A Comparative Study of Scenedesmus dimorphus Cultured with Synthetic and Actual Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Strain and Culture
2.2. Analytical Methods
2.3. Experimental Design
2.3.1. The Effect of Nutrients in Synthetic Wastewater
2.3.2. The Effect of Wastewater Quality and Bacteria in Actual Wastewater
2.3.3. The Effect of Illumination Conditions
2.3.4. The Effect of CO2 Conditions
3. Results and Discussion
3.1. The Effect of Nutrients in Synthetic Wastewater on the Growth of S. dimorphus
3.2. The Effect of Wastewater Quality and Bacteria in Actual Wastewater on the Growth of S. dimorphus
3.3. The Effect of Illumination Conditions in Synthetic and Actual Wastewater on the Growth of S. dimorphus
3.4. The Effect of CO2 in Synthetic and Actual Wastewater on the Growth of S. dimorphus
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Munir, A.; Hanjraa, J.B.G.C. Wastewater irrigation and environmental health Implications for water governance and public policy. Int. J. Hyg. Environ. Health 2012, 215, 255–269. [Google Scholar]
- Hu, K.; Zhao, Q.L.; Chen, W.; Wang, W.; Han, F.; Shen, X.H. Appropriate technologies for upgrading wastewater treatment plants: Methods review and case studies in China. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2018, 53, 1207. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Tong, Y.W.; Dikshit, A.K. CO2-assisted removal of nutrients from municipal wastewater by microalgae Chlorella vulgaris and Scenedesmus obliquus. Int. J. Environ. Sci. Technol. 2018, 15, 2183. [Google Scholar] [CrossRef]
- Mehariya, S.; Goswami, R.K.; Verma, P.; Lavecchia, R.; Zuorro, A. Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries. Energies 2021, 14, 2282. [Google Scholar] [CrossRef]
- Tan, F.; Wang, Z.; Zhouyang, S.; Li, H.; Xie, Y.; Wang, Y.; Zheng, Y.; Li, Q. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry. Bioresour. Technol. 2016, 221, 385. [Google Scholar] [CrossRef]
- Saavedra, R.; Munoz, R.; Taboada, M.E.; Vega, M.; Bolado, S. Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresour. Technol. 2018, 263, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuorro, A.; Lavecchia, R.; Maffei, G.; Marra, F.; Miglietta, S.; Petrangeli, A.; Familiari, G.; Valente, T. Enhanced Lipid Extraction from Unbroken Microalgal Cells Using Enzymes. In Proceedings of the Icheap12: 12th International Conference On Chemical & Process Engineering, Milano, Italy, 19–22 May 2015; Volume 43, pp. 211–216. [Google Scholar]
- Li, F.; Yang, Z.; Zeng, R.; Yang, G.; Chang, X.; Yan, J.; Hou, Y. Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind. Eng. Chem. Res. 2011, 50, 6496. [Google Scholar] [CrossRef]
- Molitor, H.R.; Moore, E.J.; Schnoor, J.L. Maximum CO2 utilization by nutritious microalgae. ACS Sustain. Chem. Eng. 2019, 7, 9474. [Google Scholar] [CrossRef]
- Roberts, G.W.; Fortier, M.P.; Sturm, B.S.M.; Stagg-Williams, S.M. Promising pathway for algal biofuels through wastewater cultivation and hydrothermal conversion. Energy Fuels 2013, 27, 857. [Google Scholar] [CrossRef]
- Carvalho, A.R.; Perez-Pereira, A.I.; Couto, C.M.C.; Tiritan, M.E.; Ribeiro, C.M.R. Assessment of effluents quality through ecotoxicological assays: Evaluation of three wastewater treatment plants with different technologies. Environ. Sci. Pollut. Res. Int. 2021. [Google Scholar] [CrossRef]
- Diniz, G.S.; Silva, A.F.; Araujo, O.Q.F.; Chaloub, R.M. The potential of microalgal biomass production for biotechnological purposes using wastewater resources. J. Appl. Phycol. 2017, 29, 821. [Google Scholar] [CrossRef]
- Li, Y.; Tarpeh, W.A.; Nelson, K.L.; Strathmann, T.J. Quantitative evaluation of an integrated system for valorization of wastewater algae as bio-oil, fuel gas, and fertilizer products. Environ. Sci. Technol. 2018, 52, 12717. [Google Scholar] [CrossRef]
- Goswami, R.K.; Mehariya, S.; Verma, P.; Lavecchia, R.; Zuorro, A. Microalgae-based biorefineries for sustainable resource recovery from wastewater. J. Water Process. Eng. 2021, 40, 101747. [Google Scholar] [CrossRef]
- Zhuang, L.; Yu, D.; Zhang, J.; Liu, F.; Wu, Y.; Zhang, T.; Dao, G.; Hu, H. The characteristics and influencing factors of the attached microalgae cultivation: A review. Renew. Sustain. Energy Rev. 2018, 94, 1110. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, W.; Fu, Z.; Cheng, Y.; Min, M.; Liu, Y.; Zhang, Y.; Chen, P.; Ruan, R. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresour. Technol. 2014, 167, 8. [Google Scholar] [CrossRef]
- Sayara, T.; Khayat, S.; Saleh, J.; Abu-Khalaf, N.; van der Steen, P. Algal–bacterial symbiosis for nutrients removal from wastewater: The application of multivariate data analysis for process monitoring and control. Environ. Technol. Innov. 2021, 23, 101548. [Google Scholar] [CrossRef]
- Annelies, B.; Erik, S.; Koenraad, M. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res. 2015, 77, 98–106. [Google Scholar]
- Arumugam, M.; Agarwal, A.; Arya, M.C.; Ahmed, Z. Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresour. Technol. 2013, 131, 246. [Google Scholar] [CrossRef]
- Coleman, J.R. The molecular and biochemical analyses of CO2-concentrating mechanisms in cyanobacteria and. Plant Cell Environ. 1991, 14, 861. [Google Scholar] [CrossRef]
- Goncalves, A.L.; Rodrigues, C.M.; Pires, J.C.M.; Simoes, M. The effect of increasing CO2 concentrations on its capture, biomass production and wastewater bioremediation by microalgae and cyanobacteria. Algal Res. 2016, 14, 127. [Google Scholar] [CrossRef]
- Ho, S.; Chen, C.; Chang, J. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 2012, 113, 244. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Lee, S.; Ko, S.; Oh, H.; Ahn, C. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Res. 2015, 68, 680. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Marin, A.; Mendoza-Espinosa, L.G.; Stephenson, T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour. Technol. 2010, 101, 58. [Google Scholar] [CrossRef]
- Arvin, E. The influence of pH and calcium ions upon phosphorus transformations in biological wastewater treatment plants. Prog. Wat. Tech. 1979, S1, 19–40. [Google Scholar]
- Campos, H.; Boeing, W.J.; Dungan, B.N.; Schaub, T. Cultivating the marine microalga Nannochloropsis salina under various nitrogen sources: Effect on biovolume yields, lipid content and composition, and invasive organisms. Biomass Bioenergy 2014, 66, 301. [Google Scholar] [CrossRef]
- Mandal, S.; Shurin, J.B.; Efroymson, R.A.; Mathews, T.J. Heterogeneity in Nitrogen Sources Enhances Productivity and Nutrient Use Efficiency in Algal Polycultures. Environ. Sci. Technol. 2018, 52, 3769. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, H.; Gan, K.; Yang, J. Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp LX1 under different kinds of nitrogen sources. Ecol. Eng. 2010, 36, 379. [Google Scholar]
- Lavoie, M.; Le Faucheur, S.; Boullemant, A.; Fortin, C.; Campbell, P.G.C. The influence of pH on algal cell membrane permeabrane permeability and its implications for the uptake of lipophilic metal. J. Phycol. 2012, 48, 293. [Google Scholar] [CrossRef]
- Acuna-Alonso, C.; Lorenzo, O.; Alvarez, X.; Cancela, A.; Valero, E.; Sanchez, A. Influence of Microcystis sp. and freshwater algae on pH: Changes in their growth associated with sediment. Environ. Pollut. 2020, 263, 114435. [Google Scholar] [CrossRef]
- Sharma, V.K.; Kumar, H.D. Influence of pH and concentration of phosphare ions on growth-fixation in a blue-green-alga cylindrospermum-maus. Experientia 1975, 31, 182. [Google Scholar] [CrossRef]
- Liu, H.; Lu, Q.; Wang, Q.; Liu, W.; Wei, Q.; Ren, H.; Ming, C.; Min, M.; Chen, P.; Ruan, R. Isolation of a bacterial strain, Acinetobacter sp from centrate wastewater and study of its cooperation with algae in nutrients removal. Bioresour. Technol. 2017, 235, 59. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Mennerich, A.; Urban, B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res. 2011, 45, 3351. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Ergas, S.; Yuan, X.; Sahu, A.; Zhang, Q.; Dewulf, J.; Malcata, F.X.; van Langenhove, H. Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions. Trends Biotechnol. 2010, 28, 371. [Google Scholar] [CrossRef] [PubMed]
- Justine, S.V.E.; Yuzhu, W.; Katja, C.F.G.; Edwin, M.F.; AlberTinka, J.M. Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria. Mar. Pollut. Bull. 2016, 104, 294–302. [Google Scholar]
- Li, Y.; Zhou, W.; Hu, B.; Min, M.; Chen, P.; Ruan, R.R. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater. Biotechnol. Bioeng. 2012, 109, 2222. [Google Scholar] [CrossRef]
- Razzak, S.A.; Hossain, M.M.; Lucky, R.A.; Bassi, A.S.; de Lasa, H. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renew. Sustain. Energy Rev. 2013, 27, 622. [Google Scholar] [CrossRef]
Medium Composition | Consumption |
---|---|
soluble starch (g) | 0.10 |
urea (g) | 0.15 |
MgSO4·7H2O (g) | 0.075 |
(NH4)2SO4 (g) | 0.075 |
NaHCO3 (g) | 0.30 |
K2HPO4·2H2O (mg/L) | 0.05 |
FeCl3(1%) (mL) | 0.15 |
milk powder (g) | 0.2 |
tap water (mL) | 1000 |
Water Quality Index | Concentration |
---|---|
pH | 7.4–8.0 |
SS (mg/L) | 98 |
COD (mg/L) | 340–400 |
NH4+-N (mg/L) | 10–15 |
TN (mg/L) | 70–80 |
TP (mg/L) | 5–7 |
Water Quality Index | Concentration in PT Wastewater | Concentration in ST Wastewater |
---|---|---|
pH | 7.8 | 7.9 |
SS (mg/L) | 122 | 34 |
COD (mg/L) | 188 | 45.6 |
NH4+-N (mg/L) | 46.5 | 23.2 |
NO3−-N (mg/L) | 0.8 | 7.3 |
NO2−-N (mg/L) | 0.375 | 0 |
TP (mg/L) | 2.77 | 2 |
Group | Phosphorus Concentration (mg/L) | pH |
---|---|---|
1 | 2.0 | 5.0 |
2 | 2.0 | 9.0 |
3 | 4.0 | 7.0 |
4 | 4.0 | 11.0 |
5 | 6.0 | 8.0 |
6 | 6.0 | 4.0 |
7 | 8.0 | 6.0 |
8 | 8.0 | 10.0 |
Group | Light Intensity (lux) | Time |
---|---|---|
1 | 15,000 | 12 |
2 | 15,000 | 24 |
3 | 12,500 | 4 |
4 | 12,500 | 16 |
5 | 10,000 | 8 |
6 | 10,000 | 20 |
7 | 7500 | 20 |
8 | 7500 | 4 |
9 | 5000 | 16 |
10 | 5000 | 12 |
11 | 2500 | 24 |
12 | 2500 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Chi, K. A Comparative Study of Scenedesmus dimorphus Cultured with Synthetic and Actual Wastewater. Water 2021, 13, 3060. https://doi.org/10.3390/w13213060
Li L, Chi K. A Comparative Study of Scenedesmus dimorphus Cultured with Synthetic and Actual Wastewater. Water. 2021; 13(21):3060. https://doi.org/10.3390/w13213060
Chicago/Turabian StyleLi, Liang, and Kun Chi. 2021. "A Comparative Study of Scenedesmus dimorphus Cultured with Synthetic and Actual Wastewater" Water 13, no. 21: 3060. https://doi.org/10.3390/w13213060
APA StyleLi, L., & Chi, K. (2021). A Comparative Study of Scenedesmus dimorphus Cultured with Synthetic and Actual Wastewater. Water, 13(21), 3060. https://doi.org/10.3390/w13213060