Multivariate Statistical and Hydrochemical Analysis of Drinking Water Resources in Northern Cameroon Watersheds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Geographical Setting
2.3. Pedological, Geological and Hydrogeological Settings
2.4. Ground and Surface Water Collection and Analysis
2.5. Multivariate Statistical Analyses
2.6. Reliability Checking of Chemical Data and Hydrochemical Analyses
3. Results
3.1. Multivariate Analyses
3.1.1. Principal Component Analysis/Factor Analysis (PCA/FA)
3.1.2. Hierarchical Clustering Analysis (HCA)
3.2. Hydrochemical Analyses
3.2.1. Physicochemical Characteristics for Drinking Suitability
3.2.2. Hydrochemical Characteristics
3.2.3. Hydrogeochemical Processes
4. Discussion
4.1. Multivariate Statistical Analysis
4.2. Hydrochemical Evaluation
4.2.1. Physicochemical Properties Related to Groundwater
4.2.2. Hydrochemical Characteristics of Groundwater and Surface Water
4.2.3. Hydrogeochemical Processes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamison, D.T.; Nugent, R.; Gelband, H.; Horton, S.; Jha, P.; Laxminarayan, R.; Mock, C.N. Injury Prevention and Environmental Health, 7th ed.; International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- WWAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 2015: Water for a Sustainable World; UNESCO: Paris, France, 2015. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000231823 (accessed on 10 August 2021).
- Machado, A.V.M.; dos Santos, J.A.N.; Quindeler, N.d.S.; Alves, L.M.C. Critical Factors for the Success of Rural Water Supply Services in Brazil. Water 2019, 11, 2180. [Google Scholar] [CrossRef] [Green Version]
- GWP (Global Water Partnership). Développement d ’une Stratégie de Financement du Secteur de l ’eau en Afrique Centrale: Cameroun, 2010. Etude Nationale sur le Financement du Secteur de l’eau; GWP-CAf Secretariat: Yaounde, Ameroun, 2010; Available online: https://www.gwp.org/globalassets/global/gwp-caf-files/etude-nationale-sur-le-financement-du-secteur-de-leau-au-cameroun.pdf (accessed on 12 July 2021).
- Molua, E.L.; Lambi, C.M. Climate Hydrology and Water Resources in Cameroon; Unique Printers: Buea, Cameroon, 2010. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1787945 (accessed on 1 October 2021).
- World Bank. The World Bank in Cameroon. Available online: https://www.worldbank.org/en/country/cameroon/overview#1 (accessed on 10 October 2021).
- Jiatsa, Z.T.M. Can Fog and Rain Harvesting Secure Safe Drinking Water in Rural Cameroon? Case Study of Bafou (Mountainous) and Mora (Low-Lying) Villages; Kristianstad University: Kristianstad, Sweden, 2010. [Google Scholar]
- Bang, H.N.; Miles, L.; Gordon, R. Enhancing local livelihoods resilience and food security in the face of frequent flooding in Africa: A disaster management perspective. J. Afr. Stud. Dev. 2018, 10, 85–100. [Google Scholar]
- Ngatcha, B.N.; Njitchoua, R.; Naah, E. Impact sur les plaines d’inondation de la Bénoué. In Le barrage de Lagdo (Nord-Cameroun); IRD Editions: Paris, France, 1988; Available online: https://www.documentation.ird.fr/hor/fdi:010030382 (accessed on 23 July 2021).
- Van der Waarde, J. Integrated River Basin Management of the Sanaga River, Cameroon. Benefits and Challenges of Decentralised Water Management; Internationa Rivers: Oakland, CA, USA, 2007; Available online: https://archive.internationalrivers.org/resources/integrated-river-basin-management-of-the-sanaga-river-cameroon-4036 (accessed on 26 October 2021).
- Folifac, F.; Lifongo, L.; Nkeng, G.; Gaskin, S. Municipal drinking water source protection in low-income countries: Case of Buea municipality-Cameroon. J. Ecol. Nat. Environ. 2009, 1, 73–84. [Google Scholar]
- Gaikwad, S.K.; Kadam, A.K.; Ramgir, R.R.; Kashikar, A.S.; Wagh, V.M.; Kandekar, A.M.; Gaikwad, S.P.; Madale, R.B.; Pawar, N.J.; Kamble, K.D. Assessment of the groundwater geochemistry from a part of west coast of India using statistical methods and water quality index. HydroResearch 2020, 3, 48–60. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Minh, T.; Nguyen, T.; Bach, Q. Assessment of groundwater quality based on principal component analysis and pollution source-based examination: A case study in Ho Chi Minh City, Vietnam. Environ. Monit. Assess. 2020, 192, 382–395. [Google Scholar] [CrossRef] [PubMed]
- Tomaz, A.; Palma, P.; Fialho, S.; Lima, A.; Alvarenga, P.; Potes, M.; Salgado, R. Spatial and temporal dynamics of irrigation water quality under drought conditions in a large reservoir in Southern Portugal. Environ. Monit. Assess. 2020, 192, 76–93. [Google Scholar] [CrossRef] [PubMed]
- Aljahdali, M.O.; Alhassan, A.B. Ecological risk assessment of heavy metal contamination in mangrove habitats, using biochemical markers and pollution indices: A case study of Avicennia marina L. in the Rabigh lagoon, Red Sea. Saudi J. Biol. Sci. 2020, 27, 1174–1184. [Google Scholar] [CrossRef] [PubMed]
- Hua, K.; Xiao, J.; Li, S.; Li, Z. Analysis of hydrochemical characteristics and their controlling factors in the Fen River of China. Sustain. Cities Soc. 2020, 52, 101827. [Google Scholar] [CrossRef]
- Zekâi Şen Groundwater Quality. In Practical and Applied Hydrogeology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–61. [CrossRef]
- Reyes-toscano, C.A.; Alfaro-cuevas-villanueva, R.; Morton-bermea, O.; Hern, E.; Buenrostro-delgado, O.; Ávila-Olivera, J.A. Hydrogeochemical Characteristics and Assessment of Drinking Water Quality in the Urban Area of Zamora, Mexico. Water 2020, 12, 556. [Google Scholar] [CrossRef] [Green Version]
- Vadiati, M.; Asghari-moghaddam, A.; Nakhaei, M.; Adamowski, J.; Akbarzadeh, A.H. A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices. J. Environ. Manag. 2016, 184, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Tatou, R.D.; Kabeyene, V.K.; Mboudou, G.E. Multivariate Statistical Analysis for the Assessment of Hydrogeochemistry of Groundwater in Upper Kambo Watershed (Douala-Cameroon). J. Geosci. Environ. Prot. 2017, 5, 252–264. [Google Scholar] [CrossRef]
- Enyegue, A.; Nyam, F.M.; Yomba, A.E.; Tchikangoua, A.N.; Bounoung, C.P.; Nouayou, R. Assessment and characterization of groundwater quality under domestic distribution using hydrochemical and multivariate statistical methods in Bafia, Cameroon. Groundw. Sustain. Dev. 2020, 10, 100347. [Google Scholar] [CrossRef]
- Mandeng, B.; Bondj, L.M.; Zacharie, A.; Bessa, E.; Ntomb, Y.D.; Wadjou, J.W.; Paternie, E.; Doumo, E.; Dieudonné, L.B. Contamination and risk assessment of heavy metals, and uranium of sediments in two watersheds in Abiete-Toko gold district, Southern Cameroon. Heliyon 2019, 5, e02591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakotondrabe, F.; Ngoupayou, J.R.N.; Mfonka, Z.; Harilala, E.; Jacob, A.; Abolo, N.; Ako, A. Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): Multivariate Statistical Analysis approach. Sci. Total Environ. 2018, 611, 831–844. [Google Scholar] [CrossRef] [PubMed]
- GWP (Global Water Partnership). Etat des lieux du secteur: Connaissance et usages des ressources en eau. In Plan d’Action National de Gestion Integree des Ressources en Eau; GWP-CAf Secretariat: Yaounde, Cameroon, 2009; Available online: https://www.pseau.org/outils/biblio/resume.php?d=3816 (accessed on 26 October 2021).
- Silatsa, B.A.; Kuiate, J.; Njiokou, F.; Simo, G.; Feussom, J.K.; Tunrayo, A.; Amzati, G.S.; Bett, B.; Bishop, R.; Githaka, N.; et al. A countrywide molecular survey leads to a seminal identification of the invasive cattle tick Rhipicephalus (Boophilus) microplus in Cameroon, a decade after it was reported in Cote d ’Ivoire. Ticks Tick. Borne. Dis. 2019, 10, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Brabant, P. Sols Ferrugineux Tropicaux et Les Sols Apparents du Nord-Cameroun; ORSTOM: Yaoundé, Cameroon, 1968. [Google Scholar]
- Temdjim, R.; Patrick, M.; Wagsong, N.; Julien, A.; Tsepeng, N.; Foley, S. Variation in mantle lithology and composition beneath the Ngao Bilta volcano, Adamawa Massif, Cameroon volcanic line, West-central Africa. Geosci. Front. 2020, 11, 665–677. [Google Scholar] [CrossRef]
- Alexandre, A.; Frisch, W.; Siebel, W.; Emmanuel, G.; Kongyuy, C.; Ngako, V. Archean inheritances in the pyroxene–amphibole-bearing gneiss of the Méiganga area (Central North Cameroon): Geochemical and 207 Pb/ 206 Pb age imprints. Comptes Rendus Geosci. 2008, 340, 211–222. [Google Scholar]
- Saha, F.A.N.; Tchameni, R.; Nomo, N.E.; Daouda, D.; Penaye, J.; Fosso, T.P.M. Polyphase deformation in the Mbé-Sassa-Bersi area: Implications on the tectono-magmatic history of the area and the tectonic evolution of the Tcholliré-Banyo and Central Cameroon Shear Zones (Central North Cameroon). J. Geosci. Geomat. 2018, 6, 41–54. [Google Scholar]
- Nomo, E.N.; Tchameni, R.; Vanderhaeghe, O.; Sun, F.; Barbey, P.; Tekoum, L.; Tchunte, P.M.F.; Eglinger, A.; Fouotsa, N.A.S. Structure and LA-ICP-MS zircon U- Pb dating of syntectonic plutons emplaced in the Pan-African Banyo-Tcholliré shear zone (central north Cameroon). J. Afr. Earth Sci. 2017, 131, 251–271. [Google Scholar] [CrossRef]
- Ephraim, B.E. Investigation of the geochemical signatures and conditions of formation of metacarbonate rocks occurring within the Mamfe embayment of south-eastern Nigeria. Eart Sci. Res. J. 2012, 16, 121–138. [Google Scholar]
- Njitchoua, R.; Dever, L.; Fontes, J.C.; Naah, E. Geochemistry, origin and recharge mechanisms of groundwaters from the Garoua Sandstone aquifer, northern Cameroon. J. Hydrol. 1997, 190, 123–140. [Google Scholar] [CrossRef]
- Kouassy, K.P.S.; Ngoupayou, J.-R.N.; Rakotondrabe, F.; Ondoa, J.M. Quantitative assessment of water resources by the method of the hydrological balance in the Kadey catchment area (East-Cameroon). Groundw. Sustain. Dev. 2020, 10, 100278. [Google Scholar]
- Defo, C.; Mishra, A.K.; Yerima, B.P.K.; Mabou, P.B.; Ako, A.A.; Fonkou, T. Current conditions of groundwater resources development and related problems in the Republic of Cameroon, West Africa. Eur. Water 2016, 54, 43–68. [Google Scholar]
- Kringel, R.; Rechenburg, A.; Kuitcha, D.; Fouépé, A.; Bellenberg, S.; Kengne, I.M.; Fomo, M.A. Masse balance of nitrogen and potassium in urban groundwater in Central Africa, Yaounde/Cameroon. Sci. Total Environ. 2016, 547, 382–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantong, W.Y.; Fouépé, A.T.; Djomou, S.L.B.; Banseka, H.S.; Anazawa, K.; Sma, A.; Mendjo, J.W.; Aka, F.T.; Ohba, T.; Hell, V.; et al. Temporal pollution by nitrate (NO3), and discharge of springs in shallow crystalline aquifers: Case of Akok Ndoue catchment, Yaounde (Cameroon). Afr. J. Environ. Sci. Technol. 2013, 7, 175–191. [Google Scholar]
- Aretouyap, Z.; Bisso, D.; Nouck, P.N.; Menkpa, L.E.A.; Asfahani, J. Hydrogeophysical Characteristics of Pan-African Aquifer Specified Through an Alternative Approach Based on the Interpretation of Vertical Electrical Sounding Data in the Adamawa Region, Central Africa. Nat. Resour. Res. 2018, 28, 63–77. [Google Scholar] [CrossRef]
- CEN Water Quality-Sampling-Part 1: Guidance on the design of sampling programmes and sampling techniques (ISO 5667–1:2006). In ILNAS-EN ISO 5667-1:2006; British Standards Institution: London, UK, 2006; Available online: https://www.iso.org/standard/36693.html (accessed on 15 July 2021).
- Jiricek, M.; Sracek, O.; Janda, V. Removal of chlorinated solvents from carbonate-buffered water by zero-valent iron. Cent. Eur. J. Chem. 2007, 5, 87–106. [Google Scholar] [CrossRef]
- Gharahi, N.; Zamani-Ahmadmahmoodi, R. Evaluation of groundwater quality for drinking purposes: A case study from the Beheshtabad Basin, Chaharmahal and Bakhtiari Province, Iran. Environ. Earth Sci. 2020, 79, 82. [Google Scholar] [CrossRef]
- Vadde, K.K.; Wang, J.; Cao, L.; Yuan, T.; McCarthy, A.J.; Sekar, R. Assessment of Water Quality and Identification of Pollution Risk Locations in Tiaoxi River (Taihu Watershed), China. Water 2018, 10, 183. [Google Scholar] [CrossRef] [Green Version]
- Nnorom, I.C.; Ewuzie, U.; Eze, S.O. Multivariate statistical approach and water quality assessment of natural springs and other drinking water sources in Southeastern Nigeria. Heliyon 2019, 5, e01123. [Google Scholar] [CrossRef] [Green Version]
- Abo, R.; Merkel, B.J. Water quality of the Helvetian and Eocene aquifers in Al Zerba catchment and southern parts of Al Qweek Valley, Aleppo basin, Syria. Sustain. Water Resour. Manag. 2015, 1, 189–211. [Google Scholar] [CrossRef] [Green Version]
- Noshadi, M.; Ghafourian, A. Groundwater quality analysis using multivariate statistical techniques (case study: Fars province, Iran). Environ. Monit. Assess. 2016, 188, 406–419. [Google Scholar] [CrossRef]
- Fritz, S.J. A Survey of Charge-Balance Errors on Published Analyses of Potable Ground and Surface Waters. Groundwater 1994, 32, 539–545. [Google Scholar] [CrossRef]
- Olumana, M.; Loiskandl, W.; Ndambuki, J.M. Hydrochemical characterization of various surface water and groundwater resources available in Matahara areas, Fantalle Woreda of Oromiya region. J. Hydrol. Reg. Stud. 2015, 3, 444–456. [Google Scholar]
- Fetter, C.W. Applied Hydrogeology, 4th ed.; Prentice Hall: Hoboken, NJ, USA, 2001. [Google Scholar]
- Cao, W.; Yang, H.; Liu, C.; Li, Y.; Bai, H. Hydrogeochemical characteristics and evolution of the aquifer systems of Gonghe Basin, Northern China. Geosci. Front. 2018, 9, 907–916. [Google Scholar] [CrossRef]
- Prasanna, M.V.; Chidambaram, S.; Senthil Kumar, G.; Ramanathan, A.L.; Nainwal, H.C. Hydrogeochemical assessment of groundwater in neyveli basin, Cuddalore district, South India. Arab. J. Geosci. 2011, 4, 319–330. [Google Scholar] [CrossRef]
- Soltani, A.A.; Bermad, A.; Boutaghane, H.; Oukil, A.; Abdalla, O.; Hasbaia, M.; Oulebsir, R.; Zeroual, S.; Lefkir, A. An integrated approach for assessing surface water quality: Case of Beni Haroun dam (Northast Algeria). Environ. Monit. Assess. 2020, 192, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Che, Q.; Su, X.; Wang, S.; Zheng, S.; Li, Y. Hydrochemical Characteristics and Evolution of Groundwater in the Alluvial Plain (Anqing Section) of the Lower Yangtze River Basin: Multivariate Statistical and Inversion Model Analyses. Water 2021, 13, 2403. [Google Scholar] [CrossRef]
- Trudinger, P.A. Geological significance of sulphur oxidoreduction by bacteria. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1982, 298, 563–581. [Google Scholar]
- Gad, M.; Elsayed, S.; Moghanm, F.S.; Almarshadi, M.H.; Alshammari, A.S.; Khedher, K.M.; Eid, E.M.; Hussein, H. Combining Water Quality Indices and Multivariate Modeling to Assess Surface Water Quality in the Northern Nile Delta, Egypt. Water 2020, 12, 2142. [Google Scholar] [CrossRef]
- Seguem, N.; Alexandre, G.A.; Klötzli, U.; Kepnamou, A.D.; Emmanuel, E.G. Petrography and Geochemistry of Precambrian Basement Straddling the Cameroon-Chad Border: The Touboro Baïbokoum Area. Int. J. Geosci. 2014, 5, 418–431. [Google Scholar] [CrossRef] [Green Version]
- Banda, T.D.; Kumarasamy, M. Application of Multivariate Statistical Analysis in the Development of a Surrogate Water Quality Index (WQI) for South African Watersheds. Water 2020, 12, 1584. [Google Scholar] [CrossRef]
- Ning, S.; Chang, N.; Jeng, K.; Tseng, Y. Soil erosion and non-point source pollution impacts assessment with the aid of multi-temporal remote sensing images. J. Environ. Manag. 2006, 79, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Karlson, M.; Ostwald, M. Remote sensing of vegetation in the Sudano-Sahelian zone: A literature review from 1975 to 2014. J. Arid Environ. 2016, 124, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Wotany, E.R.; Ayonghe, S.N.; Fantong, W.Y.; Wirmvem, M.J.; Ohba, T. Hydrogeochemical and anthropogenic influence on the quality of water sources in the Rio del Rey Basin, South Western, Cameroon, Gulf of Guinea. Afr. J. Environ. Sci. Technol. 2013, 7, 1053–1069. [Google Scholar]
- Bang, H.; Miles, L.; Gordon, R. The Irony of Flood Risks in African Dryland Environments: Human Security in North Cameroon. World J. Eng. Technol. 2017, 5, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Cheo, A.E.; Voigt, H.; Mbua, R.L. Vulnerability of water resources in northern Cameroon in the context of climate change. Environ. Earth Sci. 2013, 70, 1211–1217. [Google Scholar] [CrossRef]
- JICA. Data Collection Survey on the Transport Network Development in Douala; Japan International Cooperation Agency: Yaounde, Cameroon, 2017; Available online: https://openjicareport.jica.go.jp/710/710/710_505_12286837.html (accessed on 3 March 2018).
- Abubakar, B.; Umar, H.; Barde, M.M.; Adamu, S. Socio-economic Impact of Flooding on the Riverine Communities of River Benue in Adamawa State, Nigeria. FUTY J. Environ. 2020, 14, 1–9. [Google Scholar]
- Fantong, W.Y.; Nenkam, T.L.L.J.; Kringe, P.N.; Kimbi, S.B.; Fru, E.C.; Kamtchueng, B.T.; Takoundjou, A.F.; Tejiobou, A.R.; Ngueutchoua, G.; Kringel, R. Compositions and mobility of major, dD, d18O, trace, and REEs patterns in water sources at Benue River Basin—Cameroon: Implications for recharge mechanisms, geo-environmental controls, and public health. Environ. Geochem. Health 2020, 42, 2975–3031. [Google Scholar] [CrossRef] [PubMed]
- Arétouyap, Z.; Bisso, D.; Larissa, J.; Nouck, P.N.; Njoya; Asfahani, J. Hydraulic parameters evaluation of the Pan-African aquifer by applying an alternative geoelectrical approach based on vertical electrical soundings. Geofísica Int. 2019, 58, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Zebaze, A.T.; Njueya, A.K.; Kwekam, M.; Temgoua, E. Assessment of Hydrogeoelectrical Characteristics of Crystalline Aquifers and Groundwaters Quality in Adamawa Plateau: Case of Mbakaou (Adamawa-Cameroon). Environ. Earth Sci. Res. J. 2020, 7, 153–163. [Google Scholar]
- Ahmed, S.; Wajahat, M.; Alam, M.; Hussain, A.; Qureshi, F.; Khurshid, S. Evaluation of corrosive behaviour and scaling potential of shallow water aquifer using corrosion indices and geospatial approaches in regions of the Yamuna River basin. J. King Saud Univ.-Sci. 2021, 33, 101–237. [Google Scholar] [CrossRef]
- Srinivasamoorthy, K.; Gopinath, M.; Chidambaram, S.; Vasanthavigar, M.; Sarma, V.S. Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. J. King Saud Univ.-Sci. 2014, 26, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Abdelshafy, M.; Saber, M.; Abdelhaleem, A.; Abdelrazek, S.M.; Seleem, E.M. Hydrogeochemical processes and evaluation of groundwater aquifer at Sohag city, Egypt. Sci. Afr. 2019, 6, e00196. [Google Scholar] [CrossRef]
- Salem, W.M.; El-sayed, M. Hydro-geochemical and isotopic composition of ground water in Helwan area. Egypt. J. Pet. 2015, 24, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Li, Z.; Ma, H.; Wang, L.; Delgado, J. Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China. Environ. Pollut. 2016, 218, 879–888. [Google Scholar] [CrossRef]
- Wirmvem, M.J.; Ohba, T.; Fantong, W.Y.; Ayonghe, S.N.; Justice, Y.; Asaah, A.N.E.; Tanyileke, G.; Hell, J.V. Hydrochemistry of shallow groundwater and surface water in the Ndop plain, North West Cameroon. Afr. J. Environ. Sci. Technol. 2013, 7, 518–530. [Google Scholar]
- Kamtchueng, B.T.; Fantong, W.Y.; Wirmvem, M.J.; Tiodjio, R.E.; Takounjou, A.F.; Ngoupayou, J.R.N.; Kusakabe, M.; Zhang, J.; Ohba, T.; Tanyileke, G.; et al. Hydrogeochemistry and quality of surface water and groundwater in the vicinity of Lake Monoun, West Cameroon: Approach from multivariate statistical analysis and stable isotopic characterization. Environ. Monit. Assess. 2016, 188, 1–24. [Google Scholar] [CrossRef]
- Njoyim, K.I.; Kengni, L.; Tita, M.A.; Njoyim, E.; Tamungang, B.; Fonzenyuy, V.F.; Aziwo, B.T. Hydrogeochemistry of Surface and Ground Water in Alatening Village, Northwest Region, Cameroon. Appl. Environ. Soil Sci. 2020, 2020, 8347095. [Google Scholar] [CrossRef]
- Gounti, M.; Mimba, M.E.; Teddy, F. Importance of rocks and their weathering products on groundwater quality in Central-East Cameroon. Hydrology 2017, 4, 23. [Google Scholar]
- Toteu, S.F.; Penaye, J.; Deloule, E.; Van Schmus, W.R.; Tchameni, R. Diachronous evolution of volcano-sedimentary basins north of the Congo craton: Insights from U–Pb ion microprobe dating of Groups (Cameroon) zircons from the Poli, Lom and Yaounde. J. Afr. Earth Sci. 2006, 44, 428–442. [Google Scholar] [CrossRef]
- Tchamako, K.; Fotsing, T.; Tchouankoue; Ngoupayou; Ngatcha, N. Hinman Influences of lithology on water quality: A study of the Ngam and Mou watersheds in West Cameroon (Central Africa). Procedia Earth Planet. Sci. 2013, 7, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Abonoje, S.; Ako, A.; Elambo, G.; Cheo, E. Hydrogeochemical characteristics of some Cameroon bottled waters, investigated by multivariate statistical analyses. J. Geochem. Explor. 2012, 112, 118–130. [Google Scholar]
- Ouarani, M.; Bahir, M.; Mulla, D.J.; Ouazar, D.; Chehbouni, A.; Dhiba, D.; Ouhamdouch, S.; Mountassir, O. El Groundwater Quality Characterization in an Overallocated Semi-Arid Coastal Area Using an Integrated Approach: Case of the Essaouira Basin, Morocco. Water 2020, 12, 3202. [Google Scholar] [CrossRef]
- Beatrice, N.A.; Brell, M.K.; Aboubakar, A.; Youtha, Y.S.A.; Yaka, M.A.D.; Bertrand, Z.Z.; Nindum, S.Y.N.; Crépin, M.A.; Clarisse, M.M.Y. Soil Assessment of Physicochemical and Heavy Metal Properties of Groundwater in Edéa (Cameroon). Am. J. Water Resour. 2019, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gabr, M.E.; Soussa, H.; Fattouh, E. Groundwater quality evaluation for drinking and irrigation uses in Dayrout city Upper Egypt. Ain Shams Eng. J. 2020, 12, 327–340. [Google Scholar] [CrossRef]
- Udeshani, W.A.C.; Dissanayake, H.M.K.P.; Gunatilake, S.K.; Chandrajith, R. Assessment of groundwater quality using water quality index (WQI): A case study of a hard rock terrain in Sri Lanka. Groundw. Sustain. Dev. 2020, 11, 100421. [Google Scholar] [CrossRef]
- Madhav, S.; Ahamad, A.; Kumar, A.; Kushawaha, J.; Mishra, P.K. Geochemical assessment of groundwater quality for its suitability for drinking and irrigation purpose in rural areas of Sant Ravidas Nagar (Bhadoh), Uttar Pradesh. Geol. Ecol. Landsc. 2018, 2, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Rishi, M.S.; Herojeet, R.; Kaur, L.; Priyanka; Sharma, K. Multivariate analysis and geochemical signatures of groundwater in the agricultural dominated taluks of Jalandhar district, Punjab, India. J. Geochem. Explor. 2020, 208, 106395. [Google Scholar] [CrossRef]
- Okiongbo, K.S.; Akpofure, E. Identification of Hydrogeochemical Processes in Groundwater using Major ion Chemistry: A case study of Yenagoa and Environs, Southern Nigeria. Glob. J. Geol. Sci. 2014, 12, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Tchameni, R.; Pouclet, A.; Penaye, J.; Ganwa, A.A.; Toteu, S.F.; Tchameni, R.; Pouclet, A.; Penaye, J.; Ganwa, A.; Toteu, S.F. Petrography and geochemistry of the Ngaoundéré Pan-African granitoids in Central North Cameroon: Implications for their sources and geological setting. J. Afr. Earth Sci. 2006, 44, 511–529. [Google Scholar] [CrossRef] [Green Version]
- Sahu, S.; Gogoi, U.; Nayak, N.C. Groundwater solute chemistry, hydrogeochemical processes and fluoride contamination in phreatic aquifer of Odisha, India. Geosci. Front. 2021, 12, 101093. [Google Scholar] [CrossRef]
- Narany, T.S.; Ramli, M.F.; Aris, A.Z.; Nor, W.; Sulaiman, A.; Juahir, H.; Fakharian, K. Identification of the Hydrogeochemical Processes in Groundwater Using Classic Integrated Geochemical Methods and Geostatistical Techniques, in Amol-Babol Plain, Iran. Sci. World J. 2014, 2014, 419058. [Google Scholar]
- Kanagaraj, G.; Elango, L.; Sridhar, S.G.D.; Gowrisankar, G. Hydrogeochemical processes and influence of seawater intrusion in coastal aquifers south of Chennai, Tamil Nadu, India. Environ. Sci. Pollut. Res. 2018, 25, 8989–9011. [Google Scholar] [CrossRef]
- Li, P.; Wu, J.; Qian, H. Hydrogeochemistry and Quality Assessment of Shallow Groundwater in the Southern Part of the Yellow River Alluvial Plain (Zhongwei Section), Northwest China. Earth Sci. Res. J. 2014, 18, 27–38. [Google Scholar] [CrossRef]
- Kumar, P.J.S.; James, E.J. Identification of hydrogeochemical processes in the Coimbatore district, Tamil Nadu, India. Hydrol. Sci. J. 2016, 61, 719–731. [Google Scholar] [CrossRef]
- Karunanidhi, D.; Aravinthasamy, P.; Deepali, M.; Subramani, T.; Roy, P.D. The effects of geochemical processes on groundwater chemistry and the health risks associated with fluoride intake in a semi-arid region of South India. RSC Adv. 2020, 10, 4840–4859. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, N.; Nakhaei, M.; Porhemmat, J. Assessment of hydrogeochemistry and contamination of Varamin deep aquifer, Tehran Province, Iran. Environ. Earth Sci. 2017, 76, 1–14. [Google Scholar] [CrossRef]
- Zaidi, F.K.; Nazzal, Y.; Jafri, M.K.; Naeem, M.; Amed, I. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: A case study from northwestern Saudi Arabia. Environ. Monit. Assess. 2015, 187, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Wisitthammasri, W.; Chotpantarat, S.; Thitimakorn, T. Multivariate statistical analysis of the hydrochemical characteristics of a volcano sedimentary aquifer in Saraburi. J. Hydrol. Reg. Stud. 2020, 32, 100745. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, D.; Zhou, P.; Qu, S.; Liao, F.; Wang, G. Hydrochemical Characteristics of Groundwater and Dominant Water–Rock Interactions in the Delingha Area, Qaidam Basin, Northwest China. Water 2020, 12, 836. [Google Scholar] [CrossRef] [Green Version]
- Oelkers, E.H.; Declercq, J.; Saldi, G.D.; Gislason, S.R.; Schott, J. Olivine dissolution rates: A critical review. Chem. Geol. 2018, 500, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Koh, D.; Chae, G.; Kee, W.; Ko, K. Integrated assessment of major element geochemistry and geological setting of traditional natural mineral water sources in South Korea at the national scale. J. Hydrol. 2021, 598, 126249. [Google Scholar] [CrossRef]
- Kim, K. Plagioclase weathering in the groundwater system of a sandy, silicate aquifer. Hydrol. Process. 2002, 16, 1793–1806. [Google Scholar] [CrossRef]
- Chaïrat, C. Etude Expérimentale de la Cinétique et des Mécanismes d’altération de Minéraux Apatitiques. Application au Comportement d’une Céramique de Confinement d’actinides Mineurs. Géochimie. Ph.D. Thesis, Université Paul Sabatier—Toulouse III, Toulouse, France, 2005. Available online: https://tel.archives-ouvertes.fr/tel-00011686/document (accessed on 8 June 2020).
- Carol, E.S.; Kruse, E.E.; Laurencena, P.C.; Rojo, A.; Deluchi, M.H. Ionic exchange in groundwater hydrochemical evolution. Study case: The drainage basin of El Pescado creek (Buenos Aires province, Argentina). Environ. Earth Sci. 2012, 65, 421–428. [Google Scholar] [CrossRef]
- Ngounouno, I.; Deruelle, B.; Demaiffe, D.; Montigny, R. Petrology of the Cenozoic volcanism in the Upper Benue valley, northern Cameroon (Central Africa). Contrib. Mineral. Petrol. 2003, 145, 87–106. [Google Scholar] [CrossRef]
- Chang, J.; Wang, G. Major ions chemistry of groundwater in the arid region of Zhangye Basin, northwestern China. Environ. Earth Sci. 2010, 61, 539–547. [Google Scholar] [CrossRef]
- Juen, L.L.; Aris, A.Z.; Shan, N.T.; Yusoff, F.M.; Hashim, Z. Geochemical modeling of element species in selected tropical estuaries and coastal water of the Strait of Malacca. Procedia Environ. Sci. 2015, 30, 109–114. [Google Scholar] [CrossRef] [Green Version]
Parameters | CP1 | CP2 | CP3 | CP4 | CP5 | CP6 | CP7 |
---|---|---|---|---|---|---|---|
TH | 0.845 | 0.203 | 0.109 | 0.297 | 0.220 | 0.108 | |
Mg2+ | 0.824 | 0.232 | 0.171 | ||||
pH | 0.777 | −0.182 | −0.227 | −0.212 | 0.161 | −0.198 | |
TAC | 0.655 | 0.528 | 0.170 | 0.157 | |||
Ca2+ | 0.651 | 0.496 | 0.217 | 0.326 | 0.243 | 0.137 | |
NH4+ | −0.480 | −0.294 | −0.103 | 0.384 | 0.290 | 0.441 | |
Turb. 1 | −0.881 | 0.120 | |||||
Mn2+ | −0.217 | −0.750 | −0.181 | 0.108 | |||
F− | 0.172 | 0.585 | 0.178 | 0.162 | −0.193 | 0.327 | |
NO3− | 0.108 | 0.956 | |||||
NO2− | 0.111 | 0.955 | |||||
K+ | −0.130 | −0.112 | 0.711 | 0.343 | −0.172 | −0.122 | |
SDT | 0.359 | 0.280 | 0.798 | 0.209 | |||
CE | 0.359 | 0.281 | 0.798 | 0.209 | |||
Al3+ | 0.208 | 0.140 | −0.155 | −0.580 | 0.447 | −0.238 | −0.115 |
Cl− | 0.102 | 0.821 | 0.122 | ||||
SO42− | 0.281 | 0.700 | 0.193 | ||||
T | −0.105 | 0.808 | |||||
PO43− | −0.216 | −0.187 | −0.266 | −0.709 | 0.177 | ||
Fe2+ | −0.883 | ||||||
Eigenvalues | 3.542 | 2.590 | 2.494 | 2.197 | 1.906 | 1.484 | 1.317 |
Explained variance % | 17.709 | 12.951 | 12.471 | 10.984 | 9.531 | 7.420 | 6.583 |
Cumulative % of variance | 17.709 | 30.659 | 43.130 | 54.114 | 63.646 | 71.066 | 77.649 |
Parameters | CP1 | CP2 | CP3 | CP4 | CP5 | CP6 |
---|---|---|---|---|---|---|
NO3− | 0.830 | −0.401 | −0.104 | −0.179 | ||
NO2− | 0.830 | −0.405 | −0.171 | |||
K+ | 0.788 | 0.194 | −0.153 | 0.298 | −0.116 | |
Cl− | 0.779 | 0.108 | 0.140 | |||
Ca2+ | 0.649 | 0.347 | 0.278 | −0.171 | −0.244 | |
TAC | 0.101 | 0.783 | 0.219 | −0.150 | −0.181 | |
Mg2+ | 0.560 | 0.732 | 0.112 | |||
TH | 0.656 | 0.705 | ||||
Mn2+ | 0.579 | −0.617 | 0.110 | −0.179 | 0.176 | |
PO43− | 0.277 | −0.469 | −0.307 | −0.186 | 0.432 | |
SDT | −0.114 | −0.198 | 0.918 | 0.102 | −0.194 | 0.103 |
CE | −0.121 | −0.198 | 0.913 | 0.108 | −0.208 | |
F− | 0.445 | 0.593 | ||||
pH | 0.430 | −0.158 | −0.724 | |||
NH4+ | 0.421 | −0.308 | 0.113 | 0.479 | 0.355 | −0.211 |
SO42− | 0.220 | 0.380 | −0.231 | 0.444 | 0.310 | |
T | 0.141 | 0.700 | ||||
Al3+ | −0.258 | 0.204 | −0.211 | 0.388 | −0.220 | |
Turb 1 | −0.175 | 0.418 | 0.146 | 0.690 | ||
Fe2+ | −0.155 | 0.361 | −0.407 | −0.441 | ||
Eigenvalues | 3.921 | 3.730 | 2.302 | 1.778 | 1.414 | 1.304 |
Explained variance % | 19.603 | 18.648 | 11.509 | 8.891 | 7.071 | 6.519 |
Cumulative % of variance | 19.603 | 38.251 | 49.760 | 58.652 | 65.722 | 72.242 |
S(N) | Captured Aquifers | Watersheds | Station ID | pH | TDS | TH | TAC | pHs | LSI | RSI | Water Types |
---|---|---|---|---|---|---|---|---|---|---|---|
N1 | Basement | Mayo-Rey | DGW | 7.13 | 12.80 | 468.02 | 304.92 | −2.01 | 9.14 | −11.15 | Mg-Ca-HCO3 |
N2 | Basement | Mayo-Rey | SGW | 7.11 | 19.20 | 252.41 | 254.10 | −1.82 | 8.93 | −10.75 | Mg-Ca-HCO3 |
N3 | Basement | Mayo-Rey | SGW | 7.37 | 665.60 | 738.84 | 203.28 | −0.61 | 7.98 | −8.59 | Mg-Ca-HCO3 |
N4 | IS | Mayo-Rey | SGW | 6.99 | 25.60 | 234.01 | 177.87 | −1.23 | 8.22 | −9.44 | Mg-Ca-HCO3 |
N5 | IS | Mayo-Rey | DGW | 7.20 | 12.80 | 217.97 | 203.28 | −1.79 | 8.99 | −10.79 | Mg-Ca-HCO3 |
N6 | Basement | Benue | SGW | 7.45 | 12.80 | 300.53 | 127.05 | −1.37 | 8.82 | −10.18 | Mg-Ca-HCO3 |
N7 | Basement | Benue | SGW | 7.13 | 12.80 | 167.49 | 203.28 | −1.57 | 8.70 | −10.27 | Mg-Ca-HCO3 |
N8 | Basement | Benue | SGW | 7.38 | 12.80 | 1266.29 | 177.87 | −1.81 | 8.90 | −11.00 | Mg-HCO3 |
N9 | Basement | Benue | SGW | 7.34 | 6.40 | 234.01 | 101.64 | −1.57 | 9.19 | −10.45 | Mg-Ca-HCO3 |
N10 | Basement | Benue | SW | 7.70 | 6.40 | 351.02 | 127.05 | −1.85 | 9.55 | −11.40 | Mg-Ca-HCO3 |
N11 | Basement | Benue | DGW | 7.47 | 6.40 | 803.00 | 660.66 | −2.98 | 10.45 | −13.44 | Mg-Ca-HCO3 |
N12 | IS | Benue | SW | 7.53 | 6.40 | 250.05 | 127.05 | −1.35 | 8.88 | −10.22 | Mg-HCO3 |
N13 | IS | Benue | DGW | 7.70 | 12.80 | 621.83 | 355.74 | −2.61 | 10.31 | −12.91 | Mg-Ca-HCO3 |
N14 | Basement | Benue | SGW | 7.68 | 12.8 | 300.53 | 76.23 | −1.18 | 8.86 | −10.04 | Mg-Ca-HCO3 |
N15 | Basement | Benue | DGW | 7.52 | 6.40 | 734.11 | 152.46 | −2.07 | 9.59 | −11.65 | Mg-Ca-HCO3 |
N16 | IS | Benue | DGW | 7.63 | 128.00 | 234.01 | 228.69 | −0.71 | 8.34 | −9.04 | Mg-HCO3 |
N17 | IS | Benue | DGW | 8.09 | 480.00 | 568.99 | 482.79 | −0.90 | 8.99 | −9.90 | Mg-Ca-HCO3 |
N18 | IS | Benue | SGW | 7.08 | 12.80 | 334.98 | 203.28 | −1.95 | 9.03 | −10.98 | Mg-Ca-HCO3 |
N19 | IS | Benue | SGW | 7.03 | 787.20 | 1004.93 | 355.74 | −0.84 | 7.87 | −8.71 | Mg-Ca-HCO3 |
N20 | Basement | Benue | DGW | 7.85 | 422.40 | 669.95 | 559.02 | −1.11 | 8.96 | −10.07 | Mg-Ca-HCO3 |
N21 | Basement | Benue | DGW | 7.88 | 416.00 | 803.00 | 457.38 | −1.10 | 8.98 | −10.08 | Mg-Ca-HCO3 |
N22 | Basement | Benue | DGW | 7.80 | 352.00 | 669.95 | 431.97 | −1.09 | 8.89 | −9.98 | Mg-Ca-HCO3 |
N23 | Basement | Benue | SW | 7.93 | 64.00 | 1000.20 | 127.05 | −1.02 | 8.95 | −9.97 | Mg-HCO3 |
N24 | Basement | Benue | DGW | 7.85 | 512.00 | 1020.97 | 584.43 | −1.19 | 9.04 | −10.24 | Mg-Ca-HCO3 |
N25 | Basement | Benue | DGW | 7.74 | 358.40 | 685.99 | 431.97 | −1.01 | 8.75 | −9.77 | Mg-Ca-HCO3 |
N26 | Basement | Benue | DGW | 7.86 | 6.40 | 718.07 | 431.97 | −2.62 | 10.48 | −13.11 | Mg-Ca-HCO3 |
N27 | Basement | Benue | DGW | 7.87 | 19.20 | 217.97 | 203.28 | −1.60 | 9.47 | −11.08 | Mg-Ca-HCO3 |
N28 | Basement | Benue | DGW | 7.58 | 486.40 | 887.92 | 574.27 | −1.21 | 8.79 | −10.00 | Mg-Ca-HCO3 |
N29 | Basement | Benue | DGW | 7.44 | 76.80 | 234.01 | 127.05 | −0.60 | 8.04 | −8.64 | Mg-Ca-HCO3 |
N30 | Basement | Benue | SW | 7.44 | 51.20 | 234.01 | 127.05 | −0.72 | 8.16 | −8.89 | Mg-Ca-HCO3 |
N31 | Basement | Benue | DGW | 7.24 | 172.80 | 217.97 | 127.05 | −0.42 | 7.66 | −8.07 | Mg-Ca-HCO3 |
N32 | Basement | Benue | SW | 7.43 | 76.80 | 100.97 | 152.46 | −0.72 | 8.15 | −8.88 | Mg-Ca-HCO3-Cl |
N33 | Basement | Faro-et-Déo | DGW | 7.27 | 6.40 | 234.01 | 152.46 | −1.83 | 9.10 | −10.92 | Mg-Ca-HCO3 |
N34 | Basement | Faro-et-Déo | DGW | 7.04 | 6.40 | 167.49 | 127.05 | −1.71 | 8.75 | −10.46 | Mg-Ca-Cl-HCO3 |
N35 | Basement | Benue | DGW | 7.27 | 38.40 | 318.94 | 254.10 | −1.65 | 8.92 | −10.57 | Mg-Ca-HCO3 |
N36 | Basement | Benue | SW | 7.49 | 32.00 | 601.07 | 177.87 | −1.54 | 9.03 | −10.56 | Mg-Ca-HCO3 |
N37 | Basement | Benue | DGW | 7.36 | 697.60 | 954.44 | 431.97 | −0.92 | 8.28 | −9.20 | Mg-Ca-HCO3 |
N38 | Basement | Benue | DGW | 7.78 | 403.20 | 1020.97 | 584.43 | −1.28 | 9.06 | −10.34 | Mg-Ca-HCO3 |
N39 | Basement | Benue | DGW | 8.01 | 12.80 | 871.88 | 686.07 | −2.88 | 10.89 | −13.77 | Mg-Ca-HCO3 |
N40 | Basement | Benue | DGW | 8.07 | 6.40 | 770.92 | 431.97 | −2.89 | 10.96 | −13.86 | Mg-Ca-HCO3 |
S(A) | Captured Aquifers | Watersheds | Station ID | pH | TDS | TH | TAC | pHs | LSI | RSI | Water Types |
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | Volcanic | Mayo-Rey | SGW | 8.64 | 0.00 | 334.98 | 203.28 | nd | nd | nd | Mg-Ca-HCO3 |
A2 | Basement | Mayo-Rey | DGW | 6.83 | 12.80 | 167.49 | 101.64 | −1.17 | 8.00 | −9.16 | Mg-Ca-HCO3 |
A3 | Basement | Mayo-Rey | SGW | 6.90 | 12.80 | 402.38 | 101.64 | −1.83 | 8.73 | −10.56 | Mg-Ca-HCO3 |
A4 | Volcanic | Faro-et-Déo | DGW | 8.27 | 9.60 | 100.97 | 101.64 | −1.32 | 9.59 | −10.90 | Mg-Ca-HCO3 |
A5 | Basement | Djérem | DGW | 8.21 | 6.40 | 167.49 | 152.46 | −1.68 | 9.89 | −11.57 | Mg-Ca-HCO3 |
A6 | Basement | Djérem | DGW | 7.87 | 6.40 | 234.01 | 101.64 | −1.52 | 9.39 | −10.91 | Mg-Ca-HCO3 |
A7 | Basement | Djérem | DGW | 7.82 | 83.20 | 167.49 | 177.87 | −0.65 | 8.47 | −9.12 | Mg-Ca-HCO3 |
A8 | Basement | Djérem | DGW | 7.48 | 6.40 | 234.01 | 111.6 | −1.49 | 8.97 | −10.46 | Mg-Ca-HCO3 |
A9 | Basement | Djérem | SGW | 7.54 | 6.40 | 117.01 | 76.23 | −1.08 | 8.62 | −9.69 | Mg-Ca-HCO3 |
A10 | Basement | Djérem | SGW | 7.55 | 6.40 | 117.01 | 91.48 | −1.18 | 8.73 | −9.92 | Mg-Ca-HCO3 |
A11 | Basement | Djérem | SGW | 7.69 | 6.40 | 100.97 | 91.48 | −1.47 | 9.16 | −10.63 | Mg-Ca-HCO3 |
A12 | Basement | Djérem | SGW | 8.28 | 6.40 | 334.98 | 152.46 | −2.00 | 10.28 | −12.27 | Mg-Ca-HCO3 |
A13 | Basement | Djérem | DGW | 8.24 | 6.40 | 234.01 | 50.82 | −1.24 | 9.48 | −10.72 | Mg-Ca-HCO3 |
A14 | Basement | Djérem | SGW | 8.23 | 3.20 | 167.49 | 76.23 | −1.69 | 9.92 | −11.61 | Mg-Ca-HCO3 |
A15 | Basement | Djérem | SGW | 8.26 | 6.40 | 167.69 | 66.07 | −1.32 | 9.58 | −10.89 | Mg-Ca-HCO3 |
A16 | Basement | Djérem | SGW | 8.24 | 6.40 | 167.49 | 66.07 | −1.32 | 9.56 | −10.88 | Mg-Ca-HCO3-Cl |
A17 | Basement | Djérem | SW | 8.25 | 6.40 | 167.69 | 127.05 | −1.62 | 9.87 | −11.50 | Mg-Ca-HCO3 |
A18 | Basement | Djérem | DGW | 7.59 | 6.40 | 234.01 | 101.64 | −1.54 | 9.13 | −10.67 | Mg-Ca-HCO3 |
A19 | Basement | Djérem | SGW | 7.64 | 28.80 | 234.01 | 50.82 | −0.58 | 8.22 | −8.80 | Mg-Ca-HCO3 |
A20 | Basement | Djérem | SGW | 7.42 | 6.40 | 468.02 | 50.82 | −1.54 | 8.96 | −10.51 | Mg-Ca |
A21 | Basement | Djérem | DGW | 8.18 | 6.40 | 234.01 | 193.12 | −1.88 | 10.06 | −11.93 | Mg-Ca-HCO3 |
A22 | Basement | Djérem | DGW | 8.16 | 0.00 | 217.97 | 76.23 | nd | nd | nd | Mg-Ca-HCO3 |
A23 | Basement | Djérem | DGW | 8.30 | 3.20 | 867.16 | 228.69 | −2.49 | 10.79 | −13.27 | Mg-HCO3 |
A24 | Basement | Djérem | DGW | 8.27 | 6.40 | 284.49 | 218.53 | −2.03 | 10.30 | −12.33 | Mg-Ca-HCO3 |
A25 | Basement | Djérem | DGW | 8.26 | 6.40 | 167.69 | 101.64 | −1.51 | 9.77 | −11.29 | Mg-Ca-HCO3 |
A26 | Basement | Djérem | DGW | 8.24 | 6.40 | 117.01 | 76.23 | −1.09 | 9.33 | −10.42 | Mg-Ca-HCO3 |
A27 | Basement | Djérem | DGW | 8.38 | 6.40 | 468.02 | 330.33 | −2.34 | 10.72 | −13.05 | Mg-Ca-HCO3 |
A28 | Basement | Djérem | DGW | 8.25 | 6.40 | 234.01 | 101.64 | −1.52 | 9.77 | −11.29 | Mg-Ca-HCO3 |
A29 | Basement | Djérem | DGW | 8.27 | 6.40 | 250.05 | 76.23 | −1.08 | 9.35 | −10.43 | Mg-HCO3 |
A30 | Basement | Djérem | DGW | 8.25 | 6.40 | 446.88 | 152.46 | −1.69 | 9.94 | −11.63 | Mg-HCO3 |
A31 | Basement | Mbéré | SGW | 8.30 | 6.40 | 667.59 | 203.28 | −2.11 | 10.41 | −12.51 | Mg-Ca-HCO3 |
A32 | Basement | Mbéré | DGW | 8.29 | 6.40 | 346.87 | 91.48 | −1.76 | 10.05 | −11.82 | Mg-Ca-HCO3-Cl |
A33 | Basement | Mbéré | SGW | 8.37 | 6.40 | 601.07 | 203.28 | −2.12 | 10.49 | −12.61 | Mg-Ca-HCO3-Cl |
A34 | Basement | Mbéré | SGW | 8.28 | 6.40 | 284.49 | 142.30 | −1.84 | 10.12 | −11.96 | Mg-Ca-HCO3 |
Reactions | Reaction Equations of Minerals Dissolution | Ratio |
---|---|---|
a 3 | (dolomite) + + + | Ca:HCO3 = 1:2; Mg:HCO3 = 1:2 |
a 4 | (Clinopyroxene) + + O ↦ + + + + + | Ca:HCO3 = 0.4:1.9; Mg:HCO3 = 0.9:1.9 |
b 5 | (olivine) + + O ↦ + + + | Mg:HCO3 = 1:2 |
a 6 | (Amphibole) + + O + + + | Ca:HCO3 = 2:7; Mg:HCO3 = 4:7 |
c 7 | ) (Biotite) + + + + + | Mg:HCO3 = 2:4; K:HCO3 = 1:4 |
d 8 | (Orthopyroxene) + + O ↦ + + + + | Mg:HCO3 = 0.9:1.9 |
e 9 | (Spinel) + + O ↦ + + | Mg:HCO3 = 1:2 |
c 10 | (anorthite) + + O ↦ + + | Ca:HCO3 = 1:2 |
f 11 | (Fluorapatite) + + O ↦ + + | Ca:HCO3 = 5:3 |
a 12 | (K-feldspar) + + + + + | K: HCO3 = 1:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dammi Djimi, E.G.; Abia, A.L.K.; Belibi Belibi, P.D.; Takam Soh, P.; Che, R.N.; Ghogomu, J.N.; Ketcha, J.M. Multivariate Statistical and Hydrochemical Analysis of Drinking Water Resources in Northern Cameroon Watersheds. Water 2021, 13, 3055. https://doi.org/10.3390/w13213055
Dammi Djimi EG, Abia ALK, Belibi Belibi PD, Takam Soh P, Che RN, Ghogomu JN, Ketcha JM. Multivariate Statistical and Hydrochemical Analysis of Drinking Water Resources in Northern Cameroon Watersheds. Water. 2021; 13(21):3055. https://doi.org/10.3390/w13213055
Chicago/Turabian StyleDammi Djimi, Estelle Gaëlle, Akebe Luther King Abia, Placide Désiré Belibi Belibi, Patrice Takam Soh, Randy Nanga Che, Julius Numbonui Ghogomu, and Joseph Mbadcam Ketcha. 2021. "Multivariate Statistical and Hydrochemical Analysis of Drinking Water Resources in Northern Cameroon Watersheds" Water 13, no. 21: 3055. https://doi.org/10.3390/w13213055
APA StyleDammi Djimi, E. G., Abia, A. L. K., Belibi Belibi, P. D., Takam Soh, P., Che, R. N., Ghogomu, J. N., & Ketcha, J. M. (2021). Multivariate Statistical and Hydrochemical Analysis of Drinking Water Resources in Northern Cameroon Watersheds. Water, 13(21), 3055. https://doi.org/10.3390/w13213055