Permanent Thermal and Chemical Stratification in a Restored Urban Meromictic Lake
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choiński, A. An Outline of Poland’s Physical Limnology; UAM Press: Poznań, Czech Republic, 1995; p. 298. [Google Scholar]
- Boehrer, B.; Schultze, M. Stratification of lakes. Rev. Geophys. 2008, 46. [Google Scholar] [CrossRef] [Green Version]
- Boehrer, B.; von Rohden, C.; Schultze, M. Physical Features of Meromictic Lakes: Stratification and Circulation. In Ecology of Meromictic Lakes; Springer: Cham, Switzerland, 2017; pp. 15–34. [Google Scholar]
- Gulati, R.D.; Zadereev, E.; Degermendzhi, A.G. (Eds.) Ecology of Meromictic Lakes; Ecological Studies; Springer: Cham, Switzerland, 2017; Volume 228, 405p. [Google Scholar]
- Hutchinson, G.E. Treatise on Limnology: Geography, Physics and Chemistry; Wiley: New York, NY, USA, 1957; Volume 1. [Google Scholar]
- Hakala, A. Meromixis as a part of lake evolution—Observations and a revised classification of true meromictic lakes in Finland. Boreal Environ. Res. 2004, 9, 37–53. [Google Scholar]
- Hrdinka, T.; Šobr, M. Manifestation and causes of meromixis in a lake resulting from mineral extraction in Czechia. Geographie 2010, 1156, 96–112. [Google Scholar] [CrossRef]
- Hrdinka, T.; Šobr, M.; Fott, J.; Nedbalova, L. The unique enviromnent in the most acidifield permanently meromictic lake in the Czech Republic. Limnologica 2013, 43, 417–426. [Google Scholar] [CrossRef]
- Tandyrak, R. Evolution of Mictic and Trophic State of Lake Starodworskie on the Background of Climate and Urbanization; University of Warmia and Mazury Press: Olsztyn, Poland, 2017; Volume 205, 118p. [Google Scholar]
- Kubiak, J.; Machula, S.; Choiński, A. Particular example of meromixis in the anthropogenic reservoir. Carpathian J. Earth Environ. Sci. 2018, 13, 5–13. [Google Scholar] [CrossRef]
- Januszkiewicz, T. Hydrochemical Research of Lake Klasztorne as a Sewage Receiver; Institute of Water Management Press: Rome, Italy, 1969; Volume 5, pp. 43–81. [Google Scholar]
- Galas, J. Limnological study on a Lake Formed in a Limestone Quarry (Kraków, Poland) I. Water Chemistry. Pol. J. Environ. Stud. 2003, 12, 297–300. [Google Scholar]
- Kraska, M.; Klimaszyk, P.; Piotrowicz, R. Meromictic Lake Czarne in the Drawieński National Park. Oceanol. Hydrobiol. Stud. 2006, 35, 55–67. [Google Scholar]
- Tandyrak, R.; Teodorowicz, M.; Grochowska, J. Observations of selected chemical components of meromictic Lake Zapadłe waters in 1990–1993, 2000–2001 and 2005–2006. Arch. Environ. Prot. 2010, 36, 75–82. [Google Scholar]
- Patalas, K. Water mixing as a factor determining the intensity of matter circulation in morphologically different lakes in the vicinity of Węgorzewo. Ann. Agric. Sci. 1960, 77, 233. [Google Scholar]
- Aeschbach-Hertig, W.; Homer, M.; Schmid, M.; Kipfer, R.; Imboden, M. The physical structure and dynamics of a deep, meromictic crater lake (Lac Pavin, France). Hydrobiologia 2002, 487, 111–136. [Google Scholar] [CrossRef]
- Melack, J.M.; Jellison, R. Limnological conditions in Mono Lake: Contrasting monomixis and meromixis in the 1990s. Hydrobiologia 1998, 384, 21–39. [Google Scholar] [CrossRef]
- Degermendzhy, A.G.; Zadereev, E.S.; Rogozin, D.Y.; Prokopkin, I.G.; Barkhatov, Y.V.; Tolomeev, A.P.; Gulati, R.D. Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia). Aquat. Ecol. 2010, 44, 619–632. [Google Scholar] [CrossRef] [Green Version]
- Torres-Talamante, O.; Alcocer, J.; Beddows, P.A.; Escobar-Briones, E.G.; Lugo, A. The key role of chemolimnion in meromictic cenotes of the Yucatan Peninsula, Mexico. Hydrobiologia 2011, 677, 107–127. [Google Scholar] [CrossRef]
- Dietz, S.; Lessmann, D.; Boehrer, B. Contribution of Solutes to Density Stratification in a Meromictic Lake (Waldsee/Germany). Mine Water Environ. 2012, 31, 129–137. [Google Scholar] [CrossRef]
- Tylmann, W.; Szpakowska, K.; Ohlendorf, C.; Woszczyk, M.; Zolitschka, B. Conditions for deposition of annually laminated sediments in small meromictic lakes: A case study of Lake Suminko (northern Poland). J. Paleolimnol. 2012, 47, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Górniak, D.; Tandyrak, R.; Parszuto, K. Relationships between physico-chemical and microbiological parameters in the monimolimnion of a forest meromictic lake. J. Limnol. 2014, 73, 511–522. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo, M.A.; Miracle, M.R.; Vicente, E. The meromictic Lake La Cruz (Central Spain). Patterns of stratification. Aquat. Sci. 2001, 63, 406–416. [Google Scholar] [CrossRef]
- Tartari, G.; Copetti, D.; Franzetti, A.; Balordi, M.; Salerno, F.; Thakuri, S.; Leoni, B.; Chiarello, G.; Cristiani, P. Manganese-mediated hydrochemistry and microbiology in a meromictic subalpine lake (Lake Idro, Northern Italy)—A biogeochemical approach. Sci. Total Environ. 2021, 795, 148743. [Google Scholar] [CrossRef] [PubMed]
- Read, J.S.; Hamilton, D.P.; Jones, I.D.; Muraoka, K.; Winslow, L.A.; Kroiss, R.; Wu, C.H.; Gaiser, E. Derivation of lake mixing and stratification indices from high—Resolution lake buoy data. Environ. Model. Softw. 2011, 26, 1325–1336. [Google Scholar] [CrossRef]
- Schultze, M.; Boehrer, B.; Wendt-Potthoff, K.; Katsev, S.; Brown, E.T. Chemical Setting and Biogeochemical Reactions in Meromictic Lakes. In Ecology of Meromictic Lakes; Springer: Cham, Switzerland, 2017; pp. 35–59. [Google Scholar]
- Chan, Y.F.; Chiang, P.W.; Tandon, K.; Rogozin, D.; Degermendzhi, A.; Zykov, V.; Tang, S.L. Spatiotemporal Changes in the Bacterial Community of the Meromictic Lake Uchum, Siberia. Microb. Ecol. 2021, 81, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Paschalski, J. Bradymixsis of Lake Starodworskie; High School of Agriculture Press: Olsztyn, Poland, 1963; 60p. [Google Scholar]
- Lossow, K.; Gawrońska, H. Changes in thermal and oxygen settings in an artificially aerated lake. Arch. Environ. Prot. 1976, 2, 151–166. [Google Scholar]
- Lossow, K.; Gawrońska, H.; Jaszczułt, R. Attempts to use wind energy for artificial destratification for Lake Starodworskie. Pol. J. Environ. Stud. 1998, 7, 221–227. [Google Scholar]
- Gawrońska, H. Exchange of Phosphorus and Nitrogen Between Sediment and Water in an Artificially Aerated Lake; High School of Agriculture Press: Olsztyn, Poland, 1994; Volume 19, pp. 3–49. [Google Scholar]
- Tandyrak, R. Investigation of the Effectiveness of the Lake Starodworskie Restoration by Phosphorus Inactivation Method. Ph.D. Thesis, University of Warmia and Mazury, Olsztyn, Poland, 2000. [Google Scholar]
- Tandyrak, R. Effect of Lake Starodworskie treatment by phosphorus inactivation on the primary production properties. Pol. J. Nat. Sci. 2004, 17, 491–501. [Google Scholar]
- Tandyrak, R. Chemism of bottom sediments from a lake treated with various restoration techniques. Electron. J. Pol. Agric. Univ. 2005, 8, 73. [Google Scholar]
- Augustyniak, R.; Tandyrak, R.; Łopata, M.; Grochowska, J.K. Long term sediment modification method in meromictic lake (Starodworskie Lake, Olsztyn, Poland). Land 2021, 10, 411. [Google Scholar] [CrossRef]
- Tibco Software Inc. Statistica Software Package 13.0; Tibco Software Inc.: Palo Alto, CA, USA, 2018. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1984. [Google Scholar]
- Meals, D.W.; Spooner, J.; Dressing, S.A.; Harcum, J.B. Statistical Analysis for Monotonic Trends, Tech Notes 6, November 2011. Developed for U.S. Environmental Protection Agency by Tetra Tech, Inc., Fairfax, VA, USA, 23p. 2011. Available online: https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoringtechnical-notes (accessed on 7 September 2021).
- Henry, R.; Barbosa, F.A.R. Thermal structure, heat content and stability of two lakes in The National Park of Rio Doce Vally (Minas Gerais, Brazil). Hydrobiologia 1989, 179, 189–199. [Google Scholar] [CrossRef]
- Tandyrak, R.; Gawrońska, H. The influence of Urban Development on the Water Mass Dynamic in a Lake. Pol. J. Environ. Stud. 2009, 3, 81–86. [Google Scholar]
- Ambrosetti, W.; Barbanti, L. Temperature, heat content, mixing and stability in Lake Orta: A pluriannual investigation. J. Limnol. 2001, 60, 60–68. [Google Scholar] [CrossRef]
- Ambrosetti, W.; Barbanti, L. Evolution towards meromixcis of Lake Iseo (Northern Italy) as revealed by its stability trend. J. Limnol. 2005, 64, 1–11. [Google Scholar] [CrossRef]
- Walker, K.F. The stability of meromictic lakes in central Washington. Limnol. Oceanogr. 1974, 19, 209–222. [Google Scholar] [CrossRef]
- Wüest, A.; Piepke, G.; Halfman, J.D. Combined Effects of Dissolved Solids and Temperature on the Density Stratification of Lake Malawi. In The Limnology, Climatology and Paleoclimatology of the East African Lakes; Routledge: Abingdon-on-Thames, UK, 2019; pp. 183–202. [Google Scholar]
- Lange, W. Methods of Physico Limnological Research; University of Gdańsk Press: Gdańsk, Poland, 1993; pp. 67–108. [Google Scholar]
- Grochowska, J. Circulation of Selected Macroelements in the River-Lake System on the Example of the Upper Pasłęka; The Committee of Environmental Engineering Press: Lublin, Poland, 2015; 181p. [Google Scholar]
- Gulati, R.D.; Zadereev, E.S. Conclusion: Ecology of Meromictic Lakes. In Ecology of Meromictic Lakes; Springer: Cham, Switzerland, 2017; pp. 379–398. [Google Scholar]
- Cloern, J.E.; Cole, B.E.; Oremland, R.S. Autotrophic processes in meromictic Big Soda Lake, Nevada. Limnol. Oceanogr. 1983, 28, 1049–1061. [Google Scholar] [CrossRef]
- Rogozin, D.Y.; Tarnovsky, M.O.; Belolipetskii, M.; Zykov, V.V.; Zadereev, E.S.; Tolomeev, A.P.; Kolmakova, A.A. Disturbance of meromixis in saline Lake Shira (Siberia, Russia): Possible reasons and ecosystem response. Limnol. Ecol. Manag. Inland Waters 2017, 66, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Czeczuga, B. Wądołek—A holomictic lake. Acta Hydrobiol. 1966, 8, 1–4. [Google Scholar]
- Jézéquel, D.; Michard, G.; Viollier, E.; Agrinier, P.; Albéric, P.; Lopes, F.; Bergonzini, L. Carbon Cycle in a Meromictic Crater Lake: Lake Pavin, France. In Lake Pavin; Sime-Ngando, T., Boivin, P., Chapron, E., Jezequel, D., Meybeck, M., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Tandyrak, R.; Lizuraj, M. Multiannual observations of iron and sulphur content in the waters of recultivated Lake Starodworskie, with comparision to physical and chemical parameters. Limnol. Rev. 2008, 8, 129–136. [Google Scholar]
- Bartoszek, L. Phosphorus Release from Bottom Sediment; Rzeszow University of Technology Press: Rzeszow, Poland, 2007; 240p. [Google Scholar]
- Jefferson, B.; Hurst, A.; Stuetz, R.; Parsons, S.A. A comparison of chemical methods for the control of odours in wastewater. Process Saf. Environ. Prot. 2002, 80, 93–99. [Google Scholar] [CrossRef]
- Rheinheimer, G. Microbiology of Water; PWR and L Warsaw Press: Warsaw, Poland, 1987. [Google Scholar]
- Schlegel, G.H. Total Microbiology; PWN Warsaw Press: Warsaw, Poland, 2001. [Google Scholar]
- Deng, Q.; Wu, X.; Wang, Y.; Liu, M. Activity characteristics of sulphate reducing bacteria and formation mechanism of hydrogen sulphide. Appl. Ecol. Environ. Res. 2018, 16, 6369–6383. [Google Scholar] [CrossRef]
- Nedvell, D.B.; Floodgate, G.D. Temperature induced changes in the formation of sulphide in marine sediment. Mar. Biol. 1972, 14, 18–24. [Google Scholar] [CrossRef]
- Salmaso, N. Effects of habitat partitioning on the distribution of bacterioplankton in deep lakes. Front. Microbiol. 2019, 10, 2257. [Google Scholar] [CrossRef] [PubMed]
- Achá, D.; Guédron, S.; Amouroux, D.; Point, D.; Lazzaro, X.; Fernandez, P.; Sarret, G. Algal Bloom Exacerbates Hydrogen Sulphide and Methylmercury Contamination in the Emblematic High-Altitude Lake Titicaca. Geosciences 2018, 8, 438. [Google Scholar] [CrossRef] [Green Version]
- Dunalska, J.; Górniak, D.; Teodorowicz, M.; Gąsecka, K. Seasonal Distribution of Dissolved and Particulate Organic Carbon in the Water Column of a Meromictic Lake. Pol. J. Environ. Stud. 2004, 13, 375–379. [Google Scholar]
- Dawson, J.J.C.; Malcolm, I.A.; Middlemas, S.J.; Tetzlaff, D.; Soulsby, C. Is the composition of dissolved organic carbon changing in upland acidic streams? Environ. Sci. Technol. 2009, 43, 7748–7753. [Google Scholar] [CrossRef]
- Kortelainen, P. Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics. Can. J. Fish. Aquat. Sci. 1993, 50, 1477–1483. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Elevation a.s.l. [m] | 110.85 |
Area [ha] | 5.57 |
Maximum depth [m] H max | 24.5 |
Average depth [m] H aver. | 9.4 |
Halbfass relative depth index Hr | 0.1038 |
Indicator of depth Wg | 0.382 |
Volume [m3] V | 522,014 |
Maximum length [m] L max | 341 |
Maximum width [m] W max | 226 |
Hydrochemical Parameter | Water Depth | S Value | τ Value |
---|---|---|---|
N-NH4 | 1 m | NS | NS |
5 m | −603.42 | −0.25721 | |
10 m | NS | NS | |
15 m | −878.46 | −0.37445 | |
20 m | −1120.75 | −0.47773 | |
22 m | −1062.10 | −0.45273 | |
P-PO4 | 1 m | NS | NS |
5 m | NS | NS | |
10 m | 803.93 | 0.352911 | |
15 m | 1045.53 | 0.458967 | |
20 m | 1010.86 | 0.443749 | |
22 m | 1097.91 | 0.481961 | |
Fe | 1 m | NS | NS |
5 m | NS | NS | |
10 m | NS | NS | |
15 m | 615.43 | 0.278349 | |
20 m | 463.96 | 0.209842 | |
22 m | 720.74 | 0.325978 | |
Mn | 1 m | NS | NS |
5 m | 612.48 | 0.285537 | |
10 m | 400.76 | 0.186835 | |
15 m | NS | NS | |
20 m | 436.32 | 0.203114 | |
22 m | 490.12 | 0.228496 | |
Ca | 1 m | NS | NS |
5 m | −729.91 | −0.35092 | |
10 m | NS | NS | |
15 m | −879.43 | −0.4228 | |
20 m | NS | NS | |
22 m | NS | NS | |
H2S | 1 m | NS | NS |
5 m | NS | NS | |
10 m | NS | NS | |
15 m | −779.97 | −0.42621 | |
20 m | −915.62 | −0.50034 | |
22 m | −824.18 | −0.45037 | |
SO4 | 1 m | −451.75 | −0.52468 |
5 m | −589.31 | −0.68445 | |
10 m | −467.86 | −0.54339 | |
15 m | −395.81 | −0.45971 | |
20 m | −388.05 | −0.4507 | |
22 m | −412.701 | −0.47933 |
Component | Content (kg) | % of Total Amount in the Whole Lake |
---|---|---|
BOD5 | 1350–2107 | 33–42 |
COD-Mn | 581–830.9 | 9–12.5 |
TOC | 421.9–509.1 | 7–9 |
POC | 64.5–119.3 | 5–9 |
DOC | 222.9–423.6 | 6–10 |
Bacterial suspension | 3.9–37.5 | 2–24 |
PO4 | 22.4–68.1 | 22–63 |
TP | 40.7–98.2 | 15–50 |
N-NH4 | 260.4–671.7 | 18–50 |
TN | 424.1–791.2 | 19–34 |
EC | Ca | Mg | Fe | N-NH4 | PO4 | |
---|---|---|---|---|---|---|
Depth | 0.925 * | 0.746 ** | −0.089 | 0.299 | 0.768 ** | 0.682 ** |
EC | 1.000 | 0.805 ** | −0.082 | 0.291 | 0.836 ** | 0.768 ** |
Ca | 1.000 | −0.336 * | 0.349 * | 0.653 ** | 0.614 ** | |
Mg | 1.000 | 0.077 | 0.099 | −0.023 | ||
Fe | 1.000 | 0.358 * | 0.266 | |||
Mn | −0.184 | −0.155 | ||||
N-NH4 | 1.000 | 0.646 * | ||||
PO4 | 1.000 |
Hydrochemical Parameter | Water Depth | F Value | p Value | Significant Differences between Years |
---|---|---|---|---|
N-NH4 | 1 m | NS | NS | - |
5 m | 2.62 | 0.0074 | between 2005 and 2007 | |
10 m | NS | NS | - | |
15 m | NS | NS | - | |
20 m | 2.06 | 0.035 | between 2006 and 2014 | |
22 m | NS | NS | - | |
P-PO4 | 1 m | NS | NS | - |
5 m | NS | NS | - | |
10 m | 3.24 | 0.0014 | between 2005 and 2016 | |
15 m | 6.58 | 0.000 | between 2005 and 2006, 2009–16 | |
20 m | NS | NS | - | |
22 m | 7.39 | 0.000 | between 2004 and 2011–12,2015–16 between 2005 and 2011, 2013 between 2006 and 2011, 2013 between 2007 and 2010–13, 2015–16 between 2008 and 2010–13, 2015–16 | |
Fe | 1 m | NS | NS | - |
5 m | NS | NS | - | |
10 m | 3.24 | 0.0015 | between 2011 and 2004,2007–08, 2010, 2012, 2014–16 | |
15 m | 4.13 | 0.0001 | between 2004 and 2011, 2013, 2016 between 2007 and 2009, 2013, 2016 | |
20 m | 2.99 | 0.0029 | between 2004 and 2009, 2011, 2013, 2016 | |
22 m | 7.27 | 0.0000 | between 2004 and 2008–16 between 2006 and 2011, 2013 between 2007 and 2009, 2011, 2013 | |
Mn | 1 m | NS | NS | - |
5 m | NS | NS | - | |
10 m | 5.17 | 0.0000 | between 2004 and 2010, 2012–13 between 2009 and 2010, 2012–13 between 2011 and 2012 between 2012 and 2014 | |
15 m | 2.99 | 0.0030 | between 2004 and 2007–09 | |
20 m | 5.50 | 0.0000 | between 2004 and 2007–16 between 2005 and 2009, 2011, 2014 | |
22 m | 5.09 | 0.0000 | between 2004 and 2007–14, 2016 between 2005 and 2009 | |
Ca | 1 m | NS | NS | - |
5 m | NS | NS | - | |
10 m | NS | NS | - | |
15 m | NS | NS | - | |
20 m | 4.77 | 0.0000 | between 2004 and 2008–09 between 2005 and 2008–09 between 2006 and 2008 between 2008 and 2014–15 | |
22 m | 5.78 | 0.0000 | between 2004 and 2007–10, 2012–13 between 2005 and 2007–2010 between 2006 and 2008–09 | |
H2S | 1 m | NS | NS | - |
5 m | NS | NS | - | |
10 m | NS | NS | - | |
15 m | 6.81 | 0.0000 | between 2004 and 2008, 2010–16 between 2005 and 2008, 2010–16 between 2006 and 2008, 2011 | |
20 m | 12.55 | 0.0000 | between 2004 and 2007–16 between 2005 and 2007–16 between 2006 and 2008–10, 2012–16 | |
22 m | 7.95 | 0.0000 | between 2004 and 2008–16 between 2005 and 2009–13 | |
SO4 | 1 m | 11.04 | 0.0000 | between 2011 and 2004–07, 2012–16 |
5 m | 12.90 | 0.0000 | between 2004 and 2007, 2010–16 between 2005 and 2010–16 between 2006 and 2010–16 between 2007 and 2016 | |
10 m | 6.62 | 0.0000 | between 2004 and 2010, 2013–16 between 2005 and 2010, 2013 between 2006 and 2013 between 2007 and 2013 | |
15 m | 5.03 | 0.0003 | between 2004 and 2010, 2013–16 between 2007 and 2013–16 | |
20 m | 8.20 | 0.0000 | between 2004 and 2010–11, 2013–16 between 2006 and 2010–11, 2013–16 between 2007 and 2010–11, 2013–16 | |
22 m | 6.66 | 0.0000 | between 2004 and 2010, 2013–16 between 2006 and 2010, 2013–16 between 2007 and 2010, 2013–16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tandyrak, R.; Grochowska, J.K.; Augustyniak, R.; Łopata, M. Permanent Thermal and Chemical Stratification in a Restored Urban Meromictic Lake. Water 2021, 13, 2979. https://doi.org/10.3390/w13212979
Tandyrak R, Grochowska JK, Augustyniak R, Łopata M. Permanent Thermal and Chemical Stratification in a Restored Urban Meromictic Lake. Water. 2021; 13(21):2979. https://doi.org/10.3390/w13212979
Chicago/Turabian StyleTandyrak, Renata, Jolanta Katarzyna Grochowska, Renata Augustyniak, and Michał Łopata. 2021. "Permanent Thermal and Chemical Stratification in a Restored Urban Meromictic Lake" Water 13, no. 21: 2979. https://doi.org/10.3390/w13212979
APA StyleTandyrak, R., Grochowska, J. K., Augustyniak, R., & Łopata, M. (2021). Permanent Thermal and Chemical Stratification in a Restored Urban Meromictic Lake. Water, 13(21), 2979. https://doi.org/10.3390/w13212979