Biofilm and Related Amoebas in an UK Chlorinated Drinking Water System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Facility and Conditions
2.2. Water Physico-Chemistry
2.3. Microbial Communities Sampling
2.4. Analysis of Microbial Communities and Amoebae Presence
2.5. Assessment of the Microbial Community Composition
2.6. Spearman Correlations
3. Results
3.1. Water Characteristics
3.2. Amoeba Presence and the Total Microbial Community
3.3. Bacterial Community Analysis in Biofilm Samples
3.4. Correlation between Physicochemical and Microbial Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samba-Louaka, A.; Delafont, V.; Rodier, M.H.; Cateau, E.; Héchard, Y. Free-living amoebae and squatters in the wild: Ecological and molecular features. FEMS Microbiol. Rev. 2019, 43, 415–434. [Google Scholar] [CrossRef]
- Paszko-Kolva, C.; Yamamoto, H.; Shahamat, M.; Sawyer, T.K.; Morris, G.; Colwell, R.R. Isolation of amoebae and Pseudomonas and Legionella spp. from eyewash stations. Appl. Environ. Microbiol. 1991, 57, 163–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, F.C. An Illustrated Key to Freshwater and Soil Amoebae: With Notes on Cultivation and Ecology; Freshwater Biological Association: Ambleside, UK, 1976; ISBN-10 9780900386268. [Google Scholar]
- Masangkay, F.; Milanez, G.; Karanis, P.; Nissapatorn, V. Vermamoeba vermiformis-global trend and future perspective. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: New York, NY, USA, 2019; pp. 356–366. ISBN 9780444639523. [Google Scholar]
- Schuster, F.L.; Visvesvara, G.S. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int. J. Parasitol. 2004, 34, 1001–1027. [Google Scholar] [CrossRef] [PubMed]
- Visvesvara, G.S.; Moura, H.; Schuster, F.L. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 2007, 50, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Cain, A.R.; Wiley, P.F.; Brownell, B.; Warhurst, D.C. Primary amoebic meningoencephalitis. Arch. Dis. Child. 1981, 56, 140–143. [Google Scholar] [CrossRef]
- Symmers, W.S. Primary Amoebic Meningoencephalitis in Britain. Br. Med. J. 1969, 4, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Seal, D.; Stapleton, F.; Dart, J. Possible environmental sources of Acanthamoeba spp in contact lens wearers. Br. J. Ophthalmol. 1992, 76, 424–427. [Google Scholar] [CrossRef] [Green Version]
- Bacon, A.S.; Frazer, D.G.; Dart, J.K.; Matheson, A.S.; Ficker, L.A.; Wright, P. A review of 72 consecutive cases of acanthamoeba keratitis, 1984–1992. Eye 1993, 7, 719–725. [Google Scholar] [CrossRef]
- Radford, C.F.; Minassian, D.C.; Dart, J.K. Acanthamoeba keratitis in England and Wales: Incidence, outcome, and risk factors. Br. J. Ophthalmol. 2002, 86, 536–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilvington, S.; Gray, T.; Dart, J.; Morlet, N.; Beeching, J.R.; Frazer, D.G.; Matheson, M. Acanthamoeba Keratitis: The Role of Domestic Tap Water Contamination in the United Kingdom. Investig. Ophthalmol. Vis. Sci. 2004, 45, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Chawla, A.; Armstrong, M.; Carley, F. Acanthamoeba keratitis—An increasing incidence. Contact Lens Anterior Eye 2014, 37, 120. [Google Scholar] [CrossRef]
- Carnt, N.; Robaei, D.; Minassian, D.C.; Dart, J.K. Acanthamoeba keratitis in 194 patients: Risk factors for bad outcomes and severe inflammatory complications. Br. J. Ophthalmol. 2018, 102, 1431–1435. [Google Scholar] [CrossRef]
- Carnt, N.; Hoffman, J.J.; Verma, S.; Hau, S.; Radford, C.F.; Minassian, D.C.; Dart, J.K. Acanthamoeba keratitis: Confirmation of the UK outbreak and a prospective case-control study identifying contributing risk factors. Br. J. Ophthalmol. 2018, 102, 1621–1628. [Google Scholar] [CrossRef] [Green Version]
- Hassan, F.; Bhatti, A.; Desai, R.; Barua, A. Analysis from a year of increased cases of Acanthamoeba Keratitis in a large teaching hospital in the UK. Contact Lens Anterior Eye 2019, 42, 506–511. [Google Scholar] [CrossRef]
- Carnt, N.A.; Subedi, D.; Connor, S.; Kilvington, S. The relationship between environmental sources and the susceptibility of Acanthamoeba keratitis in the United Kingdom. PLoS ONE 2020, 15, e0229681. [Google Scholar] [CrossRef]
- Höllhumer, R.; Keay, L.; Watson, S.L. Acanthamoeba keratitis in Australia: Demographics, associated factors, presentation and outcomes: A 15-year case review. Eye 2020, 34, 725–732. [Google Scholar] [CrossRef]
- Maciver, S.K.; Piñero, J.E.; Lorenzo-Morales, J. Is Naegleria fowleri an Emerging Parasite? Trends Parasitol. 2020, 36, 19–28. [Google Scholar] [CrossRef]
- Ma, P.; Visvesvara, G.S.; Martinez, A.J.; Theodore, F.H.; Daggett, P.M.; Sawyer, T.K. Naegleria and acanthamoeba infections: Review. Clin. Infect. Dis. 1990, 12, 490–513. [Google Scholar] [CrossRef]
- Cope, J.R.; Ali, I.K. Primary Amebic Meningoencephalitis: What Have We Learned in the Last 5 Years? Curr. Infect. Dis. Rep. 2016, 18, 31. [Google Scholar] [CrossRef]
- Dorsch, M.M.; Branch, E.; South Australian Health Commission. Primary Amoebic Meningoencephalitis: An Historical and Epidemiological Perspective with Particular Reference to South Australia; Epidemiology Branch South Australian Health Commision: Adelaide, Australia, 1982. [Google Scholar]
- Gharpure, R.; Bliton, J.; Goodman, A.; Ali, I.K.; Yoder, J.; Cope, J.R. Epidemiology and Clinical Characteristics of Primary Amebic Meningoencephalitis Caused by Naegleria fowleri: A Global Review. Clin. Infect. Dis. 2020, 73, e19–e27. [Google Scholar] [CrossRef]
- Patel, A.; Hammersmith, K. Contact lens-related microbial keratitis: Recent outbreaks. Curr. Opin. Ophthalmol. 2008, 19, 302–306. [Google Scholar] [CrossRef]
- Stehr-Green, J.K.; Bailey, T.M.; Visvesvara, G.S. The Epidemiology of Acanthamoeba Keratitis in the United States. Am. J. Ophthalmol. 1989, 107, 331–336. [Google Scholar] [CrossRef]
- Puzon, G.J.; Miller, H.C.; Malinowski, N.; Walsh, T.; Morgan, M.J. Naegleria fowleri in drinking water distribution systems. Curr. Opin. Environ. Sci. Health 2020, 16, 22–27. [Google Scholar] [CrossRef]
- Huang, J.; Chen, S.; Ma, X.; Yu, P.; Zuo, P.; Shi, B.; Wang, H.; Alvarez, P.J. Opportunistic pathogens and their health risk in four full-scale drinking water treatment and distribution systems. Ecol. Eng. 2021, 160, 106134. [Google Scholar] [CrossRef]
- Morgan, M.J.; Halstrom, S.; Wylie, J.T.; Walsh, T.; Kaksonen, A.H.; Sutton, D.; Braun, K.; Puzon, G.J. Characterization of a Drinking Water Distribution Pipeline Terminally Colonized by Naegleria fowleri. Environ. Sci. Technol. 2016, 50, 2890–2898. [Google Scholar] [CrossRef]
- Flemming, H.C.; Percival, S.L.; Walker, J.T. Contamination potential of biofilms in water distribution systems. Water Sci. Technol. Water Supply 2002, 2, 271–280. [Google Scholar] [CrossRef]
- Hoffmann, R.; Michel, R. Distribution of free-living amoebae (FLA) during preparation and supply of drinking water. Int. J. Hyg. Environ. Health 2001, 203, 215–219. [Google Scholar] [CrossRef]
- Cooper, A.M.; Aouthmany, S.; Shah, K.; Rega, P.P. Killer amoebas: Primary amoebic meningoencephalitis in a changing climate. J. Am. Acad. Physician Assist. 2019, 32, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Gharpure, R.; Gleason, M.; Salah, Z.; Blackstock, A.J.; Hess-Homeier, D.; Yoder, J.S.; Ali, I.K.; Collier, S.A.; Cope, J.R. Geographic range of recreational water-associated primary amebic meningoencephalitis, United States, 1978–2018. Emerg. Infect. Dis. 2021, 27, 271–274. [Google Scholar] [CrossRef]
- Siddiqui, R.; Khan, N.A. Biology and pathogenesis of Acanthamoeba. Parasites Vectors 2012, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Thomas, V.; McDonnell, G.; Denyer, S.P.; Maillard, J.Y. Free-living amoebae and their intracellular pathogenic microorganisms: Risks for water quality. FEMS Microbiol. Rev. 2010, 34, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Scheid, P. Free-Living Amoebae as Human Parasites and Hosts for Pathogenic Microorganisms. Proceedings 2018, 2, 692. [Google Scholar] [CrossRef] [Green Version]
- Balczun, C.; Scheid, P.L. Free-living amoebae as hosts for and vectors of intracellular microorganisms with public health significance. Viruses 2017, 9, 65. [Google Scholar] [CrossRef]
- Greub, G.; Raoult, D. Microorganisms Resistant to Free-Living Amoebae. Clin. Microbiol. Rev. 2004, 17, 413–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, T.K.; Soares, S.S.; Benitez, L.B.; Rott, M.B. Interaction Between Methicillin-Resistant Staphylococcus aureus (MRSA) and Acanthamoeba polyphaga. Curr. Microbiol. 2017, 74, 541–549. [Google Scholar] [CrossRef]
- Cirillo, J.D.; Falkow, S.; Tompkins, L.S. Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect. Immun. 1994, 62, 3254–3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirillo, J.D.; Falkow, S.; Tompkins, L.S.; Bermudez, L.E. Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect. Immun. 1997, 65, 3759–3767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nora, T.; Lomma, M.; Gomez-Valero, L.; Buchrieser, C. Molecular mimicry: An important virulence strategy employed by Legionella pneumophila to subvert host functions. Future Microbiol. 2009, 4, 691–701. [Google Scholar] [CrossRef]
- WHO. WHO Drinking Water Guideline; World Health Organisation Chronicle; WHO: Geneva, Switzerland, 2017; ISBN 9789241549950. [Google Scholar]
- Douterelo, I.; Fish, K.E.; Boxall, J.B. Succession of bacterial and fungal communities within biofilms of a chlorinated drinking water distribution system. Water Res. 2018, 141, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Deines, P.; Sekar, R.; Husband, P.S.; Boxall, J.B.; Osborn, A.M.; Biggs, C.A. A new coupon design for simultaneous analysis of in situ microbial biofilm formation and community structure in drinking water distribution systems. Appl. Microbiol. Biotechnol. 2010, 87, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.C.; Wylie, J.; Dejean, G.; Kaksonen, A.H.; Sutton, D.; Braun, K.; Puzon, G.J. Reduced Efficiency of Chlorine Disinfection of Naegleria fowleri in a Drinking Water Distribution Biofilm. Environ. Sci. Technol. 2015, 49, 11125–11131. [Google Scholar] [CrossRef] [PubMed]
- Puzon, G.J.; Lancaster, J.A.; Wylie, J.T.; Plumb, J.J. Rapid detection of Naegleria fowleri in water distribution pipeline biofilms and drinking water samples. Environ. Sci. Technol. 2009, 43, 6691–6696. [Google Scholar] [CrossRef]
- Miller, H.C.; Wylie, J.T.; Kaksonen, A.H.; Sutton, D.; Puzon, G.J. Competition between Naegleria fowleri and Free Living Amoeba Colonizing Laboratory Scale and Operational Drinking Water Distribution Systems. Environ. Sci. Technol. 2018, 52, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.C.; Morgan, M.J.; Walsh, T.; Wylie, J.T.; Kaksonen, A.H.; Puzon, G.J. Preferential feeding in Naegleria fowleri; intracellular bacteria isolated from amoebae in operational drinking water distribution systems. Water Res. 2018, 141, 126–134. [Google Scholar] [CrossRef]
- Pélandakis, M.; Serre, S.; Pernin, P. Analysis of the 5.8S rRNA gene and the internal transcribed spacers in Naegleria spp. and in N. fowleri. J. Eukaryot. Microbiol. 2000, 47, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, J.M.; Booton, G.C.; Hay, J.; Niszl, I.A.; Seal, D.V.; Markus, M.B.; Fuerst, P.A.; Byers, T.J. Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoebae from humans with keratitis and from sewage sludge. J. Clin. Microbiol. 2001, 39, 1903–1911. [Google Scholar] [CrossRef] [Green Version]
- Bruckberger, M.C.; Gleeson, D.B.; Bastow, T.P.; Morgan, M.J.; Walsh, T.; Rayner, J.L.; Davis, G.B.; Puzon, G.J. Unravelling microbial communities associated with different light non-aqueous phase liquid types undergoing natural source zone depletion processes at a legacy petroleum site. Water 2021, 13, 898. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Goudot, S.; Herbelin, P.; Mathieu, L.; Soreau, S.; Banas, S.; Jorand, F. Growth dynamic of Naegleria fowleri in a microbial freshwater biofilm. Water Res. 2012, 46, 3958–3966. [Google Scholar] [CrossRef]
- Carpitella, S.; Del Olmo, G.; Izquierdo, J.; Husband, S.; Boxall, J.; Douterelo, I. Decision-making tools to manage the microbiology of drinking water distribution systems. Water 2020, 12, 1247. [Google Scholar] [CrossRef]
- Delafont, V.; Brouke, A.; Bouchon, D.; Moulin, L.; Héchard, Y. Microbiome of free-living amoebae isolated from drinking water. Water Res. 2013, 47, 6958–6965. [Google Scholar] [CrossRef]
- Wang, H.; Edwards, M.; Falkinham, J.O.; Pruden, A. Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Appl. Environ. Microbiol. 2012, 78, 6285–6294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douterelo, I.; Sharpe, R.L.; Husband, S.; Fish, K.E.; Boxall, J.B. Understanding microbial ecology to improve management of drinking water distribution systems. Wiley Interdiscip. Rev. Water 2019, 6, e01325. [Google Scholar] [CrossRef] [Green Version]
- Török, J.K.; Pollák, B.; Heéger, Z.; Csikós, G.; Márialigeti, K. First evidence of bacterial endocytobionts in the lobose testate amoeba Arcella (Amoebozoa, arcellinida). Protistology 2008, 5, 303–312. [Google Scholar]
- Corsaro, D.; Michel, R.; Walochnik, J.; Müller, K.D.; Greub, G. Saccamoeba lacustris, sp. nov. (Amoebozoa: Lobosea: Hartmannellidae), a new lobose amoeba, parasitized by the novel chlamydia ‘Candidatus Metachlamydia lacustris’ (Chlamydiae: Parachlamydiaceae). Eur. J. Protistol. 2010, 46, 86–95. [Google Scholar] [CrossRef]
- Kalmbach, S.; Manz, W.; Bendinger, B.; Szewzyk, U. In situ probing reveals Aquabacterium commune as a widespread and highly abundant bacterial species in drinking water biofilms. Water Res. 2000, 34, 575–581. [Google Scholar] [CrossRef]
- Kalmbach, S.; Manz, W.; Wecke, J.; Szewzyk, U. Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. Int. J. Syst. Evol. Microbiol. 1999, 49, 769–777. [Google Scholar] [CrossRef] [Green Version]
- Douterelo, I.; Calero-Preciado, C.; Soria-Carrasco, V.; Boxall, J.B. Whole metagenome sequencing of chlorinated drinking water distribution systems. Environ. Sci. Water Res. Technol. 2018, 4, 2080–2091. [Google Scholar] [CrossRef] [Green Version]
- CSIRO &The Bureau of Meteorology. State of the Climate 2020; Australian Gobernment: Canberra, Australia, 2020. [Google Scholar]
- Kemble, S.K.; Lynfield, R.; DeVries, A.S.; Drehner, D.M.; Pomputius, W.F.; Beach, M.J.; Visvesvara, G.S.; Da Silva, A.J.; Hill, V.R.; Yoder, J.S.; et al. Fatal Naegleria fowleri infection acquired in minnesota: Possible expanded range of a deadly thermophilic organism. Clin. Infect. Dis. 2012, 54, 805–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Water pH | Water Temperature (°C) | Free Chlorine (mg/L) | Total Chlorine (mg/L) | Turbidity (NTU) | ||
---|---|---|---|---|---|---|
Loop 1 | Day 0 | 7.37 ± 0.17 | 15.80 ± 0.46 | 0.50 ± 0.05 | 0.67 ± 0.09 | 0.53 ± 0.18 |
Day 10 | 7.3 4 ± 0.07 | 16.17 ± 0.06 | 0.33 ± 0.09 | 0.41 ± 0.17 | 0.70 ± 0.34 | |
Day 20 | 7.33 ± 0.15 | 16.80 ± 0.56 | 0.26 ± 0.07 | 0.33 ± 0.01 | 0.40 ± 0.28 | |
Day 30 | 7.40 ± 0.03 | 23.40 ± 0.10 | 0.29 ± 0.01 | 0.30 ± 0.00 | 0.11 ± 0.05 | |
Loop 2 | Day 0 | 6.91 ± 0.08 | 16.30 ± 0.61 | 0.44 ± 0.05 | 0.59 ± 0.05 | 0.47 ± 0.05 |
Day 10 | 6.70 ± 0.15 | 15.97 ± 0.06 | 0.50 ± 0.16 | 0.44 ± 0.05 | 0.53 ± 0.11 | |
Day 20 | 7.04 ± 0.05 | 17.00 ± 0.17 | 0.24 ± 0.06 | 0.32 ± 0.04 | 0.28 ± 0.06 | |
Day 30 | 7.00 ± 0.06 | 23.30 ± 0.15 | 0.30 ± 0.05 | 0.36 ± 0.005 | 0.13 ± 0.02 | |
Loop 3 | Day 0 | 6.92 ± 0.17 | 15.87 ± 0.12 | 0.32 ± 0.16 | 0.47 ± 0.08 | 0.36 ± 0.32 |
Day 10 | 6.96 ± 0.08 | 16.00 ± 0.00 | 0.31 ± 0.02 | 0.46 ± 0.02 | 0.49 ± 0.22 | |
Day 20 | 6.98 ± 0.04 | 17.03 ± 0.15 | 0.28 ± 0.02 | 0.31 ± 0.05 | 0.37 ± 0.01 | |
Day 30 | 6.70 ± 0.09 | 23.23 ± 0.32 | 0.26 ± 0.03 | 0.32 ± 0.02 | 0.12 ± 0.03 |
Sample | Biofilm Loop | NNA Viability and qPCR | Total DNA qPCR | Biofilm Total Cells (Cells/cm2) | |
---|---|---|---|---|---|
Room Temperature | 30 °C | ||||
Biofilm 1 | 1 | NEG | NEG | NEG | 3.37 × 105 |
Biofilm 2 | 1 | Vermamoeba spp. | Vermamoeba spp. | Vermamoeba spp., N. dobsoni, N. australiensis | 1.23 × 106 |
Biofilm 3 | 1 | Vermamoeba spp. | NEG | N. australiensis, N. clarki, Acanthamoeba spp. | 3.50 × 105 |
Biofilm 4 | 2 | NEG | N. clarki | NEG | 2.62 × 105 |
Biofilm 5 | 2 | NEG | NEG | N. dobsoni | 2.89 × 105 |
Biofilm 6 | 2 | NEG | NEG | N. dobsoni | 1.69 × 104 |
Biofilm 7 | 3 | NEG | NEG | N. australiensis | 1.65 × 105 |
Biofilm 8 | 3 | NEG | NEG | N. australiensis | 1.84 × 105 |
Biofilm 9 | 3 | NEG | NEG | N. lovaniensis | 2.70 × 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Olmo, G.; Malinowski, N.; Puzon, G.J.; Morgan, M.J.; Calero, C.; Douterelo, I. Biofilm and Related Amoebas in an UK Chlorinated Drinking Water System. Water 2021, 13, 3069. https://doi.org/10.3390/w13213069
Del Olmo G, Malinowski N, Puzon GJ, Morgan MJ, Calero C, Douterelo I. Biofilm and Related Amoebas in an UK Chlorinated Drinking Water System. Water. 2021; 13(21):3069. https://doi.org/10.3390/w13213069
Chicago/Turabian StyleDel Olmo, Gonzalo, Natalia Malinowski, Geoffrey J. Puzon, Matthew J. Morgan, Carolina Calero, and Isabel Douterelo. 2021. "Biofilm and Related Amoebas in an UK Chlorinated Drinking Water System" Water 13, no. 21: 3069. https://doi.org/10.3390/w13213069
APA StyleDel Olmo, G., Malinowski, N., Puzon, G. J., Morgan, M. J., Calero, C., & Douterelo, I. (2021). Biofilm and Related Amoebas in an UK Chlorinated Drinking Water System. Water, 13(21), 3069. https://doi.org/10.3390/w13213069