Sub-Basin Classification
3.3. Flow Estimation
3.4. Spring Freshet Definition
3.5. Climatic Variation and Teleconnections
4. Results and Discussion
4.1. Effect of Climatic Drivers
4.2. Effect of Teleconnections
5. Summary
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aagaard, K.; Carmack, E.C. The role of fresh water in ocean circulation and climate. J. Geophys. Res. 1989, 94, 14485–14498. [Google Scholar] [CrossRef]
- Carmack, E.C. The freshwater budget of the Arctic Ocean: Sources, storage and sinks. In The Freshwater Budget of the Arctic Ocean; Lewis, E.L., Jones, E.P., Lemke, P., Prowse, T.D., Wadhams, P., Eds.; Kluwer: Dordrecht, The Netherlands, 2000; pp. 91–126. [Google Scholar]
- Serreze, M.C.; Francis, J.A. The Arctic Amplification Debate. Clim. Chang. 2006, 76, 241–264. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.J.; Holmes, R.M.; McClelland, J.W.; Vörösmarty, C.J.; Lammers, R.B.; Shiklomanov, A.I.; Shiklomanov, I.A.; Rahmstorf, S. Increasing river discharge to the Arctic Ocean. Science 2002, 298, 2171–2173. [Google Scholar] [CrossRef] [Green Version]
- Arnell, N.W. Implications of climate change for freshwater inflows to the Arctic Ocean. J. Geophys. Res. Atmos. 2005, 110, D07105. [Google Scholar] [CrossRef] [Green Version]
- Prowse, T.D.; Flegg, P.O. Arctic river flow: A review of contributing areas. In The Freshwater Budget of the Arctic Ocean; Lewis, E.L., Jones, E.P., Lemke, P., Prowse, T.D., Wadhams, P., Eds.; Kluwer: Dordrecht, The Netherlands, 2000; pp. 269–280. [Google Scholar]
- Kattsov, V.M.; Walsh, J.E.; Chapman, W.L.; Govorkova, V.; Pavlova, T.V.; Zhang, X. Simulation and Projection of Arctic Freshwater Budget Components by the IPCC AR4 Global Climate Models. J. Hydrometeorol. 2007, 8, 571–589. [Google Scholar] [CrossRef]
- McClelland, J.W.; Holmes, R.M.; Dunton, K.H.; Macdonald, R.W. The Arctic Ocean Estuary. Estuaries Coasts 2011, 35, 353–368. [Google Scholar] [CrossRef] [Green Version]
- Lammers, R.B.; Shiklomanov, A.I.; Vörösmarty, C.J.; Fekete, B.M.; Peterson, B.J. Assessment of contemporary Arctic river runoff based on observational discharge records. J. Geophys. Res. 2001, 106, 3321–3334. [Google Scholar] [CrossRef]
- Prowse, T.; Bring, A.; Mård, J.; Carmack, E. Arctic freshwater synthesis: Introduction. J. Geophys. Res. Biogeosci. 2015, 120, 2121–2131. [Google Scholar] [CrossRef]
- Bring, A.; Fedorova, I.; Dibike, Y.; Hinzman, L.; Mård, J.; Mernild, S.H.; Prowse, T.; Semenova, O.; Stuefer, S.L.; Woo, M.K. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J. Geophys. Res. Biogeosci. 2016, 121, 621–649. [Google Scholar] [CrossRef]
- McPhee, M.G.; Proshutinsky, A.; Morison, J.H.; Steele, M.; Alkire, M.B. Rapid change in freshwater content of the Arctic Ocean. Geophys. Res. Lett. 2009, 36, L10602. [Google Scholar] [CrossRef] [Green Version]
- Grabs, W.E.; Portmann, F.; De Couet, T. Discharge observation networks in Arctic regions: Computation of the river runoff into the Arctic Ocean, its seasonality and variability. In The Freshwater Budget of the Arctic Ocean; Lewis, E.L., Jones, E.P., Lemke, P., Prowse, T.D., Wadhams, P., Eds.; Kluwer: Dordrecht, The Netherlands, 2000; pp. 249–267. [Google Scholar]
- Ahmed, R. Spatio-Temporal Variation in the Spring Freshet of Major Circumpolar Arctic River Systems. Master’s Thesis, University of Victoria, Victoria, BC, Canada, 4 July 2015. [Google Scholar]
- Ahmed, R.; Prowse, T.; Dibike, Y.; Bonsal, B.; O’Neil, H. Recent Trends in Freshwater Influx to the Arctic Ocean from Four Major Arctic-Draining Rivers. Water 2020, 12, 1189. [Google Scholar] [CrossRef] [Green Version]
- Finnis, J.; Cassano, J.; Holland, M.; Uotila, P. Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models, Part 1: The Mackenzie River Basin. Int. J. Climatol. 2009, 29, 1226–1243. [Google Scholar] [CrossRef]
- Yang, D.; Ye, B.; Shiklomanov, A. Discharge characteristics and changes over the Ob River watershed in Siberia. J. Hydrometeorol. 2004, 5, 595–610. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Kane, D.L.; Hinzman, L.D.; Zhang, X.; Zhang, T.; Ye, H. Siberian Lena River hydrologic regime and recent change. J. Geophys. Res. 2002, 107, 4694. [Google Scholar] [CrossRef]
- Yang, D.; Ye, B.; Kane, D.L. Streamflow changes over Siberian Yenisei river basin. J. Hydrol. 2004, 296, 59–80. [Google Scholar] [CrossRef]
- Dyurgerov, M.B.; Carter, C.L. Observational Evidence of Increases in Freshwater Inflow to the Arctic Ocean. Arct. Antarct. Alp. Res. 2004, 36, 117–122. [Google Scholar] [CrossRef]
- Loeng, H.; Brander, K.; Carmack, E.; Denisenko, S.; Drinkwater, K.; Hansen, B.; Kovacs, K.; Livingston, P.; Mclaughlin, F.; Bellerby, R.; et al. Chapter 9: Marine Systems. In Arctic Climate Impact Assessment; Symon, C., Arris, L., Heal, B., Eds.; Cambridge University Press: New York, NY, USA, 2005; pp. 453–538. [Google Scholar]
- Nuttall, M. (Ed.) Encyclopedia of the Arctic; Routledge: Abingdon, UK, 2005. [Google Scholar]
- Woo, M.; Thorne, R. Streamflow in the Mackenzie basin, Canada. Arctic 2003, 56, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Lydolph, P.E.; Temple, D.; Temple, D. Geograhpy of the U.S.S.R.; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Stuefer, S.; Yang, D.; Shiklomanov, A. Effect of streamflow regulation on mean annual discharge variability of the Yenisei River. In Cold Region Hydrology in a Changing Climate, Proceedings of the Symposium H02 Held during IUGG2011, Melbourne, Australia, 28 June to 7 July 2011; IAHS Publications: Oxfordshire, UK, 2011; Volume 346, pp. 27–32. [Google Scholar]
- Serreze, M.C. Arctic Climate. In Encyclopedia of Atmospheric Sciences; Holton, J.R., Curry, J.A., Pyle, J.A., Eds.; Academic Press: Cambridge, MA, USA, 2003; p. 171. [Google Scholar]
- Trenberth, K. The definition of El Nino. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2777. [Google Scholar] [CrossRef] [Green Version]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [Green Version]
- Bonsal, B.R.; Prowse, T.D.; Duguay, C.R.; Lacroix, M.P. Impacts of large-scale teleconnections on freshwater-ice break/freeze-up dates over Canada. J. Hydrol. 2006, 330, 340–353. [Google Scholar] [CrossRef]
- Déry, S.; Stieglitz, M.; McKenna, E.; Wood, E.F. Characteristics and trends of river discharge into Hudson, James, and Ungava Bays, 1964–2000. J. Clim. 2005, 18, 2540–2557. [Google Scholar] [CrossRef]
- Hamlet, A.F.; Lettenmaier, D.P. Columbia River streamflow forecasting based on ENSO and PDO climate signals. J. Water Resour. Plan. Manag. 1999, 125, 333–341. [Google Scholar] [CrossRef]
- Neal, E.G.; Walter, M.T.; Coffeen, C. Linking the Pacific Decadal Oscillation to seasonal stream discharge patterns in Southeast Alaska. J. Hydrol. 2002, 263, 188–197. [Google Scholar] [CrossRef]
- Ye, H.; Yang, D.; Zhang, T.; Zhang, X.; Ladochy, S.; Ellison, M. The impact of climatic conditions on seasonal river discharges in Siberia. J. Hydrometeorol. 2004, 5, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Bromwich, D.H.; Clark, M.P.; Etringer, A.J.; Zhang, T.; Lammers, R. Large-scale hydro-climatology of the terrestrial Arctic drainage system. J. Geophys. Res. 2002, 108, 8160. [Google Scholar] [CrossRef] [Green Version]
- Stoner, A.M.K.; Hayhoe, K.; Wuebbles, D.J. Assessing General Circulation Model Simulations of Atmospheric Teleconnection Patterns. J. Clim. 2009, 22, 4348–4372. [Google Scholar] [CrossRef]
- Kingston, D.G.; Lawler, D.M.; McGregor, G.R. Linkages between atmospheric circulation, climate and streamflow in the northern North Atlantic: Research prospects. Prog. Phys. Geogr. 2006, 30, 143–174. [Google Scholar] [CrossRef]
- Rogers, A.N.; Bromwich, D.H.; Sinclair, E.N.; Cullather, R.I. The atmospheric hydrologic cycle over the Arctic basin from reanalyses, Part 2. J. Clim. 2001, 14, 2414–2429. [Google Scholar] [CrossRef] [Green Version]
- Sveinsson, O.G.; Lall, U.; Gaudet, J.; Kushnir, Y.; Zebiak, S.; Fortin, V. Analysis of climatic states and atmospheric circulation patterns that influence Québec spring streamflows. J. Hydr. Eng. 2008, 13, 411–425. [Google Scholar] [CrossRef] [Green Version]
- R-ArcticNET. A Regional Hydrometeorological Data Network for Russia. Available online: http://www.https://www.r-arcticnet.sr.unh.edu/v4.0/index.html (accessed on 11 December 2019).
- Jones, P.; Harris, I. CRU TS3. 21: Climatic Research Unit (CRU) Time-Series (TS) Version 3.21 of High Resolution Gridded Data of Month-by-Month Variation in Climate (Jan. 1901–Dec. 2012); NCAS British Atmospheric Data Centre: Leeds, UK, 2013. [Google Scholar]
- Gibson, J.J.; Prowse, T.D.; Peters, D.L. Hydroclimatic controls on water balance and water level variability in Great Slave Lake. Hydrol. Process. 2006, 20, 4155–4172. [Google Scholar] [CrossRef]
- Cayan, D.R.; Kammerdiener, S.A.; Dettinger, M.D.; Caprio, J.M.; Peterson, D.H. Changes in the Onset of Spring in the Western United States. Bull. Am. Meteorol. Soc. 2001, 82, 399–415. [Google Scholar] [CrossRef] [Green Version]
- Stewart, I.; Cayan, D.; Dettinger, M. Changes toward earlier streamflow timing across western North America. J. Clim. 2005, 18, 1136–1155. [Google Scholar] [CrossRef]
- Maurer, E.P.; Lettenmaier, D.P.; Mantua, N.J. Variability and potential sources of predictability of North American runoff. Water Resour. Res. 2004, 40, W09306. [Google Scholar] [CrossRef] [Green Version]
- Burn, D.H. Climatic influences on streamflow timing in the headwaters of the Mackenzie River Basin. J. Hydrol. 2008, 352, 225–238. [Google Scholar] [CrossRef]
Reservoir/Dam Name | Latitude (°N) | Longitude (°E) | Basin | River | Capacity (MW) | Commis-sioned | Maximum Capacity (km3) | Catchment Area (km2) |
---|---|---|---|---|---|---|---|---|
W.A.C. Bennett | 56.0 | −122.2 | Mackenzie | Peace | 2730 | 1968 | 74 | 70,275 |
Shul’binsk | 50.4 | 81.1 | Ob | Irtysh | 702 | 1969 | 2.4 | 131,598 |
Bukhtarma | 49.7 | 83.3 | Ob | Irtysh | 750 | 1960 | 49.8 | 103,923 |
Ust-Kamenogorsk | 49.9 | 82.7 | Ob | Irtysh | 331.2 | 1952 | 0.6 | 107,636 |
Novosibirsk | 54.8 | 83.0 | Ob | Ob | 455 | 1957 | 8.8 | 212,076 |
Boguchany | 58.4 | 97.4 | Yenisei | Angara | 3000 | 2011 | 58.2 | 845,694 |
Ust-Ilimsk | 58.0 | 102.7 | Yenisei | Angara | 4320 | 1974 | 59.3 | 767,413 |
Bratsk | 56.3 | 101.8 | Yenisei | Angara | 4500 | 1967 | 169 | 714,017 |
Irkutsk | 52.2 | 104.3 | Yenisei | Angara | 662.4 | 1958 | 46 | 572,704 |
Sayano-Shushenskoe | 52.8 | 91.4 | Yenisei | Yenisei | 6400 | 1978 | 31.3 | 172,529 |
Krasnoyarskoye More | 55.9 | 92.3 | Yenisei | Yenisei | 6000 | 1972 | 73.3 | 276,174 |
Kurejka | 66.9 | 88.3 | Yenisei | Kurejka | 600 | 1987 | - | 65,974 |
Vilyuy | 63.0 | 112.5 | Lena | Vilyuy | 680 | 1967 | 35.9 | 104,566 |
Symbol | Description | Units |
---|---|---|
FP | Freshet pulse date | Julian day |
FL | Freshet length | days |
FM | Peak freshet magnitude | m3/s |
V1 | April–July volume | m3 |
V2 | Freshet volume | m3 |
River Basins | FP | FL | FM | V2 | V1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
t1 | t2 | t1 | t2 | t1 | t2 | t1 | t2 | t1 | t2 | |
Mackenzie | 100 | 88 | 88 | 91 | 80 | 100 | 92 | 83 | 86 | 71 |
Ob | 78 | 76 | 57 | 100 | 63 | 100 | 75 | N/A | 100 | 100 |
Lena | 75 | 71 | 50 | 0 | 100 | N/A | 100 | N/A | 100 | N/A |
Yenisei | 64 | 67 | 50 | 67 | 50 | 100 | 50 | N/A | 50 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, R.; Prowse, T.; Dibike, Y.; Bonsal, B. Effects of Climatic Drivers and Teleconnections on Late 20th Century Trends in Spring Freshet of Four Major Arctic-Draining Rivers. Water 2021, 13, 179. https://doi.org/10.3390/w13020179
Ahmed R, Prowse T, Dibike Y, Bonsal B. Effects of Climatic Drivers and Teleconnections on Late 20th Century Trends in Spring Freshet of Four Major Arctic-Draining Rivers. Water. 2021; 13(2):179. https://doi.org/10.3390/w13020179
Chicago/Turabian StyleAhmed, Roxanne, Terry Prowse, Yonas Dibike, and Barrie Bonsal. 2021. "Effects of Climatic Drivers and Teleconnections on Late 20th Century Trends in Spring Freshet of Four Major Arctic-Draining Rivers" Water 13, no. 2: 179. https://doi.org/10.3390/w13020179
APA StyleAhmed, R., Prowse, T., Dibike, Y., & Bonsal, B. (2021). Effects of Climatic Drivers and Teleconnections on Late 20th Century Trends in Spring Freshet of Four Major Arctic-Draining Rivers. Water, 13(2), 179. https://doi.org/10.3390/w13020179