The Impact of Predicted Climate Change on Groundwater Resources in a Mediterranean Archipelago: A Modelling Study of the Maltese Islands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geology
2.2. Hydrogeology
2.3. Modeling
2.3.1. Model Domain, Properties and Boundary Conditions
2.3.2. Model Calibration
2.3.3. Climate Change Simulation Strategy
3. Results
3.1. Model Calibration
3.2. Climate Change Impacts
4. Discussion
4.1. Influence of Faults on Groundwater Modelling Results
4.2. Impact of Predicted Climate Change on Groundwater Resources
4.3. Limitations of Groundwater Modelling Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) IPCC. Annex I: Atlas of Global and Regional Climate Projections. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Risks Associated to Climate and Environmental Changes in the Mediterranean Region. A Preliminary Assessment by the MedECC Network Science-Policy Interface. 2019. Available online: https://www.medecc.org/medecc-booklet-isk-associated-to-climate-and-environmental-changes-in-the-mediterranean-region/ (accessed on 12 July 2021).
- Saadi, S.; Todorovic, M.; Tanasijevic, L.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agric. Water Manag. 2015, 147, 103–115. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Vautard, R.; Gobiet, A.; Sobolowski, S.; Kjellström, E.; Stegehuis, A.; Watkiss, P.; Mendlik, T.; Landgren, O.; Nikulin, G.; Teichmann, C.; et al. The European climate under a 2 °C global warming. Environ. Res. Lett. 2014, 9, 034006. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Seneviratne, S.I. Anthropogenic climate change affects meteorological drought risk in Europe. Environ. Res. Lett. 2016, 11, 044005. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Seneviratne, S.I.; Zhang, X. Anthropogenic climate change detected in European renewable freshwater resources. Nat. Clim. Chang. 2017, 7, 813–816. [Google Scholar] [CrossRef]
- UNEP/MAP Plan Bleu: State of the Environment and Development in the Mediterranean. Technical Report, Athens, 200p. Available online: https://mcc.jrc.ec.europa.eu/documents/201607121602.pdf (accessed on 25 August 2021).
- Fader, M.; Shi, S.; Von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef] [Green Version]
- Tsimplis, M.N.; Calafat, F.M.; Marcos, M.; Jordà, G.; Gomis, D.; Fenoglio-Marc, L.; Struglia, M.V.; Josey, S.A.; Chambers, D.P. The effect of the NAO on sea-level and on mass changes in the Mediterranean Sea. J. Geophys. Res. Ocean. 2013, 118, 944–952. [Google Scholar] [CrossRef] [Green Version]
- Adloff, F.; Somot, S.; Sevault, F.; Jordà, G.; Aznar, R.; Déqué, M.; Herrmann, M.; Marcos, M.; Dubois, C.; Padorno, E.; et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 2015, 45, 2775–2802. [Google Scholar] [CrossRef]
- Aucelli, C.; Pietro, P.; Di Paola, G.; Incontri, P.; Rizzo, A.; Vilardo, G.; Benassai, G.; Buonocore, B.; Pappone, G. Coastal inundation risk assessment due to subsidence and sea-level rise in a Mediterranean alluvial plain (Volturno coastal plain—Southern Italy). Estuar. Coast Shelf. Sci. 2017, 198, 597–609. [Google Scholar] [CrossRef]
- Van Engelenburg, J.; Hueting, R.; Rijpkema, S.; Teuling, A.J.; Uijlenhoet, R.; Ludwig, F. Impact of Changes in Groundwater Extractions and Climate Change on Groundwater-Dependent Ecosystems in a Complex Hydrogeological Setting. Water Resour. Manag. 2018, 32, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Dagan, G.; Bear, J. Solving the problem of interface upconing in a coastal aquifer by the method of small perturbations. J. Hydraul. Res. 1968, 6, 15–44. [Google Scholar] [CrossRef]
- Lemieux, J.M.; Hassaoui, J.; Molson, J.; Therrien, R.; Therrien, P.; Chouteau, M.; Ouellet, M. Simulating the impact of climate change on the groundwater resources of the Magdalen Islands, Québec, Canada. J. Hydrol.-Reg. Stud. 2015, 3, 400–423. [Google Scholar] [CrossRef] [Green Version]
- Pholkern, K.; Saraphiroma, P.; Srisuk, K. Potential impact of climate change on groundwater resources in the Central Huai Luang Basin, Northeast Thailand. Sci. Total Environ. 2018, 633, 1518–1535. [Google Scholar] [CrossRef] [PubMed]
- Werner, A.D.; Simmons, C.T. Impact of sea-level rise on sea water intrusion in coastal aquifers. Groundwater 2009, 47, 197–204. [Google Scholar] [CrossRef]
- Webb, M.D.; Howard, K.W.F. Modeling the transient response of saline intrusion to rising sea-levels. Groundwater 2011, 49, 560–569. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, G.; Gleeson, T. Vulnerability of coastal aquifers to climate change and groundwater use. Nat. Clim. Chang. 2012, 2, 342–345. [Google Scholar] [CrossRef]
- Morgan, L.K.; Werner, A.D. Seawater intrusion vulnerability indicators for freshwater lenses in strip islands. J. Hydrol. 2014, 508, 322–327. [Google Scholar] [CrossRef]
- Green, N.R.; MacQuarrie, K.T.B. An evaluation of the relative importance of the effects of climate change and groundwater extraction on seawater intrusion in coastal aquifers in Atlantic Canada. Hydrogeol. J. 2014, 22, 609–623. [Google Scholar] [CrossRef]
- FAO. Malta Water Resources Review. 2006. Available online: http://www.fao.org/3/a0994e/a0994e.pdf (accessed on 25 August 2021).
- Lotti, F.; Borsi, I.; Guastaldi, E.; Barbagli, A.; Basile, P.; Favaro, L.; Mallia, A.; Xuereb, R.; Schembri, M.; Mamo, J.A.; et al. Numerically enhanced conceptual modelling (NECoM) applied to the Malta Mean Sea Level Aquifer. Hydrogeol. J. 2021, 29, 1517–1537. [Google Scholar] [CrossRef]
- Pedley, H.M.; House, M.R.; Waugh, B. The geology of Malta and Gozo. Proc. Geol. Assoc. 1976, 87, 325–342. [Google Scholar] [CrossRef]
- Illies, J.H. Form and function of graben structures: The Maltese Islands. In Mobile Earth: International Geodynamics Project Final Report of the Federal Republic of Germany; Closs, H., Von Gehlen, K., Illies, J.H., Kuntz, E., Neumann, J., Seibold, E., Eds.; Boldt: Boppard, Germany, 1980; pp. 161–184. [Google Scholar]
- Pedley, H.M. Syndepositional tectonics affecting Cenozoic and Mesozoic deposition in the Malta and SE Sicily areas (Central Mediterranean) and their bearing on Mesozoic reservoir development in the N Malta offshore region. Mar. Petrol. Geol. 1990, 7, 171–180. [Google Scholar] [CrossRef]
- Gardiner, W.; Grasso, M.; Sedgeley, D. Plio-Pleistocene fault movement as evidence for mega-block kinematics within the Hyblean-Malta Plateau, Central Mediterranean. J. Geodyn. 1995, 19, 35–51. [Google Scholar] [CrossRef]
- Illies, J.H. Graben formation—The Maltese Islands—A case history. In Mechanism of Graben Formation; Illies, J.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1981; Volume 17, pp. 151–168. [Google Scholar]
- Reuther, C.D.; Eisbacher, G.H. Pantelleria Rift—crustal extension in a convergent intraplate setting. Geol. Rundsch. 1985, 74, 585–597. [Google Scholar] [CrossRef] [Green Version]
- Micallef, A.; Camerlenghi, A.; Georgiopoulou, A.; Garcia-Castellanos, D.; Gutscher, M.A.; Lo Iacono, C.; Huvenne, V.A.I.; Mountjoy, J.J.; Paull, C.K.; Le Bas, T.; et al. Geomorphic evolution of the Malta Escarpment and implications for the Messinian evaporative drawdown in the eastern Mediterranean Sea. Geomorphology 2019, 327, 264–283. [Google Scholar] [CrossRef]
- Geological Map of the Maltese Islands. Available online: https://continentalshelf.gov.mt/en/Pages/Geological-Map-of-the-Maltese-Islands.aspx (accessed on 12 May 2021).
- Bakalowicz, M.; Mangion, J. The limestone aquifers of Malta: Their recharge conditions from isotope and chemical surveys, hydrology of the mediterranean and semiarid regions. In Proceedings of the an International Symposium, Montpellier, France, 1–4 April 2003; IAHS Press: Wallingford, UK, 2003; pp. 49–54. [Google Scholar]
- Stuart, M.E.; Maurice, L.; Heaton, T.H.E.; Sapiano, M.; Micallef Sultana, M.; Gooddy, D.C.; Chilton, P.J. Groundwater residence time and movement in the Maltese islands—A geochemical approach. Appl. Geochem. 2010, 25, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Kuang, X.; Jiao, J.J.; Zheng, C.; Cherry, J.A.; Li, H. A review of specific storage in aquifers. J. Hydrol. 2020, 581. [Google Scholar] [CrossRef]
- Cassar, J. The use of limestone in a historic context—The experience of Malta. In Limestone in the Built Environment: Present-Day Challenges for the Preservation of the Past; Geological Society: London, UK, 2010; Volume 331, pp. 13–25. [Google Scholar] [CrossRef]
- Cooke, A.P.; Fisher, Q.J.; Michie, E.A.H.; Yielding, G. Investigating the controls on fault rock distribution in normal faulted shallow burial limestones, Malta, and the implications for fluid flow. J. Struct. Geol. 2018, 114, 22–42. [Google Scholar] [CrossRef] [Green Version]
- The 2nd Water Catchment Management Plan for the Malta Water Catchment District 2015–2021, Sustainable Energy and Water Conservation Unit Environment and Resources Authority. Available online: https://era.org.mt/wp-content/uploads/2019/05/2nd_Water_Catchment_Management_Plan-Malta_Water_in_Maltese_Islands-3.pdf (accessed on 25 June 2021).
- Gatt, P.A. Carbonate Facies, Depositional Sequences and Tectonostratigraphy of the Palaeogene Malta Platform. Ph.D. Thesis, University of Durham, Durham, UK, 2012. [Google Scholar]
- Haroon, A.; Micallef, A.; Jegen, M.; Schwalenberg, K.; Karstens, J.; Berndt, C.; Garcia, X.; Kühn, M.; Rizzo, E.; Fusi, N.C.; et al. Electrical resistivity anomalies offshore a carbonate coastline: Evidence for freshened groundwater? Geophys. Res. Lett. 2021, 48, e2020GL091909. [Google Scholar] [CrossRef]
- Henri, C.V.; Harter, T.; Diamantopoulos, E. On the Conceptual Complexity of Non-Point Source Management: Impact of Spatial Variability. Hydrol. Earth Syst. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Sapiano, M.; Schembri, M.; Debattista, H.; Theuma, N. Integrating numerical models in river basin management plans: The freewat project. In WIT Transactions on Ecology and the Environment; Mambretti, S., Ed.; WIT Press: Southampton, UK, 2017; Volume 220, pp. 227–238. [Google Scholar] [CrossRef] [Green Version]
- Verweij, H.; Vis, G.J.; Imberechts, E. Spatial variation in porosity and permeability of the Rupel ClayMember in The Netherlands. Neth. J. Geosci. 2016, 95, 253–268. [Google Scholar] [CrossRef] [Green Version]
- Galdies, C. Temperature trends in Malta (central Mediterranean) from 1951 to 2010. Meteorol. Atmos Phys. 2012, 117, 135–143. [Google Scholar] [CrossRef]
- Sapiano, M.; Mangion, J.; Batchelor, C. Malta Water Resources Review. Available online: http://www.fao.org/docrep/009/a0994e/a0994e00.htm (accessed on 25 June 2021).
- Monteiro, J.P.; Costa, L.R.D.; Hugman, R.; Sapiano, M.; Schembri, M. Regional Groundwater Model of the Malta South Region. MARSOL Project, Deliverable N. D10.4. 2016. Available online: http://www.marsol.eu/files/marsol_d10-4_malta-groundwater-model.pdf (accessed on 25 June 2021).
- BRGM. Study of the Fresh-Water Resources of Malta; Bureau de Recherche Geologique et Miniere: Orléans, France, 1991. [Google Scholar]
- Harbaugh, A.W. MODFLOW-2005: The U.S. Geological Survey modular ground-water model—The ground-water flow process. In Book 6: Modeling Techniques, Section A. Ground-Water; US Geological Survey: Reston, VI, USA, 2005; p. 6-A16. [Google Scholar] [CrossRef] [Green Version]
- Bakker, M.; Schaars, F.; Hughes, J.D.; Langevin, C.D.; Dausman, A.M. Documentation of the Seawater Intrusion (SWI2) Package for MODFLOW. In Book 6: U.S. Geological Survey Techniques and Methods; US Geological Survey: Reston, VI, USA, 2013; p. 6-A46. Available online: http://pubs.usgs.gov/tm/6a46/ (accessed on 25 June 2021).
- Costain, Ltd.; Messers, R. Reports on Geological Investigations; Government of Malta Water Supply: La Valletta, Malta, 1957. [Google Scholar]
- Poeter, E.P.; Hill, M.C.; Banta, E.R.; Steffen, M.; Steen, C. UCODE-2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation constructed using the JUPITER API. In U.S. Geological Survey Techniques and Methods; US Geological Survey: Reston, VI, USA, 2008; p. 6-A11. [Google Scholar] [CrossRef] [Green Version]
- Chidichimo, F.; Mendoza, B.T.; De Biase, M.; Catelan, P.; Straface, S.; Di Gregorio, S. Hydrogeological Modeling of the Groundwater Recharge Feeding the Chambo Aquifer, Ecuador. In Proceedings of the Recent Advances on Environment, Chemical Engineering and Materials, Sliema, Malta, 22–24 June 2018; AIP Publishing: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Nash, J.; Sutcliffe, J.V. River flow forecasting through conceptual models Part I–A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P.; et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 2014, 518, 250–266. [Google Scholar] [CrossRef]
- Carmona, G.; Varela-Ortega, C.; Bromley, J. Supporting decision making under uncertainty: Development of a participatory integrated model for water management in the middle Guadiana river basin. Environ. Model Softw. 2013, 50, 144–157. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.W.; Clement, T.P.; Simpson, M.J.; Lee, K. Does sea-level rise have an impact on saltwater intrusion? Adv. Water. Resour. 2011, 34, 1283–1291. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.A. Simulating the Effects of Climate Change on A Coastal Aquifer, Summerside, Prince Edward Island. Master’s Thesis, Saint Francis Xavier University, Antigonish, NS, Canada, 2012. [Google Scholar]
- Zhou, Q.; Bear, J.; Bensabat, J. Saltwater upconing and decay beneath a well pumping above an interface zone. Trans. Porous Media 2005, 61, 337–363. [Google Scholar] [CrossRef]
- Ataie-Ashtiani, B.; Volker, R.E.; Lockington, D.A. Tidal effects on sea water intrusion in unconfined aquifers. J. Hydrol. 1999, 216, 17–31. [Google Scholar] [CrossRef]
Formation | UCL | BC | GL | LCL | ||
---|---|---|---|---|---|---|
Member | UGL | MGL | LGL | |||
Hydraulic Conductivity (m/s) | 4.9 × 10−5 | 1.2 × 10−8 | 4.0 × 10−6 | 8.1 × 10−7 | 1.7 × 10−5 | 1.0 × 10−4 |
Porosity (−) | 0.30 | 0.35 | 0.32 | 0.31 | 0.30 | 0.19 |
Specific Storage (1/m) | 3.8 × 10−6 | 4.4 × 10−6 | 3.8 × 10−6 | 3.1 × 10−6 | 3.5 × 10−6 | 2.4 × 10−6 |
Time Period | 1944–1977 | 1977–1999 | 1999–2004 | 2004–2016 |
---|---|---|---|---|
Direct Recharge (mm/y) | 74.87 | 77.24 | 73.75 | 71.46 |
Recharge from urban leakage (mm/y) | 18.53 | 52.48 | 36.03 | 14.66 |
Irrigation abstraction (mm/y) | 30.84 | 32.90 | 34.71 | 35.88 |
Public supply abstraction (hm3/y) | 12.33 | 17.84 | 16.2 | 16.2 |
SS | SLR (m) | GRD (%) | Water Demand Increase | |
---|---|---|---|---|
PS (%) | IA (%) | |||
1 | 0.5 | 0 | 0 | 0 |
2 | 1.2 | 0 | 0 | 0 |
3 | 1.9 | 0 | 0 | 0 |
4 | 0 | 10 | 0 | 0 |
5 | 0 | 20 | 0 | 0 |
6 | 0 | 30 | 0 | 0 |
7 | 0 | 0 | 18 | 4 |
8 | 0 | 0 | 56 | 18 |
9 | 0.5 | 10 | 0 | 0 |
10 | 1.2 | 10 | 0 | 0 |
11 | 1.9 | 10 | 0 | 0 |
12 | 0.5 | 20 | 0 | 0 |
13 | 1.2 | 20 | 0 | 0 |
14 | 1.9 | 20 | 0 | 0 |
15 | 0.5 | 30 | 0 | 0 |
16 | 1.2 | 30 | 0 | 0 |
17 | 1.9 | 30 | 0 | 0 |
18 | 0.5 | 10 | 18 | 4 |
19 | 1.2 | 10 | 18 | 4 |
20 | 1.9 | 10 | 18 | 4 |
21 | 0.5 | 20 | 18 | 4 |
22 | 1.2 | 20 | 18 | 4 |
23 | 1.9 | 20 | 18 | 4 |
24 | 0.5 | 30 | 18 | 4 |
25 | 1.2 | 30 | 18 | 4 |
26 | 1.9 | 30 | 18 | 4 |
27 | 0.5 | 10 | 56 | 18 |
28 | 1.2 | 10 | 56 | 18 |
29 | 1.9 | 10 | 56 | 18 |
30 | 0.5 | 20 | 56 | 18 |
31 | 1.2 | 20 | 56 | 18 |
32 | 1.9 | 20 | 56 | 18 |
33 | 0.5 | 30 | 56 | 18 |
34 | 1.2 | 30 | 56 | 18 |
35 | 1.9 | 30 | 56 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Biase, M.; Chidichimo, F.; Maiolo, M.; Micallef, A. The Impact of Predicted Climate Change on Groundwater Resources in a Mediterranean Archipelago: A Modelling Study of the Maltese Islands. Water 2021, 13, 3046. https://doi.org/10.3390/w13213046
De Biase M, Chidichimo F, Maiolo M, Micallef A. The Impact of Predicted Climate Change on Groundwater Resources in a Mediterranean Archipelago: A Modelling Study of the Maltese Islands. Water. 2021; 13(21):3046. https://doi.org/10.3390/w13213046
Chicago/Turabian StyleDe Biase, Michele, Francesco Chidichimo, Mario Maiolo, and Aaron Micallef. 2021. "The Impact of Predicted Climate Change on Groundwater Resources in a Mediterranean Archipelago: A Modelling Study of the Maltese Islands" Water 13, no. 21: 3046. https://doi.org/10.3390/w13213046
APA StyleDe Biase, M., Chidichimo, F., Maiolo, M., & Micallef, A. (2021). The Impact of Predicted Climate Change on Groundwater Resources in a Mediterranean Archipelago: A Modelling Study of the Maltese Islands. Water, 13(21), 3046. https://doi.org/10.3390/w13213046