Characterization of the Transpiration of a Vineyard under Different Irrigation Strategies Using Sap Flow Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location, Description of the Vineyard, and Weather Conditions
2.2. Experimental Design
2.3. Irrigation Scheduling
2.4. Vegetative Growth, Water Status and Production
2.5. Water Consumption
2.6. Soil Evaporation
2.7. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Vegetative Growth, Water Status, and Yield
3.3. Evaporation, Transpiration, and Evapotranspiration
3.4. Relationship between Methodologies for Determining ETc
3.5. Relationship between Vegetative Growth and TSF
4. Discussion
4.1. Adjustment and Evaluation of Sap Flow Sensors to Determine Vine’s Transpiration
4.2. Quantification of ETc in Vineyards by Sap Flow Measurements
4.3. Relationship between Transpiration and Vegetative Growth of Grapevines
4.4. Evaluation of Vineyard T Response under Water-Limiting and Non-Water-Limiting Conditions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fereres, E.; Evans, R.G. Irrigation of fruit trees and vines: An Introduction. Irrig. Sci. 2006, 24, 55–57. [Google Scholar] [CrossRef]
- Ayars, J.E.; Johnson, R.S.; Phone, C.J.; Trout, T.J.; Clark, D.A.; Mead, R.M. Water use by drip-irrigated late-season peaches. Irrig. Sci. 2003, 22, 187–194. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Irrigation and Drainage, 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Crop water requirements. FAO Irrigation and Drainage Paper nº 24; FAO: Rome, Italy, 1975. [Google Scholar]
- Montoro, A.; Mañas, F.; López-Urrea, R. Transpiration and evaporation of grapevine, two components related to irrigation strategy. Agric. Water Manag. 2016, 177, 193–200. [Google Scholar] [CrossRef]
- Picón-Toro, J.; González-Dugo, V.; Uriarte, D.; Mancha, L.A.; Testi, L. Effects of canopy size and water stress over the crop coefficient of a “Tempranillo” vineyard in south-western Spain. Irrig. Sci. 2012, 30, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.E.; Ayars, J.E. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric. For. Meteorol. 2005, 132, 201–211. [Google Scholar] [CrossRef]
- Jackson, D.I.; Lombard, P.B. Environmental and management practices affecting grape composition and wine quality- A review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar]
- Vadour, E. Les terroirs viticoles. Definitions, Characterisation, Protection; Dunod: Paris, France, 2003; 293p. [Google Scholar]
- Praeger, J.H.; Hatfield, J.L.; Aase, J.K.; Pikul, J.L. Bowen-ratio comparisons with lysimeter evapotranspiration. Agron. J. 1997, 89, 730–736. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L. Methods of estimating evapotranspiration. In Irrigation of Agricultural Crops. Agron Monogr Nº. 30; Stewart, B.A., Nielson, D.R., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 1990; pp. 435–474. [Google Scholar]
- Andreu, L.; Hopmans, J.W.; Schwankl, L.J. Spatial and temporal distribution of soil water balance for a drip-irrigated almond tree. Agric. Water Manag. 1997, 35, 123–146. [Google Scholar] [CrossRef]
- Abrisqueta, J.M.; Ruiz, A.; Franco, J.A. Water balance of apricot trees (Prunus armeniaca L. cv. Búlida) under drip irrigation. Agric. Water Manag. 2001, 50, 211–227. [Google Scholar] [CrossRef]
- García-Petillo, J.R.; Castel, J.R. Water balance and crop coefficient estimation of a citrus orchard in Uruguay. Span. J. Agric. Res. 2007, 5, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Moreno, F.; Vachaud, G.; Matín-Aranda, J.; Vauclin, M.; Fernádez, J.E. Balance hídrico en un olivar con riego gota a gota. Resultados de cuatro años de experiencias. Agronomie 1988, 8, 521–537. [Google Scholar] [CrossRef] [Green Version]
- Samperio, A.; Moñino, M.J.; Marsal, J.; Prieto, M.H.; Stöckle, C.O. Use of CropSyst as a tool to predict water use and crop coefficient in Japanese plum trees. Agric. Water Manag. 2014, 146, 57–68. [Google Scholar] [CrossRef]
- De Teixeira, A.H.C.; Bastiaansen, W.G.M.; Basso, L.H. Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the Sao Francisco river basin, Brazil. Agric. Water Manag. 2007, 94, 31–42. [Google Scholar] [CrossRef]
- Zhang, B.; Kang, S.; Li, F.; Tong, L.; Du, T. Variation in vineyard evapotranspiration in arid region of northwest China. Agric. Water Manag. 2010, 97, 1898–1904. [Google Scholar] [CrossRef]
- Ferreira, M.I.; Silvestre, J.; Conceicao, N.; Malhiero, A.C. Crop and stress coefficients in rainfed and deficit irrigation vineyards using sap flow techniques. Irrig. Sci. 2012, 30, 433–447. [Google Scholar] [CrossRef]
- Poblete-Echeverria, C.; Ortega-Farias, S. Estimation of actual evapotranspiration for a drip-irrigated Merlot vineyard using a three-source model. Irrig. Sci. 2009, 28, 65–78. [Google Scholar] [CrossRef]
- Ortega-Farias, S.; Carrasco, M.; Olioso, A.; Acevedo, C.; Poblete, C. Latent heat flux over Cabernet Sauvignon vineyard using the Shuttleworth and Wallace model. Irrig. Sci. 2007, 25, 161–170. [Google Scholar] [CrossRef]
- Parry, C.K.; Shapland, M.; Williams, L.E.; Calderon-Orellana, A.; Snyder, R.L.; Paw, U.K.T.; McElrone, A.J. Comparison of a stand-alone surface renewal method to weighing lysimeter and eddy covariance for determining vineyard evapotranspiration and vine water stress. Irrig. Sci. 2019, 37, 737–749. [Google Scholar] [CrossRef]
- Granier, A. Une nouvelle méthode pour la mesure du flux de sève brute dansle tronc des arbres (A new method of sap flow measurement in tree stems). Ann. For. Sci. 1985, 42, 193–200. [Google Scholar] [CrossRef]
- Wullschleger, S.D.; Meinzer, F.C.; Vertessy, R.A. A review of whole-plant water use studies in trees. Tree Physiol. 1998, 18, 499–512. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, T.; Abe, J. A heat balance for measuring water flow rate in stems of intact plants and its application to sugarcane plants. Jpn. Agric. Res. Q. 1985, 19, 92–97. [Google Scholar]
- Smith, D.M.; Allen, S.J. Measurement of sap flow in plant stems. J. Exp. Bot. 1996, 47, 1833–1844. [Google Scholar] [CrossRef] [Green Version]
- López-Bernal, A. Efectos del Déficit Hídrico Sobre el Flujo de Savia y la Conductancia Estomática en Frutales. Ph.D. Thesis, Departamento de Agronomía. Universidad de Córdoba, Córdoba, Spain, 2015. [Google Scholar]
- Testi, L.; Villalobos, F.J. New approach for measuring low sap velocities in trees. Agric. For. Meteorol. 2009, 149, 730–734. [Google Scholar] [CrossRef]
- Fernández, J.E.; Durán, P.J.; Palomo, M.J.; Díaz-Espejo, A.; Chamorro, V.; Girón, I.F. Calibration of sap flow estimated by the compensation heat pulse method in olive, plum and orange trees: Relationships with xylem anatomy. Tree Physiol. 2006, 26, 719–728. [Google Scholar] [CrossRef] [Green Version]
- Green, S.R.; Clothier, B.E. Water use of kiwifruit, vines and apple trees by the heat-pulse technique. J. Exp. Bot. 1988, 39, 115–123. [Google Scholar] [CrossRef]
- Ortuño, M.F.; García-Orellana, Y.; Conejero, W.; Ruiz-Sánchez, M.C.; Alarcón, J.J.; Torrecillas, A. Stem and leaf water potentials, gas exchange, sap flow, and trunk diameter fluctuations for detecting water stress in lemon trees. Trees 2006, 20, 1–8. [Google Scholar] [CrossRef]
- Swanson, R.H.; Whitfield, D.W.A. A numerical analysis of heat pulse velocity theory and practice. J. Exp. Bot. 1981, 32, 221–239. [Google Scholar] [CrossRef]
- Fernández, J.E.; Green, S.R.; Caspari, H.W.; Díaz-Espejo, A.; Cuevas, M.V. The use of sap flow measurements for scheduling irrigation in olive, apple and Asian pear trees and in grapevines. Plant Soil 2008, 305, 91–104. [Google Scholar] [CrossRef]
- Ginestar, C.; Eastham, J.; Gray, S.; Iland, P. Use of sap flow sensors to schedule vineyard irrigation. I. Effects of post-veraison water deficits on water relations, vine growth, and yield of Shiraz grapevines. Am. J. Enol. Vitic. 1998, 49, 413–420. [Google Scholar]
- Intrigliolo, D.S.; Lakso, A.; Piccioni, R. Grapevine cv. ‘Riesling’ water use in the northeastern United States. Irrig. Sci. 2009, 27, 253–262. [Google Scholar] [CrossRef]
- Williams, L.E.; Phone, C.J.; Grimes, D.W.; Trout, T.J. Water use of mature Thompson Seedless grapevines in California. Irrig. Sci. 2003, 22, 11–18. [Google Scholar] [CrossRef]
- Correlli-Grappadelli, L.; Magnanini, E. A whole-tree system for gas-exchange studies. Hortic. Sci. 1993, 28, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Lakso, A.N.; Mattie, G.B.; Nyrop, J.P.; Denning, S.S. Influence of European Red Mite on Leaf and Whole-canopy Carbon Dioxide Exchange, Yield, Fruit Size, Quality, and Return Cropping in “Starkrimson Delicious” Apple Trees. J. Amer. Soc. Hort. Sci. 1996, 121, 954–996. [Google Scholar] [CrossRef] [Green Version]
- Poni, S.; Magnanini, E.; Rebucci, B. An automated chamber system for measurements of whole-vine gas exchange. HortScience 1997, 32, 64–67. [Google Scholar] [CrossRef]
- Poblete-Echeverria, C.; Ortega-Farias, S.; Zuñiga, M.; Fuentes, S. Evaluation of compensated heat-pulse velocity method to determine vine transpiration using combined measurements of eddy covariance system and microlysimeters. Agric. Water Manag. 2012, 109, 11–19. [Google Scholar] [CrossRef]
- Green, S.R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigation scheduling. In Proceedings of the Fifth International Symposium on Irrigation of Horticultural Crops, Mildura, VIC, Australia, 28 August–2 September 2006; Goodwin, I.O.M.G., Ed.; ISHS, Acta Horticulturae No 792: Leuven, Belgium, 2008; pp. 321–332. [Google Scholar] [CrossRef]
- Ballester, C.; Castel, J.; Jimenez-Bello, M.A.; Castel, J.R.; Intrigliolo, D.S. Thermo-graphic measurement of canopy temperature is a useful tool for predicting water deficit effects on fruit weight in citrus trees. Agric. Water Manag. 2013, 122, 1–6. [Google Scholar] [CrossRef]
- Espadafor, M.; Orgaz, F.; Testi, L.; Lorite, I.J.; Villalobos, F.J. Transpiration of young almond trees in relation to intercepted radiation. Irrig. Sci. 2015, 33, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Bonachela, S.; Orgaz, F.; Villalobos, F.J.; Fereres, E. Measurement and simulation of evaporation from soil in olive orchards. Irrig. Sci. 1999, 18, 205–211. [Google Scholar] [CrossRef]
- Palomo, M.J.; Díaz-Espejo, A.; Fernández, J.E.; Girón, I.F.; Moreno, F. Using sap flow measurements to quantify water consumption in the olive tree. In Water and the Environment: Innovative Issues in Irrigation and Drainage; Pereira, L.S., Gowing, J.W., Eds.; E&FN Spon: Pereira, Colombia, 1998; pp. 205–212. [Google Scholar]
- Bonachela, S.; Orgaz, F.; Villalobos, F.J.; Fereres, E. Soil evaporation from drip-irrigated olive orchards. Irrig. Sci. 2001, 20, 65–71. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Vine and soil-based measures of water status in a Tempranillo vineyard. Vitis 2006, 45, 157–163. [Google Scholar] [CrossRef]
- Medrano, H.; Escalona, J.M.J.; Gulías, J.; Flexas, J. Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought: Stomatal Conductance as a Reference Parameter. Ann. Bot. 2002, 89, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Girona, J.; Mata, M.; del Campo, J.; Arbonés, A.; Bartra, E.; Marsal, J. The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrig. Sci. 2006, 24, 115–127. [Google Scholar] [CrossRef]
- Smart, R.E.; Coombe, B.G. Water relations of grapevines. In Water Deficit and Plant Growth; Kozlowski, T.T., Ed.; Academic Press: New York, NY, USA, 1983; Volume 7, pp. 137–196. [Google Scholar]
- Williams, L.E.; Dokoozlian, N.K.; Wample, R. Grape. In Handbook of Environmental Physiology of Fruit Crops; Schaffer, B., Andersen, P.C., Eds.; CRC Press Inc.: Boca Raton, FL, USA, 1994. [Google Scholar]
- Naor, A. Midday stem water potential as a plant water stress indicator for irrigation scheduling in fruit trees. Acta Hortic. 2000, 1, 447–454. [Google Scholar] [CrossRef]
- Bradford, K.J.; Hsiao, T.C. Physiological responses to moderate water stress. In Physiological Plant Ecology II. Encyclopedia of Plant Physiology (New Series); Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1982; Volume 12/B. [Google Scholar]
- Ojeda, H.; Deloire, A.; Wang, Z.; Carbonneau, A. Determinación y control del estado hídrico de la vid. Efectos morfológicos y fisiológicos de la restricción hídrica en vides. Enología 2008, 6, 1–15. [Google Scholar]
- Smart, R.E. Principles of grapevine canopy microclimate manipulation with implications for yield and quality. A review. Am. J. Enol. Vitic. 1985, 36, 230–239. [Google Scholar]
- Castel, J.R. Evapotranspiration of a drip-irrigated clementine citrus tree in a weighing lysimeter. Acta Hortic. 1997, 449, 91–98. [Google Scholar] [CrossRef]
- Girona, J.; del Campo, J.; Mata, M.; Lopez, G.; Marsal, J. A comparative study of apple and pear tree water consumption measured with two weighing lysimeters. Irrig. Sci. 2011, 29, 55–63. [Google Scholar] [CrossRef]
- Consoli, S.; O’Connell, N.; Snyder, R. Measurement of light interception by navel orange orchard canopies: Case study of Lindsay, California. J. Irrig. Drain. Eng. 2006, 132, 9–20. [Google Scholar] [CrossRef]
- Braun, P.; Schmid, J. Sap flow measurements in grapevines (Vitis vinifera L.) 1. Stem morphology and use of the heat balance method. Plant Soil 1999, 215, 39–45. [Google Scholar] [CrossRef]
- Martí, P.; González-Altozano, P.; López –Urrea, R.; Mancha, L.A.; Shiri, J. Modeling reference evapotranspiration with calculated targets. Assessment and implications. Agric. Water Manag. 2015, 149, 81–90. [Google Scholar] [CrossRef]
- Williams, L.E.; Baeza, P. Relationships among ambient temperature and vapor pressure deficit and leaf and stem water potentials of fully irrigated, field-grown grapevines. Am. J. Enol. Vitic. 2007, 58, 173–181. [Google Scholar]
- Williams, L.E.; Trout, T.J. Relationships among vine- and soil-based measures of water status in a Thompson Seedless vineyard in response to high-frequency drip irrigation. Am. J. Enol. Vitic. 2005, 56, 357–366. [Google Scholar]
- Mancha, L.A.; Uriarte, D.; Valdés, E.; Moreno, D.; Prieto, M.d.H. Effects of Regulated Deficit Irrigation and Early Cluster Thinning on Production and Quality Parameters in a Vineyard cv. Tempranillo under Semi-Arid Conditions in Southwestern Spain. Agronomy 2021, 11, 34. [Google Scholar] [CrossRef]
- Uriarte, D.; Intrigliolo, D.S.; Mancha, L.A.; Picón-Toro, J.; Valdés, E.; Prieto, M.H. Interactive effects of irrigation and crop level on Tempranillo vines in semi-arid climate. Am. J. Enol. Vitic. 2015, 66, 101–111. [Google Scholar] [CrossRef]
- Shackel, K.A. Water relations of woody perennial plant species. J. Int. Sci. Vigne Vin 2007, 41, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Villalobos, F.J.; Testi, L.; Orgaz, F.; García-Tejera, O.; López-Bernal, A.; González-Dugo, M.V.; Ballester-Lurbe, C.; Castel, J.R.; Alarcón-Cabañero, J.J.; Nicolás-Nicolás, E.; et al. Modelling canopy conductance and transpiration of fruit trees in Mediterranean areas: A simplified approach. Agric. For. Meteorol. 2013, 171–172, 93–103. [Google Scholar] [CrossRef]
- Green, S.R.; Clothier, B.; Jardine, B. Theory and practical application of heat pulse to measure sap flow. Agron. J. 2003, 95, 1371–1379. [Google Scholar] [CrossRef]
- Marsal, J.; Girona, J.; Casadesus, J.; Lopez, G.; Stöckle, C.O. Crop coefficient (Kc) for apple: Comparison between measurements by a weighing lysimeter and prediction by CropSyst. Irrig. Sci. 2013, 31, 455–463. [Google Scholar] [CrossRef]
- Fereres, E.; Goldhamer, D.A.; Sadras, V. Yield Response to Water of Fruit Trees and Vines: Guidelines. FAO Irrigation and Drainage Paper nº66; FAO: Rome, Italy, 2012; pp. 246–497. [Google Scholar]
- Testi, L. Medidas de ET en cultivos leñosos. Praceedings of the Comunicación oral en el Marco de las Jornadas de la Red de Excelencia RidecoRed AGL2017-90666-REDC, Lérida, Spain, 27–28 November 2019. [Google Scholar]
- Trambouze, W.; Voltz, M. Measurements and modelling of transpiration of a Mediterranean vineyard. Agric. For. Meteorol. 2001, 107, 153–166. [Google Scholar] [CrossRef]
- Johnson, R.S.; Williams, L.E.; Ayars, J.E.; Trout, T.J. Weighing lysimeters aid study of water relations in tree and vine crops. Calif. Agric. 2005, 59, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.R.; Green, S.R.; Villa Nova, N.A. Sap flow, leaf area, net radiation and the Priestley–Taylor formula for irrigated orchards and isolated trees. Agric. Water Manag. 2007, 92, 48–52. [Google Scholar] [CrossRef]
- Champagnol, F. Éléments de Physiologie de la Vigne et de Viticulture Générale; Le Progrès Agricole et Viticole: Saint Gely du Fesc, France, 1984. [Google Scholar]
- Jones, H.G. Physiological aspects of the control of water status in horticultural crops. HortScience 1990, 25, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Lavoie-Lamoureux, A.; Sacco, D.; Risse, P.A.; Lovisolo, C. Factors influencing stomatal conductance in response to water availability in grapevine: A meta-analysis. Physiol. Plant 2017, 159, 468–482. [Google Scholar] [CrossRef] [PubMed]
- Sadras, V.O.; Montoro, A.; Moran, M.A.; Aphalo, P.J. Elevated temperature altered the reaction norms of stomatal conductance in field-grown grapevine. Agric. Forest Meteorol. 2012, 165, 35–42. [Google Scholar] [CrossRef]
- Munitz, S.; Netzer, Y.; Shtein, I.; Schwartz, A. Water availability dynamics have long-term effects on mature stem structure in Vitis vinifera. Am. J. Botany 2018, 105, 1443–1452. [Google Scholar] [CrossRef] [Green Version]
- Bonada, M.; Buesa, I.; Moran, M.I.; Sadras, V.O. Interactive effects of warming and water deficit on Shiraz vine transpiration in the Barossa Valley, Australia. Vine Wine 2018, 52, 189–202. [Google Scholar] [CrossRef]
- Blanco-Cipollone, F.; Lourenco, S.; Silvestre, J.; Conceicao, N.; Moñino, M.J.; Vivas, A.; Ferreira, M.I. Plant water status indicators for irrigation scheduling associated with iso- and anisohydric behavior: Vine and plum trees. Horticulturae 2017, 3, 47. [Google Scholar] [CrossRef]
- Hugalde, I.P.; Vila, H.F. Comportamiento isohídrico o anisohídrico en vides…:¿ Una controversia sin fin? RIA Rev. Investig. Agropecu. 2014, 40, 75–82. [Google Scholar]
- Schultz, H.R. Differences in hydraulic architecture account for near isohydric and anisohydric bahaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell Environ. 2003, 26, 1393–1405. [Google Scholar] [CrossRef]
- Domec, J.C.; Noormets, A.; King, J.S.; Sun, G.E.; McNulty, S.G.; Gavazzi, M.J.; Bloggs, J.L.; Treasure, E.A. Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation. Plant Cell Environ. 2009, 32, 980–991. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Greer, D.H.; Hutton, R.J.; Clarke, S.J. Transpiration efficiency of the grapevine cv. Semillon is tied to VPD in warm climates. Ann. Appl. Biol. 2011, 158, 106–114. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Usefulness of diurnal trunk shrinkage as a water stress indicator in plum trees. Tree Physiol. 2006, 26, 303–311. [Google Scholar] [CrossRef]
- Yunusa, I.A.M.; Walker, R.R.; Lovey, B.R.; Blackmore, D.H. Determination of transpiration in irrigated grapevines: Comparison of the heat-pulse technique with the gravimetric and micrometeorological methods. Irrig. Sci. 2000, 20, 1–8. [Google Scholar] [CrossRef]
- González, C.M. Estudio Ecofisiológico y Agronómico de Cuatro Sistemas de Conducción de la vid (Vitis Vinifera L.): Cubiertas Vegetales Simples Versus Divididas. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2003. [Google Scholar]
- Lakso, A.N. The effects of water stress on physiological processes in fruit crops. Acta Hortic. 1985, 171, 275–290. [Google Scholar] [CrossRef]
- Riou, C.; Pieri, P.; Leclerc, B. Water use of grapevines well supplied with water. Simplified expression of transpiration. Vitis 1994, 33, 109–115. [Google Scholar]
- Kliewer, W.M.; Kobriger, J.M.; Lira, R.H.; Lagier, S.T.; Di Collalto, G. Performance of grapevines under wind and water stress conditions. In Proceedings of the International Symposium on Cool Climate Viticulture and Enology, Oregon, OR, USA, 25–28 June 1984; Heatherbell, D.A., Lombard, P.B., Price, F.W.B.Y.S.F., Eds.; Oregon State University Agricultural Experiment Station Technical Publ No. 7628: Corvallis, OR, USA, 1985; pp. 198–216. [Google Scholar]
- Franks, P.J.; Farquhar, G.D. A relationship between humidity response, growth form and photosynthetic operating point in C3 plants. Plant Cell Environ. 1999, 22, 1337–1349. [Google Scholar] [CrossRef]
- Abrisqueta, I.; Abrisqueta, J.M.; Tapia, L.M.; Mungía, J.P.; Conejero, W.; Vera, J.; Ruiz-Sanchez, I. Basal crop coefficients for early-season peach trees. Agric. Water Manag. 2013, 121, 158–163. [Google Scholar] [CrossRef]
- Marsal, J.; Girona, J. Relationship between leaf water potential and gas exchange. Activity at different phenological stages and fruit loads in peach trees. J. Amer. Soc. Hort. Sci. 1997, 122, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Reyes, V.M.; Girona, J.; Marsal, J. Effects of late spring defruiting on net CO2 exchange and leaf area development in appel tree canopies. J. Hortic. Sci. Biotechnol. 2006, 81, 575–582. [Google Scholar] [CrossRef]
- Samperio, A.; Moñino, M.J.; Vivas, A.; Blanco-Cipollone, F.; García, A.; Prieto, M.H. Effects of irrigation during stage II and post-harvest on tree water status, vegetative growth, yield and economic assessment in “Angeleno” Japanese plum. Agric. Water Manag. 2015, 158, 69–81. [Google Scholar] [CrossRef]
Treatment | Year | |||
---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | |
Irrigation | 13,567 | 28,689 | 10,864 | 13,744 |
Rainfed | 8753 | 17,300 | 9830 | 8243 |
Significance | *** | *** | ns | *** |
Months | 2012 | |||||||
---|---|---|---|---|---|---|---|---|
ETo PM | ETcLys | ETcSF | KcLys | KcSF | E | TSFirrigation | TSFrainfed | |
(mm day−1) | (mm day−1) | (mm day−1) | (mm day−1) | (mm day−1) | (mm day−1) | |||
April | 3.47 | 0.47 | -- | 0.14 | -- | 0.00 | --- | --- |
May | 5.54 | 3.11 | -- | 0.56 | -- | 0.78 | --- | --- |
June | 6.79 | 5.87 | --- | 0.86 | -- | 1.95 | --- | 2.42 |
July | 7.26 | 6.23 | 7.41 | 0.86 | 1.02 | 2.25 | 5.16 | 1.65 |
August | 6.29 | 6.96 | 7.53 | 1.11 | 1.20 | 2.29 | 5.24 | 1.28 |
September | 4.23 | 5.31 | 5.69 | 1.26 | 1.35 | 1.29 | 4.40 | 1.15 |
October | 2.49 | 3.03 | 2.88 | 1.22 | 1.16 | 0.37 | 2.51 | 0.74 |
Months | 2013 | |||||||
April | 3.55 | 0.89 | 1.22 | 0.25 | 0.34 | 0.00 | 1.21 | 0.66 |
May | 4.95 | 2.06 | 2.41 | 0.42 | 0.49 | 0.33 | 1.85 | 0.91 |
June | 5.88 | 4.83 | 6.24 | 0.82 | 1.06 | 1.40 | 4.67 | 0.70 |
July | 6.37 | -- | -- | -- | -- | -- | 4.80 | 0.17 |
August | 5.72 | -- | -- | -- | -- | -- | 4.07 | 0.09 |
September | 4.10 | -- | -- | -- | -- | -- | 3.42 | 0.18 |
October | 2.14 | -- | -- | -- | -- | -- | 1.34 | 0.14 |
Months | 2014 | |||||||
April | 3.42 | 2.07 | -- | 0.61 | -- | 0.25 | --- | --- |
May | 5.49 | 2.80 | 2.40 | 0.51 | 0.44 | 0.58 | 1.82 | 0.66 |
June | 5.85 | 3.77 | 3.69 | 0.64 | 0.63 | 0.99 | 2.70 | 0.54 |
July | 6.20 | 5.25 | 4.89 | 0.85 | 0.79 | 1.63 | 3.26 | 0.37 |
August | 6.10 | 4.21 | 4.29 | 0.69 | 0.70 | 1.15 | 3.14 | 0.14 |
September | 3.60 | 1.56 | 0.61 | 0.43 | 0.17 | 0.13 | 0.48 | 0.28 |
October | 2.19 | 1.49 | 0.28 | 0.68 | 0.13 | 0.05 | 0.23 | 0.45 |
Months | 2015 | |||||||
April | 3.78 | 1.19 | 1.35 | 0.31 | 0.36 | 0.06 | 1.29 | 0.48 |
May | 5.85 | 3.34 | 3.46 | 0.57 | 0.59 | 0.83 | 2.63 | 1.07 |
June | 6.26 | 4.61 | 4.78 | 0.74 | 0.76 | 1.38 | 3.40 | 0.95 |
July | 7.05 | 4.56 | 4.11 | 0.65 | 0.58 | 1.49 | 2.62 | 0.70 |
August | 5.76 | 4.34 | 3.17 | 0.75 | 0.55 | 1.14 | 2.03 | 1.25 |
September | 4.07 | 3.26 | 2.37 | 0.80 | 0.58 | 0.59 | 1.78 | 0.75 |
October | 2.22 | 1.73 | 1.92 | 0.78 | 0.87 | 0.10 | 1.82 | 0.61 |
Months | 2012–2015 | |||||||
---|---|---|---|---|---|---|---|---|
ETo PM | ETcLys | ETcSF | KcLys | KcSF | E | TSFirrigation | TSFrainfed | |
(mm day−1) | (mm day−1) | (mm day−1) | (mm day−1) | (mm day−1) | (mm day−1) | |||
April | 3.55 | 1.16 | 1.29 | 0.33 | 0.35 | 0.16 | 1.25 | 0.57 |
May | 5.46 | 2.83 | 2.76 | 0.51 | 0.51 | 0.63 | 2.10 | 0.88 |
June | 6.19 | 4.77 | 4.90 | 0.77 | 0.82 | 1.43 | 3.59 | 1.15 |
July | 6.72 | 5.35 | 5.47 | 0.78 | 0.80 | 1.79 | 3.96 | 0.72 |
August | 5.97 | 5.17 | 5.00 | 0.85 | 0.82 | 1.53 | 3.62 | 0.69 |
September | 4.00 | 3.38 | 2.89 | 0.83 | 0.70 | 0.67 | 2.52 | 0.59 |
October | 2.26 | 2.08 | 1.69 | 0.89 | 0.72 | 0.17 | 1.48 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancha, L.A.; Uriarte, D.; Prieto, M.d.H. Characterization of the Transpiration of a Vineyard under Different Irrigation Strategies Using Sap Flow Sensors. Water 2021, 13, 2867. https://doi.org/10.3390/w13202867
Mancha LA, Uriarte D, Prieto MdH. Characterization of the Transpiration of a Vineyard under Different Irrigation Strategies Using Sap Flow Sensors. Water. 2021; 13(20):2867. https://doi.org/10.3390/w13202867
Chicago/Turabian StyleMancha, Luis Alberto, David Uriarte, and María del Henar Prieto. 2021. "Characterization of the Transpiration of a Vineyard under Different Irrigation Strategies Using Sap Flow Sensors" Water 13, no. 20: 2867. https://doi.org/10.3390/w13202867
APA StyleMancha, L. A., Uriarte, D., & Prieto, M. d. H. (2021). Characterization of the Transpiration of a Vineyard under Different Irrigation Strategies Using Sap Flow Sensors. Water, 13(20), 2867. https://doi.org/10.3390/w13202867