Differences in the Proportional Contributions of Particulate Radiocesium Sources under Base- and High-Flow River Conditions: A Case Study in the Central Region of Fukushima
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sampling Methods
2.2. Analytical Procedures in the Laboratory
2.3. Statistical Analyses
2.4. Estimation of the Contributions of Potential Sources to TSS
3. Results
3.1. Average 137Cs (Bq kg−1), TOC (mgC mg−1) and δ13C (‰) of Potential SS Sources in the Study Area
3.2. Data Processing and Management for the Subsequent Analyses
3.3. Redefinition of River Conditions Based on TSS Concentrations
3.4. Changes in Quantities in River Waters and Properties of TSS in River Water Samples
3.5. Estimation of TSS Sources under Both Base- and High-TSS-Load Levels
4. Discussion
4.1. Characterization of Increases in TSS Concentration Due to High-Flow Events and Their Effect on TSS in the Study Area
4.2. Changes in the Relative Contributions of Potential SS Sources during Increases in SS Concentrations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagao, S.; Ochiai, S.; Tomihara, S.; Fukushi, K.; Yamamoto, M. Export of 134Cs and 137Cs in the Fukushima River systems at heavy rains by Typhoon Roke in September 2011. Biogeosciences 2011, 10, 6215–6223. [Google Scholar] [CrossRef] [Green Version]
- Nagao, S.; Kanamori, M.; Ochiai, S.; Inoue, M.; Yamamoto, M. Migration behavior of 134Cs and 137Cs in the Niida River water in Fukushima Prefecture, Japan during 2011–2012. J. Radioanal. Nucl. Chem. 2015, 303, 1617–1721. [Google Scholar] [CrossRef]
- Tsuji, H.; Ishii, Y.; Shin, M.; Taniguchi, K.; Arai, H.; Kurihara, M.; Yasutaka, T.; Kuramaoto, T.; Nakanishi, T.; Lee, S.; et al. Factors controlling dissolved 137Cs concentrations in east Japanese Rivers. Sci. Total Environ. 2019, 697, 134093. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, K.; Onda, Y.; Smith, H.G.; Blake, W.; Yoshimura, K.; Yamashiki, Y.; Kuramaoto, T.; Saito, K. Transport and Redistribution of Radiocesium in Fukushima Fallout through Rivers. Envrion. Sci. Technol. 2019, 53, 12339–12347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashiki, K.; Onda, Y.; Smith, H.G.; Blake, W.H.; Wakahara, T.; Igarashi, Y.; Matsuura, Y.; Yoshimura, K. Initial flux of sediment-associated radiocesium to the ocean from the largest river impacted by Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 2014, 4, 3714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueda, S.; Hasegawa, H.; Kikuchi, H.; Akata, N.; Ohtsuka, Y.; Hisamatsu, S. Fluvial discharges of radiocaesium from water sheds contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident, Japan. J. Envrion. Radioact. 2013, 118, 96–104. [Google Scholar] [CrossRef]
- Matsunaga, T.; Amano, H.; Yanase, N. Discharge of dissolved and particulate 137Cs in the Kuji River, Japan. Appl. Geochem. 1991, 6, 159–167. [Google Scholar] [CrossRef]
- Hashimoto, S.; Ugawa, S.; Nanko, K.; Shichi, K. The total amounts of radioactively contaminated materials in forest in Fukushima, Japan. Sci. Rep. 2012, 2, 416. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, T.; Matsunaga, T.; Koarashi, J.; Atarashi-Andoh, M. 137Cs vertical migration in a deciduous forest soil following the Fukushima Dai-ichi Nuclear Power Plant accident. J. Envrion. Radioact. 2014, 128, 9–14. [Google Scholar] [CrossRef]
- Muto, K.; Atarashi-Andoh, M.; Matsunaga, T.; Koarashi, J. Characterizing vertical migration of 137Cs in organic layer and mineral soil in Japanese forests: Four-year observation and model analysis. J. Envrion. Radioact. 2019, 208–209, 106040. [Google Scholar] [CrossRef] [PubMed]
- Laceby, J.P.; Huon, S.; Onda, Y.; Vaury, V.; Evrard, O. Do forests represent a long-term source of contaminated particulate matter in the Fukushima Prefecture? J. Envrion. Radioact. 2016, 183, 742–753. [Google Scholar] [CrossRef] [Green Version]
- Lepage, H.; Laceby, J.P.; Bonté, P.; Joron, J.-L.; Onda, Y.; Lefèvre, I.; Ayrault, S.; Evrard, O. Investigating the source of radiocesium contaminated sediments in two Fukushima coastal catchments with sediment tracing techniques. Anthropocene 2016, 13, 57–68. [Google Scholar] [CrossRef]
- Huon, S.; Hayashi, S.; Laceby, J.P.; Tsuji, H.; Onda, Y.; Evrard, O. Source dynamics of radiocesium-contaminated particulate matter deposited in an agricultural water reservoir after the Fukushima nuclear accident. Sci. Total Environ. 2018, 612, 1079–1090. [Google Scholar] [CrossRef] [Green Version]
- Evrard, O.; Durand, R.; Nakao, A.; Laceby, J.P.; Lefèvre, I.; Wakiyama, Y.; Hayashi, S.; Asanuma-Brice, C.; Cerdan, O. Impact of the 2019 typhoons on sediment source contributions and radiocesium concentrations in rivers draining the Fukushima radioactive plume, Japan. C. R. Geosci. 2020, 352, 199–211. [Google Scholar] [CrossRef]
- Olley, J.; Brooks, A.; Spencer, J.; Pietsch, T.; Borombovits, D. Subsoil erosion dominates the supply of fine sediment to rivers draining into Princess Charlotte Bay, Australia. J. Envrion. Radioact. 2013, 124, 121–129. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, M.H. Environmental effects on carbon isotope fractionation in terrestrial plants. In Stable Isotopes in the Biosphere; Wada, E., Yoneyama, T., Minagawa, M., Ando, T., Fry, B.D., Eds.; Kyoto University Press: Kyoto, Japan, 1995; pp. 78–91. [Google Scholar]
- Finlay, J.C.; Kendall, C. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In Stable Isotopes in Ecology and Environmental Science, 2nd ed.; Michener, R., Lajtha, K., Eds.; Blackwell Publishing Ltd.: Oxford, U.K, 2007; pp. 283–333. [Google Scholar]
- Nadelhoffer, K.J.; Fry, B. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci. Soc. Am. J. 1988, 52, 1633–1640. [Google Scholar] [CrossRef]
- Arai, H.; Tokuchi, N. Factors contributing to greater soil organic carbon accumulation after afforestation in a Japanese coniferous plantation as determined by stable and radioactive isotopes. Geoderma 2010, 157, 243–251. [Google Scholar] [CrossRef]
- Desjardins, T.; Filho, C.; Mariotti, A.; Chauvel, A.; Girardin, C. Changes of the forest-savanna boundary in Brazilian Amazonia during the Holocene revealed by stable isotope ratios of soil organic carbon. Oecologia 1996, 108, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Bellanger, B.; Huon, S.; Velasquez, F.; Vallès, V.; Girardin, C.; Mariotti, A. Monitoring soil organic carbon erosion with δ13C and δ15N on experimental field plots in the Venezuelan Andes. Catena 2004, 58, 125–150. [Google Scholar] [CrossRef]
- Hoffman, J.C.; Bronk, D.A. Interannual variation in stable carbon and nitrogen isotope biogeochemistry of the Mattaponi River, Virginia. Limnol. Oceanogr. 2006, 51, 2319–2332. [Google Scholar] [CrossRef]
- Fox, J.F.; Papanicolaou, A.N. The Use of Carbon and Nitrogen Isotopes to Study Watershed Erosion Processes. J. Am. Water Resour. Assoc. 2007, 43, 1047–1064. [Google Scholar] [CrossRef]
- Liu, K.-K.; Kao, S.-J.; Wen, L.-S.; Chen, K.-L. Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in Northern Taiwan. Sci. Total Environ. 2007, 382, 103–120. [Google Scholar] [CrossRef]
- Garzon-Garcia, A.; Laceby, J.P.; Olley, J.M.; Bunn, S.E. Differentiating the sources of fine sediment, organic matter and nitrogen in a subtropical Australian catchment. Sci. Total Environ. 2017, 575, 1384–1394. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.; Bao, H.; Huang, D.; Li, D.-W.; Lee, T.-Y.; Huang, J.-C.; Kao, S.-J. Runoff-driven export of terrigenous particulate organic matter from a small mountainous river: Sources, fluxes and comparisons among different rivers. Biogeochemistry 2020, 147, 71–86. [Google Scholar] [CrossRef]
- Fukushima Prefecture; Summary Report (2013–2017) Cooperation between Fukushima Prefecture and the IAEA 2018 [Fukushima Prefecture Initiative Projects]; (Temporary Translation). Available online: https://www.pref.fukushima.lg.jp/uploaded/attachment/299148.pdf (accessed on 8 June 2020).
- Tsuji, H.; Kondo, Y.; Suzuki, Y.; Yasutaka, T. Development of a method for rapid and simultaneous monitoring of particulate and dissolved radiocesium in water with nonwoven fabric cartridge filters. J. Radioanal. Nucl. Chem. 2014, 299, 139–147. [Google Scholar] [CrossRef]
- Miura, H.; Kurihara, Y.; Sakaguchi, A.; Tanaka, K.; Yamaguchi, N.; Higaki, S.; Takahashi, Y. Discovery of radiocesium-bearing microparticles in river water and their influence on the solid-water distribution coefficient (Kd) of radiocesium in the Kuchibuto River in Fukushima. Geochem. J. 2018, 52, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Parnell, A.C.; Inger, R.; Bearhop, S.; Jackson, A.L. Source Partitioning Using Stable Isotopes: Coping with Too Much Variation. PLoS ONE 2010, 5, e9672. [Google Scholar] [CrossRef] [PubMed]
- Dutton, C.; Anisfeld, S.C.; Ernstberger, H. A novel sediment fingerprinting method using filtration: Application to the Mara River, East Africa. J. Soils Sediments 2013, 13, 1708–1723. [Google Scholar] [CrossRef]
- Koiter, A.J.; Lobb, D.A.; Owens, P.N.; Petticrew, E.L.; Tiessen, K.H.D.; Li, S. Investigating the role of connectivity and scale in assessing the sources of sediment in an agricultural watershed in the Canadian prairies using sediment source fingerprinting. J. Soils Sediments 2013, 13, 1676–1691. [Google Scholar] [CrossRef]
- Bahadori, M.; Chen, C.; Lewis, S.; Rashti, M.R.; Cook, F.; Parnell, A.; Esfandbod, M.; Boyd, S. A novel approach of combining isotopic and geochemical signatures to differentiate the sources of sediments and particulate nutrients from different land uses. Sci. Total Environ. 2019, 655, 129–140. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 16 September 2021).
- Collins, A.L.; Walling, D.E.; Sichingabula, H.M.; Leeks, G.J.L. Suspended sediment source fingerprinting in a small tropical catchment and some management implications. Appl. Geogr. 2001, 21, 387–412. [Google Scholar] [CrossRef]
- Sakaguchi, A.; Tanaka, K.; Iwatani, H.; Chiga, H.; Fan, Q.; Onda, Y.; Takahashi, Y. Size distribution studies of 137Cs in river water in the Abukuma Riverine system following the Fukushima Dai-ichi Nuclear Power Plant accident. J. Envrion. Radioact. 2015, 139, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Tao, Z.; Shen, C.; Sun, Y.; Yi, W.; Xing, C. Riverine organic carbon in the Xijiang River (South China): Seasonal variation in the content and flux budget. Environ. Geol. 2002, 41, 826–832. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, X.X.; Sun, H.; Han, J.; Higgitt, D.L. Geochemical characteristics and fluxes of organic carbon in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China. Sci. Total Environ. 2009, 407, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Bass, A.M.; Bird, M.I.; Liddell, M.J.; Nelson, P.N. Fluvial dynamics of dissolved and particulate organic carbon during periodic discharge events in a steep tropical rainforest catchment. Limnol. Oceanogr. 2011, 56, 2282–2292. [Google Scholar] [CrossRef]
- Schindler Wildhaber, Y.; Liechti, R.; Alewell, C. Organic matter dynamics and stable isotope signature as tracers of the sources of suspended sediment. Biogeosciences 2012, 9, 1985–1996. [Google Scholar] [CrossRef] [Green Version]
- Matsunaga, T.; Nakanishi, T.; Atarashi-Andoh, M.; Takeuchi, E.; Muto, K.; Tsuduki, K.; Nishimura, S.; Koarashi, J.; Otosaka, S.; Sato, T.; et al. Year-round variations in the fluvial transport load of particulate 137Cs in a forested catchment affected by the Fukushima Daiichi Nuclear Power Plant accident. J. Radioanal. Nucl. Chem. 2016, 310, 679–693. [Google Scholar] [CrossRef] [Green Version]
- Takata, H.; Inatomi, N.; Kudo, N. The contribution of 137Cs export flux from the Tone Rive Japan to the marine environment. Sci. Total Environ. 2020, 701, 134550. [Google Scholar] [CrossRef]
No | Start Date | End Date | Times | Precipitation * | Note |
---|---|---|---|---|---|
Day/Month/Year Time | mm | ||||
1 | 1 September 2017 20:30 | 2 September 2017 16:30 | 6 | 10.5 | Typhoon No. 15 (Sanvu) |
2 | 17 September 2017 11:05 | 18 September 2017 07:30 | 6 | 24.0 | Typhoon No. 18 (Talim) |
3 | 22 October 2017 12:30 | 23 October 2017 12:30 | 7 | 83.5 | Typhoon No. 21 (Lan) |
4 | 9 August 2018 08:45 | 10 August 2018 08:45 | 7 | 11.0 | Typhoon No. 13 (Shanshan) |
5 | 30 September 2018 10:40 | 1 October 2018 10:40 | 7 | 32.5 | Typhoon No. 24 (Trami) |
6 | 12 October 2019 10:30 | 12 October 2019 18:30 | 3 | 68.0 | Typhoon No. 19 (Hagibis) |
Type | 137Cs | n | δ13C | n | TOC | n |
---|---|---|---|---|---|---|
Bq kg−1 | ‰ | mgC mg−1 | ||||
Forest Soils | 5400 ± 1600 | 12 | −26.9 ± 0.6 | 12 | 0.105 ± 0.021 | 12 |
Forest litters | 240 ± 150 | 16 | −30.0 ± 0.5 | 16 | 0.468 ± 0.011 | 16 |
Riverbank soils | 470 ± 530 | 46 | −26.4 ± 0.8 | 15 | 0.018 ± 0.015 | 15 |
River sediments | 110 ± 110 | 175 | −25.4 ± 0.8 | 21 | 0.001 ± 0.001 | 21 |
p value * | <0.001 | <0.001 | <0.001 |
Source Type | Base−SS−Load | High−SS−Load |
---|---|---|
% | ||
Forest soils | 68–69 | 48–48 |
Forest Litters | 3.9–4.6 | 0.3–0.3 |
Riverbank soils | 2.3–3.1 | 31–33 |
River sediments | 3.5–4.5 | 17–19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arai, H.; Fujita, K.; Yoshita, H.; Taniguchi, K. Differences in the Proportional Contributions of Particulate Radiocesium Sources under Base- and High-Flow River Conditions: A Case Study in the Central Region of Fukushima. Water 2021, 13, 3021. https://doi.org/10.3390/w13213021
Arai H, Fujita K, Yoshita H, Taniguchi K. Differences in the Proportional Contributions of Particulate Radiocesium Sources under Base- and High-Flow River Conditions: A Case Study in the Central Region of Fukushima. Water. 2021; 13(21):3021. https://doi.org/10.3390/w13213021
Chicago/Turabian StyleArai, Hirotsugu, Kazuki Fujita, Hirofumi Yoshita, and Keisuke Taniguchi. 2021. "Differences in the Proportional Contributions of Particulate Radiocesium Sources under Base- and High-Flow River Conditions: A Case Study in the Central Region of Fukushima" Water 13, no. 21: 3021. https://doi.org/10.3390/w13213021
APA StyleArai, H., Fujita, K., Yoshita, H., & Taniguchi, K. (2021). Differences in the Proportional Contributions of Particulate Radiocesium Sources under Base- and High-Flow River Conditions: A Case Study in the Central Region of Fukushima. Water, 13(21), 3021. https://doi.org/10.3390/w13213021