Effect of High-Speed Railways on City Industrial Sewage Discharge
Abstract
:1. Introduction
2. Background and Method
2.1. China’s HSR System
2.2. Industrial Wastewater Introduction
2.3. Data Sources and Variables
2.3.1. Data
2.3.2. Variables
2.4. Regression Method
3. Empirical Results
3.1. Descriptive Results
3.2. Parallel Trend Test
3.3. Regression Results
3.4. Endogenous Treatment
3.5. Placebo Test
4. Mechanism Tests
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Vidal, F.J.; García-Valverde, M.; Ortega-Azabache, B.; González-Martínez, Á.; Bellido-Fernández, A. Characterization of urban and industrial wastewaters using excitation-emission matrix (EEM) fluorescence: Searching for specific fingerprints. J. Environ. Manag. 2020, 263, 110396. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Z. Industrial water pollution, water environment treatment, and health risks in China. Environ. Pollut. 2016, 218, 358–365. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H. Water pollution during China’s industrial transition. Environ. Dev. 2013, 8, 57–73. [Google Scholar] [CrossRef]
- Miao, X.; Tang, Y.; Wong, C.W.; Zang, H. The latent causal chain of industrial water pollution in China. Environ. Pollut. 2015, 196, 473–477. [Google Scholar] [CrossRef]
- Wei, P.; Chen, S.; Wu, M.; Deng, Y.; Xu, H.; Jia, Y.; Liu, F. Using the InVEST Model to assess the impacts of climate and Land use changes on water yield in the upstream regions of the Shule River Basin. Water 2021, 13, 1250. [Google Scholar] [CrossRef]
- Li, H.; Xu, X.; Wu, M.; Liu, Z. Spatiotemporal evolution trajectory of channel morphology and controlling factors of Yongding River, Beijing, China. Water 2021, 13, 1489. [Google Scholar] [CrossRef]
- Nardini, A.G.C.; Conte, G. River management & restoration: What river do we wish for. Water 2021, 13, 1336. [Google Scholar] [CrossRef]
- Luo, Y.; Gao, P.; Mu, X. Influence of meteorological factors on the potential evapotranspiration in Yanhe River Basin, China. Water 2021, 13, 1222. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, M.; Sarkis, J.; Xue, B.; Zhang, L.; Fujita, T.; Yu, X.; Ren, W.; Zhang, L.; Dong, H. Spatial-temporal patterns and driving factors for industrial wastewater emission in China. J. Clean. Prod. 2014, 76, 116–124. [Google Scholar] [CrossRef]
- Tao, T.; Xin, K. Public health: A sustainable plan for China’s drinking water. Nature 2014, 511, 527–528. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Han, D.H.; Lee, B.-M.; Hur, J. Characterizing treated wastewaters of different industries using clustered fluorescence EEM–PARAFAC and FT-IR spectroscopy: Implications for downstream impact and source identification. Chemosphere 2015, 127, 222–228. [Google Scholar] [CrossRef]
- Janhom, T.; Wattanachira, S.; Pavasant, P. Characterization of brewery wastewater with spectrofluorometry analysis. J. Environ. Manag. 2009, 90, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Baker, A. Fluorescence excitation—Emission matrix characterization of river waters impacted by a tissue mill effluent. Environ. Sci. Technol. 2002, 36, 1377–1382. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, S.; Titus, A.; Gnanamani, A.; Mandal, A.; Sekaran, G. Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination 2011, 281, 438–445. [Google Scholar] [CrossRef]
- Wright, I.A.; Davies, P.J.; Findlay, S.J.; Jonasson, O.J. A new type of water pollution: Concrete drainage infrastructure and geochemical contamination of urban waters. Marine Freshw. Res. 2011, 62, 1355–1361. [Google Scholar] [CrossRef]
- Slavikova, L.; Jilkova, J. Implementing the public participation principle into water management in the Czech Republic: A critical analysis. Reg. Stud. 2011, 45, 545–557. [Google Scholar] [CrossRef]
- Gambhir, R.S.; Kapoor, V.; Nirola, A.; Sohi, R.; Bansal, V. Water pollution: Impact of pollutants and new promising techniques in purification process. J. Hum. Ecol. 2012, 37, 103–109. [Google Scholar] [CrossRef]
- Eggimann, S.; Truffer, B.; Maurer, M. To connect or not to connect? Modelling the optimal degree of centralisation for wastewater infrastructures. Water Res. 2015, 84, 218–231. [Google Scholar] [CrossRef] [Green Version]
- Mello, C.R.; Vieira, N.; Guzman, J.A.; Viola, M.R.; Beskow, S.; Alvarenga, L.A. Climate change impacts on water resources of the largest hydropower plant reservoir in Southeast Brazil. Water 2021, 13, 1560. [Google Scholar] [CrossRef]
- Xu, W.; Zhong, Z.; Proverbs, D.; Xiong, S.; Zhang, Y. Enhancing the resilience of the management of water resources in the agricultural supply chain. Water 2021, 13, 1619. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Hu, R. Sustainability by high–speed rail: The reduction mechanisms of transportation infrastructure on haze pollution. Sustainability 2020, 12, 2763. [Google Scholar] [CrossRef] [Green Version]
- Blanquart, C.; Koning, M. The local economic impacts of high-speed railways: Theories and facts. Eur. Transp. Res. Rev. 2017, 9, 1–14. [Google Scholar] [CrossRef]
- Bazin-Benoit, S.; Beckerich, C.; Delaplace, M. High-speed rail, corporate real estate and firm location in the central business district: The results from two surveys in Reims. Open Transp. J. 2016, 10, 7–21. [Google Scholar] [CrossRef]
- Shaw, S.-L.; Fang, Z.; Lu, S.; Tao, R. Impacts of high speed rail on railroad network accessibility in China. J. Transp. Geogr. 2014, 40, 112–122. [Google Scholar] [CrossRef]
- Popp, J.N.; Boyle, S.P. Railway ecology: Underrepresented in science? Basic Appl. Ecol. 2017, 19, 84–93. [Google Scholar] [CrossRef]
- He, G.; Mol, A.P.; Zhang, L.; Lu, Y. Environmental risks of high-speed railway in China: Public participation, perception and trust. Environ. Dev. 2015, 14, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Polders, C.; Van den Abeele, L.; Derden, A.; Huybrechts, D. Methodology for determining emission levels associated with the best available techniques for industrial waste water. J. Clean. Prod. 2012, 29, 113–121. [Google Scholar] [CrossRef]
- Fan, X.; Luo, H. Spatial and industrial distribution pattern of heavy metals emission in industrial waste water. China Environ. Sci. 2013, 33, 655–662. [Google Scholar]
- Wang, Z.; Jia, H.; Xu, T.; Xu, C. Manufacturing industrial structure and pollutant emission: An empirical study of China. J. Clean. Prod. 2018, 197, 462–471. [Google Scholar] [CrossRef]
- Lee, C.T.; Hashim, H.; Ho, C.S.; Van Fan, Y.; Klemeš, J.J. Sustaining the low-carbon emission development in Asia and beyond: Sustainable energy, water, transportation and low-carbon emission technology. J. Clean. Prod. 2017, 146, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; He, G.; Lian, Z. Environmental risk perception and public trust—From planning to operation for China’s high-speed railway. Int. J. Sustain. Transp. 2017, 11, 696–706. [Google Scholar] [CrossRef]
- Tierney, S. High-speed rail, the knowledge economy and the next growth wave. J. Transp. Geogr. 2012, 22, 285–287. [Google Scholar] [CrossRef]
- Willigers, J.; Van Wee, B. High-speed rail and office location choices. A stated choice experiment for the Netherlands. J. Transp. Geogr. 2011, 19, 745–754. [Google Scholar] [CrossRef]
- Campos, J.; De Rus, G. Some stylized facts about high-speed rail: A review of HSR experiences around the world. Transp. Policy 2009, 16, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Guiral, A.; Moon, D.; Tan, H.T.; Yu, Y. What drives investor response to CSR performance reports? Contemp. Account. Res. 2019, 37, 101–130. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, L.; Xin, Q. Transportation infrastructure and resource allocation of capital market: Evidence from high-speed rail opening and company going public. China J. Account. Stud. 2020, 8, 272–297. [Google Scholar] [CrossRef]
- Yang, X.; Lin, S.; Li, Y.; He, M. Can high-speed rail reduce environmental pollution? Evidence from China. J. Clean. Prod. 2019, 239, 118135. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, X. FDI and environmental regulations in China. J. Asia Pac. Econ. 2008, 13, 332–353. [Google Scholar] [CrossRef]
- Dean, J.M.; Lovely, M.E.; Wang, H. Are foreign investors attracted to weak environmental regulations? Evaluating the evidence from China. J. Dev. Econ. 2009, 90, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Góralczyk, K.; Majcher, A. Are the civilization diseases the result of organohalogen environmental pollution?—Review. Acta Biochim. Pol. 2019, 66, 123–127. [Google Scholar]
- Lu, Z.-N.; Chen, H.; Hao, Y.; Wang, J.; Song, X.; Mok, T.M. The dynamic relationship between environmental pollution, economic development and public health: Evidence from China. J. Clean. Prod. 2017, 166, 134–147. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, R.; Yao, X. Air pollution and environmental information disclosure: An empirical study based on heavy polluting industries. J. Clean. Prod. 2021, 278, 124313. [Google Scholar] [CrossRef]
- Kuo, P.-F.; Shen, C.-W.; Chiu, C.-S. The impact of large-scale events: A difference-in-difference model for a Pokémon go safari zone event in Tainan and its effect on bikeshare systems. Transp. Res. Part A Policy Pract. 2021, 149, 283–299. [Google Scholar] [CrossRef]
- Stern, D.I.; Gerlagh, R.; Burke, P.J. Modeling the emissions—Income relationship using long-run growth rates. Environ. Dev. Econ. 2017, 22, 699–724. [Google Scholar] [CrossRef] [Green Version]
- Copeland, B.R.; Taylor, M.S. Trade, growth, and the environment. J. Econ. Lit. 2004, 42, 7–71. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, Y. Institutional dynamics and Corporate Social Responsibility (CSR) in an emerging country context: Evidence from China. J. Bus. Ethics 2012, 111, 301–316. [Google Scholar] [CrossRef]
- Wang, F.; Sun, J.; Liu, Y.S. Institutional pressure, ultimate ownership, and corporate carbon reduction engagement: Evidence from China. J. Bus. Res. 2019, 104, 14–26. [Google Scholar] [CrossRef]
- Ragas, A.; Leuven, R. Modelling of water quality-based emission limits for industrial discharges in rivers. Water Sci. Technol. 1999, 39, 185–192. [Google Scholar] [CrossRef]
- Huang, Y.; Sui, Q.; Lyu, S.; Wang, J.; Huang, S.; Zhao, W.; Wang, B.; Xu, D.; Kong, M.; Zhang, Y. Tracking emission sources of PAHs in a region with pollution-intensive industries, Taihu Basin: From potential pollution sources to surface water. Environ. Pollut. 2020, 264, 114674. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, I. Is there an EKC relevant to the industrial emission of water pollution for SEMC and EU countries? Environ. Manag. Sustain. Dev. 2012, 1, 31. [Google Scholar] [CrossRef] [Green Version]
Variable | Observation | Mean | Std. Dev. | Min | Max | VIF |
---|---|---|---|---|---|---|
Wastewater | 4222 | 8.34 | 1.11 | 3.09 | 11.35 | |
HSR | 4222 | 0.23 | 0.42 | 0.00 | 1.00 | 1.44 |
Population | 4222 | 5.84 | 0.71 | 2.78 | 8.13 | 2.19 |
Manufacturing | 4222 | 4.29 | 4.25 | −2.12 | 14.60 | 2.92 |
Large_firm | 4222 | 3.05 | 3.21 | 0.00 | 9.58 | 2.64 |
FDI | 4222 | 7.83 | 3.91 | 0.00 | 14.55 | 1.85 |
Students | 4222 | 4.21 | 1.23 | −0.23 | 7.15 | 1.94 |
Library_book | 4222 | 0.40 | 2.29 | −3.91 | 6.10 | 2.20 |
Passenger | 4222 | 8.54 | 0.95 | 5.02 | 12.03 | 2.34 |
GDP | 4222 | 15.70 | 1.15 | 12.60 | 19.36 | 5.51 |
Internet | 4222 | 2.75 | 3.92 | −3.54 | 9.55 | 2.65 |
Wastewater | HSR | Population | Manufacturing | Large_Firm | |
---|---|---|---|---|---|
Wastewater | 1 | ||||
HSR | 0.125 *** | 1 | |||
Population | 0.491 *** | 0.163 *** | 1 | ||
Manufacturing | 0.093 *** | 0.397 *** | 0.170 *** | 1 | |
Large_firm | 0.187 *** | −0.391 *** | 0.077 *** | −0.530 *** | 1 |
FDI | 0.361 *** | 0.155 *** | 0.287 *** | 0.038 *** | 0.057 *** |
Students | 0.313 *** | 0.355 *** | 0.048 *** | 0.327 *** | −0.024 * |
Library_book | 0.111 *** | −0.026 * | −0.079 *** | 0.232 *** | −0.131 *** |
Passenger | 0.310 *** | 0.311 *** | 0.322 *** | 0.240 *** | 0.064 *** |
GDP | 0.393 *** | 0.472 *** | 0.331 *** | 0.482 *** | −0.147 *** |
Internet | 0.135 *** | −0.459 *** | −0.054 *** | −0.683 *** | 0.831 *** |
FDI | Students | Library_Book | Passenger | GDP | |
FDI | 1 | ||||
Students | 0.402 *** | 1 | |||
Library_book | −0.049 *** | −0.002 | 1 | ||
Passenger | 0.336 *** | 0.378 *** | −0.099 *** | 1 | |
GDP | 0.487 *** | 0.611 *** | −0.133 *** | 0.699 *** | 1 |
Internet | 0.129 *** | −0.050 *** | −0.052 *** | −0.037 ** | −0.249 *** |
Model 1 | Model 2 | |
---|---|---|
Variables | Wastewater | Wastewater |
HSR | −0.063 *** | −0.066 ** |
(−2.63) | (−2.20) | |
Population | 0.049 | |
(1.05) | ||
Manufacturing | 0.245 *** | |
(9.28) | ||
Large_firm | 0.073 *** | |
(5.58) | ||
FDI | 0.006 | |
(1.14) | ||
Students | −0.023 | |
(−1.00) | ||
Library_book | −0.011 | |
(−0.48) | ||
Passenger | 0.060 *** | |
(3.06) | ||
GDP | 0.337 *** | |
(6.72) | ||
Internet | 0.026 | |
(1.34) | ||
Constant | 8.240 *** | 1.459 ** |
(127.83) | (2.35) | |
Year | Yes | Yes |
City | Yes | Yes |
N | 4221 | 3003 |
Wald Chi2 | 746.56 *** | 575.81 *** |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
---|---|---|---|---|---|---|
Ols_no_Train | Ols_with_Train | TSLS | LIML | GMM | IGMM | |
Wastewater | Wastewater | Wastewater | Wastewater | Wastewater | Wastewater | |
HSR | −0.146 *** | −3.327 * | −3.327 * | −3.327 * | −3.327 * | |
(−3.52) | (−1.83) | (−1.83) | (−1.83) | (−1.83) | ||
Constant | −2.967 *** | −3.127 *** | −6.593 *** | −6.593 *** | −6.593 *** | −6.593 *** |
(−7.49) | (−7.77) | (−3.17) | (−3.17) | (−3.17) | (−3.17) | |
Control | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
City | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.491 | 0.493 | / | / | / | / |
Wald chi2 | / | / | 1076.6 *** | 1076.6 *** | 1076.6 *** | 1076.6 *** |
Model 1 | Model 2 | |
---|---|---|
Variables | Wastewater | Wastewater |
HSR | −1.156 ** | −0.075 ** |
(−2.42) | (−2.49) | |
HSR × GDP | 0.318 *** | |
(6.27) | ||
GDP | 0.066 ** | 0.338 *** |
(2.29) | (6.75) | |
HSR × Internet | 0.010 ** | |
(2.00) | ||
Internet | 0.032 * | 0.028 |
(1.67) | (1.44) | |
Constant | 1.592 ** | 1.419 ** |
(2.55) | (2.29) | |
Control | Yes | Yes |
Year | Yes | Yes |
City | Yes | Yes |
N | 3003 | 3003 |
Wald chi2 | 580.91 *** | 582.66 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhu, G.; Wang, Y. Effect of High-Speed Railways on City Industrial Sewage Discharge. Water 2021, 13, 2893. https://doi.org/10.3390/w13202893
Chen Y, Zhu G, Wang Y. Effect of High-Speed Railways on City Industrial Sewage Discharge. Water. 2021; 13(20):2893. https://doi.org/10.3390/w13202893
Chicago/Turabian StyleChen, Yu, Guangming Zhu, and Yuandi Wang. 2021. "Effect of High-Speed Railways on City Industrial Sewage Discharge" Water 13, no. 20: 2893. https://doi.org/10.3390/w13202893
APA StyleChen, Y., Zhu, G., & Wang, Y. (2021). Effect of High-Speed Railways on City Industrial Sewage Discharge. Water, 13(20), 2893. https://doi.org/10.3390/w13202893