Assessment of Water Quality in Lake Qaroun Using Ground-Based Remote Sensing Data and Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Description
2.2. Sampling and Analyses
2.3. Spatial Distributions of WQPs
2.4. Spectral Reflectance Measurements
2.5. Selection of Published, Newly Two and Three Band SRIs
2.6. Artificial Neural Networks Technique
2.6.1. Back-Propagation Neural Network (BPNN)
2.6.2. Model Evaluation
2.7. Data Analysis
SRIs | Formula | References |
---|---|---|
PSRIs | ||
Ratio spectral index (RSI700,560) | R700/R560 | [51] |
Ratio spectral index (RSI700,675) | R700/R675 | [52] |
Normalized difference spectral index (NDSI699,705,670,677) (NDSI699,705,670,677) | (R699 − R705)/(R670 − R677) | [53] |
Ratio spectral index (RSI833,1004) | R833/R1004 | [54] |
Normalized difference spectral index (NDSI560,520) | (R560 − R520)/(R560 − R520) | [55] |
NSRIs-2b | ||
Ratio spectral index | ||
(RSI622,602) | R622/R602 | This work |
(RSI690,650) | R690/R650 | This work |
(RSI760,484) | R760/R484 | This work |
(RSI700,650) | R700/R650 | This work |
(RSI1130,500) | R1130/R500 | This work |
NSRIs-3b | ||
Normalized difference spectral index | ||
NDSI620,610,622 | (R620 − R610 − R622)/(R620 + R610 + R622) | This work |
NDSI700,650,712 | (R700 − R650 − R712)/(R700 + R650 + R712) | This work |
NDSI700,648,712 | (R700 − R648 − R712)/(R700 + R648 + R712) | This work |
NDSI648,712,696 | (R648 − R712 − R696)/(R648 + R712 + R696) | This work |
NDSI698,650,712 | (R698 − R650 − R712)/(R698 + R650 + R712) | This work |
NDSI620,614,602 | (R620 − R614 − R602)/(R620 + R614 + R602) | This work |
NDSI620,600,614 | (R620 − R600 − R614)/(R620 + R600 + R614) | This work |
NDSI696,710,652 | (R696 − R710 − R652)/(R696 + R710 + R608) | This work |
3. Results and Discussion
3.1. Water Quality Parameters
3.2. Variation Values of Different Types of Spectral Reflectance Indices
3.3. Performance of Different SRIs to Asess WQPs
3.4. Performance of Artificial Neural Networks Based on SRIs to Asess WQPs
4. Advantages and Limitations of Our Research and Expected Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
ANNs | Artificial neural networks |
BPNN | Back propagation neural network |
CCME | Canadian Council of Ministers of the Environment |
COD | Chemical oxygen demand |
GIS | Geographic information system |
NH4+ | Ammonium |
IDW | Inverse distance weighted interpolation |
LOOV | Leave-one-out validation |
SRIs | Spectral reflectance indices |
NSI | Normalized spectral index |
PSRIs | Published spectral reflectance indices |
NSRIs-2b | Newly two-band spectral reflectance indices |
NSRIs-3b | Newly three-band spectral reflectance indices |
pH | hydrogen ion concentration |
PO43− | Orthophosphate |
QA | Quality assurance |
QC | Quality control |
RMSE | root mean square error |
RMSECV | root mean square error for validation |
RSI | Ratio spectral index |
SDR | Sabalan dam reservoir |
SRIs | Spectral reflectance indices |
TDS | Total dissolved solids |
2-D | Two–band |
3-D | Three–band |
TN | Total nitrogen |
UNEP | United Nations Environment Program |
USEPA | United States Environmental Protection Agency |
WHO | World Health Organization |
WQPs | Water quality parameters |
References
- Poonam, T.; Tanushree, B.; Sukalyan, C. Water quality indices—Important tools for water quality assessment, a review. Int. J. Adv. Chem. 2013, 1, 15–29. [Google Scholar]
- Ismail, A.H.; Abed, B.S.H.; Abdul-Qader, S. Application of multivariate statistical techniques in the surface water quality assessment of Tigris River at Baghdad stretch, Iraq. J. Babylon Univ./Eng. Sci. 2014, 2, 450–462. [Google Scholar]
- Herojeet, R.K.; Rishi, M.S.; Lata, R.; Sharma, R. Application of environmetrics statistical models and water quality index for groundwater and water quality index for groundwater quality characterization of alluvial aquifer of Nalagarh Valley, Himachal Pradesh, India. Sustain. Water Resour. Manag. 2016, 2, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Tirkey, P.; Bhattacharya, T.; Chakraborty, S. Water Quality Indices—Important tools for water quality assessment: A Review. Int. J. Adv. Chem. 2015, 1, 15–29. [Google Scholar]
- Nagy-Kovács, Z.; Davidesz, J.; Czihat-Mártonné, K.; Till, G.; Fleit, E.; Grischek, T. Water Quality Changes during Riverbank Filtration in Budapest, Hungary. Water 2019, 11, 302. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, C.; Grischek, T.; Börnick, H.; Feller, J.; Sharma, S.K. A Water Quality Appraisal of Some Existing and Potential Riverbank Filtration Sites in India. Water 2019, 11, 215. [Google Scholar] [CrossRef] [Green Version]
- El-Batrawy, O.A.; Ibrahim, M.S.; Fakhry, H.; El-Aassar, M.R.; El-Zeiny, A.M.; El-Hamid, H.T.A.; El-Alfy, M.A. Anthropogenic Impacts on Water Quality of River Nile and Marine Environment, Rosetta Branch Using Geospatial Analyses. J. Environ. Sci. 2018, 47, 89–101. [Google Scholar]
- USEPA. National Recommended Water Quality Criteria; Office of Water, United States Environmental Protection Agency: Washington, DC, USA, 2018.
- UNEP. United Nations Environment Programme. UNEP Frontiers 2018/19 Report: Emerging Issues of Environmental Concern; UNEP: Nairobi, Kenya, 2019. [Google Scholar]
- Edokpayi, J.N.; Odiyo, J.O.; Durowoju, O.S. Impact of Wastewater on Surface Water Quality in Developing Countries: A Case Study of South Africa. Water Quality, Hlanganani Tutu. In Water Quality; InTechOpen: Rijeka, Croatia, 2017; pp. 401–416. [Google Scholar]
- Ssekyanzi, A.; Nevejan, N.; Van der Zande, D.; Brown, M.E.; Van Stappen, G. Identification of Potential Surface Water Resources for Inland Aquaculture from Sentinel-2 Images of the Rwenzori Region of Uganda. Water 2021, 13, 2657. [Google Scholar] [CrossRef]
- El-Zeiny, A.M.; El Kafrawy, S.B.; Ahmed, M.H. Geomatics based approach for assessing Qaroun Lake pollution, Egypt. J. Remote Sens. Space Sci. 2019, 22, 279–296. [Google Scholar]
- Ali, M.H.H.; Abdel-Satar, A.M.; Goher, M. Present Status and Long-Term Changes of Water Quality Characteristics in Heavily Polluted Mediterranean Lagoon, Lake Mariut, Egypt. IJRDO-J. Appl. Sci. 2017, 3, 66–82. [Google Scholar]
- El-Sayed, S.A.; Hassan, H.B.; El-Sabagh, M.E.I. Geochemistry and mineralogy of Qaroun Lake and relevant drain sediments, El-Fayoum, Egypt. J. Afr. Earth Sci. 2021, 185, 104388. [Google Scholar] [CrossRef]
- Usali, N.; Ismail, M.H. Use of remote sensing and gis in monitoring water quality. J. Sustain. Dev. 2010, 3, 228–238. [Google Scholar] [CrossRef]
- Varol, M. Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study. Environ. Pollut. 2020, 266, 115417. [Google Scholar] [CrossRef] [PubMed]
- Goher, M.E.; Mahdy, E.M.; Abdo, M.H.; El Dars, F.M.; Korium, M.A.; Elsherif, A.S. Water quality status and pollution indices of Wadi El-Rayan lakes, El-Fayoum, Egypt. Sustain. Water Resour. Manag. 2019, 5, 387–400. [Google Scholar] [CrossRef]
- Abdel-Satar, A.M.; Ali, M.H.; Goher, M.E. Indices of water quality and metal pollution of Nile River, Egypt. Egypt. J. Aquat. Res. 2017, 43, 21–29. [Google Scholar] [CrossRef]
- Davis, A.P.; McCuen, R.H. Storm Water Management for Smart Growth, 1st ed.; Springer Science and Business Media: New York, NY, USA, 2005. [Google Scholar]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Development of river water quality indices—A review. Environ. Monit. Assess. 2016, 188, 58. [Google Scholar] [CrossRef] [Green Version]
- Abdelmalik, K. Role of statistical remote sensing for Inland water quality parameters prediction. Egypt. J. Remote Sens. Space Sci. 2018, 21, 193–200. [Google Scholar] [CrossRef]
- Noori, R.; Karbassi, A.R.; Mehdizadeh, H.; Vesali-Naseh, M.; Sabahi, M.S.A. Framework development for predicting the longitudinal dispersion coefficient in natural streams using an artificial neural network. Environ. Prog. Sustain. Energy 2011, 30, 439–449. [Google Scholar] [CrossRef]
- Modabberi, A.; Noori, R.; Madani, K.; Ehsani, A.H.; Mehr, A.D.; Hooshyaripor, F.; Kløve, B. Caspian Sea is eutrophying: The alarming message of satellite data. Environ. Res. Lett. 2020, 15, 124047. [Google Scholar] [CrossRef]
- Abd-Elrahman, A.; Croxton, M.; Pande-Chettri, R.; Toor, G.S.; Smith, S.; Hill, J. In situ estimation of water quality parameters in freshwater aquaculture ponds using hyperspectral imaging system. ISPRSJ Photogramm. Remote Sens. 2011, 66, 463–472. [Google Scholar] [CrossRef]
- Vinciková, H.; Hanuš, J.; Pechar, L. Spectral reflectance is a reliable water-quality estimator for small, highly turbid wetlands. Wetlands Ecol. Manag. 2015, 23, 933–946. [Google Scholar] [CrossRef]
- Han, L.; Jordan, K.J. Estimating and mapping chlorophyll-a concentration in Pensacola Bay, Florida using Landsat ETM+ data. Int. J. Remote Sens. 2005, 26, 5245–5254. [Google Scholar] [CrossRef]
- Wang, Z.; Kawamura, K.; Sakuno, Y.; Fan, X.; Gong, Z.; Lim, J. Retrieval of chlorophyll-a and total suspended solids using iterative stepwise elimination partial least squares (ISE-PLS) regression based on field hyperspectral measurements in irrigation ponds in Higashihiroshima, Japan. Remote Sens. 2017, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Elhag, M.; Gitas, I.; Othman, A.; Bahrawi, J.; Gikas, P. Assessment of water quality parameters using temporal remote sensing spectral reflectance in arid environments, Saudi Arabia. Water 2019, 11, 556. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhang, F.; Ge, X.; Zhang, X.; Chan, N.W.; Qi, Z. Measurement of total nitrogen concentration in surface water using hyperspectral band observation method. Water 2020, 12, 1842. [Google Scholar] [CrossRef]
- Elsayed, S.; Gad, M.; Farouk, M.; Saleh, A.H.; Hussein, H.; Elmetwalli, A.H.; Elsherbiny, O.; Moghanm, F.S.; Moustapha, M.E.; Taher, M.A.; et al. Using optimized two and three-band spectral indices and multivariate models to assess some water quality indicators of Qaroun Lake in Egypt. Sustainability 2021, 13, 10408. [Google Scholar] [CrossRef]
- Lindell, T.; Pierson, D.; Premazzi, G.; Zilioli, E. Manual for Monitoring European Lakes Using Remote Sensing Techniques; European Commission Joint Research Centre: Ispra, Italy, 1999. [Google Scholar]
- Sarkar, A.; Pandey, P. River water quality modelling using artificial neural network technique. Aquat. Procedia 2015, 4, 1070–1077. [Google Scholar] [CrossRef]
- Isiyaka, H.A.; Mustapha, A.; Juahir, H.; Phil-Eze, P. Water quality modelling using artificial neural network and multivariate statistical techniques. Model. Earth Syst. Environ. 2019, 5, 583–593. [Google Scholar] [CrossRef]
- Adnan, R.M.; Liang, Z.; El-Shafie, A.; Zounemat-Kermani, M.; Kisi, O. Daily streamflow prediction using optimally pruned extreme learning machine. J. Hydrol. 2019, 577, 123981. [Google Scholar] [CrossRef]
- Šiljić Tomić, A.; Antanasijević, D.; Ristić, M.; Perić-Grujić, A.; Pocajt, V. Application of experimental design for the optimization of artificial neural network-based water quality model: A case study of dissolved oxygen prediction. Environ. Sci. Pollut. Res. Int. 2018, 25, 9360–9370. [Google Scholar] [CrossRef] [PubMed]
- Attia, A.H.; El-Sayed, S.A.; El-Sabagh, M.E. Utilization of GIS modeling in geoenvironmental studies of Qaroun Lake, El Fayoum Depression, Egypt. J. Afr. Earth Sci. 2018, 138, 58–74. [Google Scholar] [CrossRef]
- Rawat, K.S.; Jacintha, T.G.A.; Singh, S.K. Hydro-chemical survey and quantifying spatial variations in groundwater quality in coastal region of Chennai, Tamilnadu, India—A case study. Indones. J. Geog. 2018, 50, 57–69. [Google Scholar] [CrossRef]
- El-Sayed, S.A.; Moussa, E.M.M.; El-Sabagh, M.E.I. Evaluation of heavy metal content in Qaroun Lake, El-Fayoum, Egypt. Part I: Bottom sediments. J. Radiat. Res. Appl. Sci. 2015, 8, 276–285. [Google Scholar] [CrossRef] [Green Version]
- Redwan, M.; Elhaddad, E. Heavy metals seasonal variability and distribution in Lake Qaroun sediments, El-Fayoum, Egypt. J. Afr. Earth Sci. 2017, 134, 48–55. [Google Scholar] [CrossRef]
- Gad, M.; Abou El-Safa, M.M.; Farouk, M.; Hussein, H.; Alnemari, A.M.; Elsayed, S.; Khalifa, M.M.; Moghanm, F.S.; Eid, E.M.; Saleh, A.H. Integration of water quality indices and multivariate modeling for assessing Surface water quality in Qaroun Lake, Egypt. Water 2021, 13, 2258. [Google Scholar] [CrossRef]
- Singh, S.K.; Srivastava, P.K.; Pandey, A.C.; Gautam, S.K. Integrated assessment of groundwater influenced by a confluence river system: Concurrence with remote sensing and geochemical modelling. Water Resour. Manag. 2013, 27, 4291–4313. [Google Scholar] [CrossRef]
- Abowaly, M.E.; Belal, A.-A.A.; Abd Elkhalek, E.E.; Elsayed, S.; Abou Samra, R.M.; Alshammari, A.S.; Moghanm, F.S.; Shaltout, K.H.; Alamri, S.A.M.; Eid, E.M. Assessment of soil pollution levels in North Nile Delta, by integrating contamination indices, GIS, and multivariate modeling. Sustainability 2021, 13, 8027. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Li, J.; Yoder, R.; Odhiambo, L.O.; Zhang, J. Simulation of nitrate distribution under drip irrigation using artificial neural networks. Irrig. Sci. 2004, 23, 29–37. [Google Scholar] [CrossRef]
- Khadr, M.; Gad, M.; El-Hendawy, S.; Al-Suhaibani, N.; Dewir, Y.H.; Tahir, M.U.; Mubushar, M.; Elsayed, S. The Integration of multivariate statistical approaches, hyperspectral reflectance, and data-driven modeling for assessing the quality and suitability of groundwater for irrigation. Water 2021, 13, 35. [Google Scholar] [CrossRef]
- Schalkoff, J. Artificial Neural Networks; McGraw-Hill Companies Inc.: New York, NY, USA, 1997. [Google Scholar]
- Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory algorithm for bound constrained optimization. Siam J. Sci. Comput. 1995, 16, 1190–1208. [Google Scholar] [CrossRef]
- Glorfeld, L.W. A methodology for simplification and interpretation of backpropagation-based neural network models. Expert Syst. Appl. 1996, 10, 37–54. [Google Scholar] [CrossRef]
- Malone, B.P.; Styc, Q.; Minasny, B.; McBratney, A.B. Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data. Geoderma 2017, 290, 91–99. [Google Scholar] [CrossRef]
- Saggi, M.K.; Jain, S. Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning. Comput. Electron. Agr. 2019, 156, 387–398. [Google Scholar] [CrossRef]
- Menken, K.D.; Brezonik, P.L.; Bauer, M.E. Influence of chlorophyll and colored dissolved organic matter (CDOM) on Lake Reflectance Spectra: Implications for Measuring Lake Properties by Remote Sensing. Lake Reserv. Manag. 2006, 22, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.; Yacobi, Y. Monitoring Quality of Productive Aquatic Ecosystem: Requirements for Satellite Sensors; BALWOIS: Ohrid, North Macedonia, 2004. [Google Scholar]
- Kallio, K.; Kutser, T.; Hannonen, T.; Koponen, S.; Pulliainen, J.; Vepsalainen, J.; Pyhalahti, T. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. Sci. Total Environ. 2001, 268, 59–77. [Google Scholar] [CrossRef]
- Sterckx, S.; Knaeps, E.; Bollen, M.; Trouw, K.; Houthuys, R. Retrieval of suspended sediment from advanced hyperspectral sensor data in the Scheldt estuary at different stages in the tidal cycle. Mar. Geod. 2007, 30, 97–108. [Google Scholar] [CrossRef]
- Gitelson, A.; Szilagyi, F.; Mittenzwey, K.-H. Improving quantitative remote sensing for monitoring of inland water quality. Water Res. 1993, 27, 1185–1194. [Google Scholar] [CrossRef]
- Taha, O.E.; Abd El-Monem, A.M. Phytoplankton composition, biomass and productivity in Wadi El-Rayian Lakes, Egypt. Conference on the role of science in the development of Egyptian society and environment. Zaga. Univ. Fac. Sci. 1999, 22, 48–56. [Google Scholar]
- Khalifa, N. Population dynamics of Rotifera in Ismailia Canal, Egypt. J. Biodivers. Environ. Sci. 2014, 4, 58–67. [Google Scholar]
- CCME (Canadian Council of Ministers of the Environment). For the protection of aquatic life. In Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2007. [Google Scholar]
- Hamid, A.; Bhat, S.A.; Jehangir, A. Local determinants influencing stream water quality. Appl. Water Sci. 2020, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology; Academic Press: London, UK, 2001; 1006p. [Google Scholar]
- Sharip, Z.; Suratman, S. Formulating specific water quality criteria for lakes: A Malaysian perspective. In Water Quality; Tutu, H., Ed.; IntechOpen: Rijeka, Croatia, 2017; pp. 293–313. [Google Scholar]
- Yazidi, A.; Saidi, S.; Ben Mbarek, N.; Darragi, F. Contribution of GIS to evaluate surface water pollution by heavy metals: Case of Ichkeul Lake (Northern Tunisia). J. Afr. Earth Sci. 2017, 134, 166–173. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th Edition, Incorporating the 1st Addendum; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Penn, M.R.; Pauer, J.J.; Mihelcic, J.R. Environmental and Ecological Chemistry—Vol. II—Biochemical Oxygen Demand; Eolss Publishers: Oxford, UK, 2003. [Google Scholar]
- Noori, R.; Ansari, E.; Jeong, Y.-W.; Aradpour, S.; Maghrebi, M.; Hosseinzadeh, M.; Bateni, S.M. Hyper-Nutrient Enrichment Status in the Sabalan Lake, Iran. Water 2021, 13, 2874. [Google Scholar] [CrossRef]
- Noori, R.; Ansari, E.; Bhattarai, R.; Tang, Q.; Aradpour, S.; Maghrebi, M.; Haghighi, A.T.; Bengtsson, L.; Kløve, B. Complex dynamics of water quality mixing in a warm mono-mictic reservoir. Sci. Total Environ. 2021, 777, 146097. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.R.; Kumar, R.V.; Sreejani, T.P.; Sravya, P.V.R.; Rao, G.S. Multivariate statistical analysis of water quality of Godavari River at Polavaram for irrigation purposes. In Water Resources and Environmental Engineering II; Springer: Singapore, 2019; pp. 115–124. [Google Scholar]
- Zhao, Y.; Xia, X.H.; Yang, Z.F.; Wang, F. Assessment of water quality in Baiyangdian Lake using multivariate statistical techniques. Procedia Environ. Sci. 2012, 13, 1213–1226. [Google Scholar] [CrossRef] [Green Version]
- Maliki, A.A.A.; Chabuk, A.; Sultan, M.A.; Hashim, B.M.; Hussain, H.M.; Al-Ansari, N. Estimation of total dissolved solids in water bodies by spectral indices Case Study: Shatt al-Arab River. Water Air Soil Pollut. 2020, 231, 482. [Google Scholar] [CrossRef]
- Shafique, N.A.; Fulk, F.; Autrey, B.C.; Flotemersch, J. Hyperspectral remote sensing of water quality parameters for large rivers in the Ohio River Basin. In Proceedings of the First Interagency Conference on Research in the Watersheds, Benson, AZ, USA, 27–30 October 2003. [Google Scholar]
- Liu, J.; Zhang, Y.; Yuan, D.; Song, X. Empirical estimation of total nitrogen and total phosphorus concentration of urban water bodies in China using high resolution IKONOS multispectral imagery. Water 2015, 7, 6551–6573. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L.A. A Comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osinska-Skotak, K.; Kruk, M.; Mróz, M. The Spatial Diversification of Lake Water Quality Parameters in Mazurian Lakes in Summertime; Millpress: Rotterdam, The Netherlands, 2007. [Google Scholar]
- Wu, C.; Wu, J.; Qi, J.; Zhang, L.; Huang, H.; Lou, L.; Chen, Y. Empirical estimation of total phosphorous concentration in the mainstream of the Qiantang River in China using Landsat TM data. Int. J. Remote Sens. 2010, 31, 2309–2324. [Google Scholar] [CrossRef]
- Thawornwong, S.; Enke, D. The adaptive selection of financial and economic variables for use with artificial neural networks. Neurocomputing 2004, 56, 205–232. [Google Scholar] [CrossRef]
- Elsherbiny, O.; Zhou, L.; Feng, L.; Qiu, Z. Integration of Visible and Thermal Imagery with an Artificial Neural Network Approach for Robust Forecasting of Canopy Water Content in Rice. Remote Sens. 2021, 13, 1785. [Google Scholar] [CrossRef]
WQPs | TDS (mg/L) | pH | Temp. | TN | NH4+ | PO43− | COD |
---|---|---|---|---|---|---|---|
(Unit) | (mg/L) | (°C) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | |
First year 2018 (n = 16) | |||||||
Minimum | 27,704.74 | 7.70 | 28.80 | 0.24 | 0.04 | 0.022 | 22.32 |
Maximum | 38,797.87 | 8.30 | 32.30 | 14.24 | 6.24 | 0.175 | 43.22 |
Mean | 35,616.34 | 8.08 | 30.94 | 6.79 | 3.250 | 0.092 | 31.08 |
Standard deviation | 2627.96 | 0.13 | 0.85 | 5.03 | 2.60 | 0.0612 | 5.82 |
Second year 2019 (n = 16) | |||||||
Minimum | 28,891.94 | 7.80 | 29.40 | 0.77 | 0.04 | 0.027 | 24.36 |
Maximum | 39,067.53 | 8.40 | 34.20 | 15.83 | 7.04 | 0.184 | 45.82 |
Mean | 35,815.22 | 8.24 | 31.35 | 8.38 | 3.60 | 0.097 | 32.69 |
Standard deviation | 2434.93 | 0.14 | 1.167 | 5.68 | 2.81 | 0.063 | 6.37 |
Data across two years (n = 32) | |||||||
Minimum | 27,704.74 | 7.70 | 28.80 | 0.24 | 0.039 | 0.022 | 22.32 |
Maximum | 39,067.53 | 8.40 | 34.20 | 15.83 | 7.04 | 0.184 | 45.82 |
Mean | 35,715.78 | 8.17 | 31.15 | 7.59 | 3.43 | 0.094 | 31.89 |
Standard deviation | 2494.14 | 0.156 | 1.026 | 5.34 | 2.67 | 0.061 | 6.06 |
WQPs | TN | NH4+ | PO43− | COD |
---|---|---|---|---|
(mg/L) | (mg/L) | (mg/L) | (mg/L) | |
Site 1 | 13.83 ab | 5.82 b–d | 0.171 a | 36.46 c |
Site 2 | 14.70 a | 6.64 a | 0.146 bc | 35.8 c |
Site 3 | 11.95 a–c | 5.98 a–c | 0.140 c | 35.01 c |
Site 4 | 11.37 b,d | 4.60 e | 0.150 bc | 44.52 a |
Site 5 | 14.16 ab | 5.33 c–e | 0.178 a | 40.82 b |
Site 6 | 13.98 ab | 6.24 ab | 0.163 ab | 34.36 c |
Site 7 | 9.69 c–e | 6.13 ab | 0.136 c | 35.39 c |
Site 8 | 7.80 e | 5.13 de | 0.141 c | 33.43 cd |
Site 9 | 8.76 d,e | 4.90 e | 0.075 d | 27.80 e |
Site 10 | 3.78 fg | 1.95 f | 0.031 e | 25.97 ef |
Site 11 | 4.34 f | 1.79 f | 0.030 e | 28.83 e |
Site 12 | 1.53 f–h | 0.08 g | 0.033 e | 23.88 f |
Site 13 | 1.02 gh | 0.06 g | 0.025 e | 26.75 ef |
Site 14 | 0.51 h | 0.04 g | 0.031 e | 30.02 de |
Site 15 | 1.54 f–h | 0.05 g | 0.032 e | 27.12 ef |
Site 16 | 2.56 f–h | 0.08 g | 0.034 e | 23.96 f |
WQPs | Drinking Water a | Aquatic Live b | Water Quality Class for Aquatic Live | Number of Samples (%) | ||
---|---|---|---|---|---|---|
2018 | 2019 | Across Two Years | ||||
TN (mg/L) | - | - | - | - | - | - |
- | - | - | - | |||
NH4+ (mg/L) | 0.2 | 1.37 | Suitable (<1.37) | 5 (31.0%) | 5 (31.0%) | 10 (31.0%) |
Unsuitable (>1.37) | 11 (69.0%) | 11 (69.0%) | 22 (69.0%) | |||
PO43− (mg/L) | - | 0.3 | Suitable (<0.3) | 16 (100.0%) | 16 (100.0%) | 32 (100.0%) |
Unsuitable (>0.3) | 0.0% | 0.0% | 0.0% | |||
COD (mg/L) | 11 | 7 | Suitable (<7) | 0.0% | 0.0% | 0.0% |
Unsuitable (>7) | 16 (100.0%) | 16 (100.0%) | 32 (100.0%) |
RSI700,560 | RSI700,675 | NDSI699,705,670,677 | RSI833,1004 | NDSI560,520 | RSI622,602 | RSI690,650 | RSI760,484 | RSI700,650 | |
Site1 | 0.947 a–c | 0.977 a–c | −5.689 a | 2.938 a | 0.022 a–c | 0.9991 a–e | 0.991 ab | 0.798 a–c | 0.972 a–c |
Site2 | 0.971 a | 0.988 a | 3.295 a | 2.294 ab | 0.034 ab | 1.010 a | 0.9928 a | 0.849 a | 0.979 a |
Site3 | 0.940 a–d | 0.971 b–d | 9.377 a | 1.460 b–d | 0.026 a–c | 1.000 a–d | 0.982 a–d | 0.762 a–d | 0.962 c–e |
Site4 | 0.944 a–d | 0.981 ab | −3.519 a | 2.0432 bc | 0.026 a–c | 1.003 a–c | 0.993 a | 0.815 ab | 0.978 ab |
Site5 | 0.973 a | 0.973 b–d | 6.741 a | 1.491 b–d | 0.036 a | 1.009 ab | 0.987 a–c | 0.820 ab | 0.964 b–d |
Site6 | 0.950 a–c | 0.975 a–d | 8.117 a | 1.355 bc | 0.024 a–c | 1.003 a–c | 0.983 a–d | 0.776 a–d | 0.965 b–d |
Site7 | 0.958 ab | 0.972 b–d | 7.993 a | 1.335 bc | 0.029 a–c | 1.002 a–c | 0.980 b–e | 0.785 a–d | 0.960 c–f |
Site8 | 0.881 c–e | 0.967 b–d | 4.082 a | 1.866 b–d | 0.007 cd | 0.995 b–f | 0.977 c–f | 0.677 c–e | 0.954 d–g |
Site9 | 0.910 a–e | 0.966 cd | 4.291 a | 1.273 bc | 0.011 b–d | 0.9999 a–e | 0.979 c–f | 0.702 b–e | 0.955 d–g |
Site10 | 0.840 e | 0.962 d | 3.251 a | 1.178 bc | −0.013 d | 0.990 c–f | 0.971 d–f | 0.587 e | 0.946 fg |
Site11 | 0.870 d,e | 0.966 cd | 5.669 a | 1.260 bc | −0.007 d | 0.991 c–f | 0.971 d–f | 0.617 e | 0.949 e–g |
Site12 | 0.899 a–e | 0.971 b–d | 8.000 a | 1.666 b–d | 0.006 cd | 0.986 ef | 0.969 ef | 0.670 de | 0.950 e–g |
Site13 | 0.893 b–e | 0.968 b–d | 4.651 a | 1.308 bc | 0.008 cd | 0.992 c–f | 0.974 c–f | 0.685 c–e | 0.953 d–g |
Site14 | 0.857 e | 0.966 cd | 4.569 a | 1.057 d | −0.009 d | 0.984 f | 0.969 ef | 0.606 e | 0.947 fg |
Site15 | 0.851 e | 0.964 cd | 4.901 a | 1.176 bc | −0.010 d | 0.986 ef | 0.968 ef | 0.594 e | 0.945 g |
Site16 | 0.842 e | 0.962 d | 4.341 a | 0.984 d | −0.011 d | 0.984 f | 0.967 f | 0.583 e | 0.943 g |
RSI1130,500 | NDSI620,610,622 | NDSI700,648,712 | NDSI648,712,696 | NDSI698,650,712 | NDSI620,614,602 | NDSI620,600,614 | NDSI620,600,614 | NDSI696,710,652 | |
Site1 | 1.125 a–c | −0.3332 a–c | −0.331 a-c | −0.3315 ab | −0.3277 ab | −0.3293 ab | −0.3335 a–d | −0.3338 a–d | −0.3328 e |
Site2 | 1.145 ab | −0.3322 a | −0.3301 a | −0.3303 a | −0.3271 a | −0.3284 a | −0.3309 a | −0.3311 a | −0.3327 de |
Site3 | 1.102 a–c | −0.3332 a–c | −0.3326 b–e | −0.3327 a–d | −0.3284 a–c | −0.3303 a–d | −0.3333 a–c | −0.3336 a–d | −0.3325 de |
Site4 | 1.101 a–c | −0.333 ab | −0.3306 ab | −0.3307 b | −0.3274 ab | −0.3289 a | −0.3328 ab | −0.3331 a–c | −0.3324 de |
Site5 | 1.175 a | −0.3327 ab | −0.3317 a–d | −0.332 a–c | −0.3274 ab | −0.3294 a–c | −0.3313 a | −0.3312 a | −0.3324 de |
Site6 | 1.085 a–d | −0.3329 ab | −0.3325 b–e | −0.3327 a–d | −0.3288 a–d | −0.3304 a–e | −0.3325 ab | −0.3327 ab | −0.3322 c–e |
Site7 | 1.118 a–c | −0.3333 a–c | −0.333 c–f | −0.3333 b–e | −0.3287 a–d | −0.3307 a–e | −0.333 a–c | −0.333 a–c | −0.3319 c–e |
Site8 | 1.046 b–e | −0.3338 b–d | −0.3341 eg | −0.3346 c–g | −0.3295 b–e | −0.3317 c–f | −0.335 b–f | −0.335 b–e | −0.331 b–e |
Site9 | 1.077 a–d | −0.3339 b–e | −0.3338 d–g | −0.3343 c–f | −0.3292 a–e | −0.3313 b–f | −0.334 a–e | −0.334 a–d | −0.3305 a–d |
Site10 | 0.997 de | −0.3345 c–f | −0.3356 g | −0.3362 fg | −0.331 de | −0.3331 f | −0.3366 c–f | −0.337 c–e | −0.3302 a–c |
Site11 | 0.986 de | −0.3340 b–f | −0.3352 fg | −0.3354 e–g | −0.3307 c–e | −0.3327 ef | −0.3361 b–f | −0.3367 b–e | −0.3301 a–c |
Site12 | 0.995 de | −0.3348 d–f | −0.3355 g | −0.3359 fg | −0.3312 e | −0.3332 f | −0.3371 d–f | −0.3377 de | −0.3301 a–c |
Site13 | 1.029 c–e | −0.3341 b–f | −0.3349 eg | −0.3353 d–g | −0.3305 c–e | −0.3325 d–f | −0.3357 b–f | −0.336 b–e | −0.3291 ab |
Site14 | 0.966 e | −0.3352 ef | −0.3358 g | −0.3364 fg | −0.3312 e | −0.3333 f | −0.3381 f | −0.3386 e | −0.329 ab |
Site15 | 0.966 e | −0.3349 d–f | −0.3359 g | −0.3364 fg | −0.3314 e | −0.3334 f | −0.3376 ef | −0.3382 e | −0.329 ab |
Site16 | 0.986 de | −0.3354 f | −0.3362 g | −0.3369 g | −0.3314 e | −0.3336 f | −0.3383 f | −0.3387 e | −0.3286 a |
SRIs | TN | NH4+ | PO43− | COD |
---|---|---|---|---|
RSI700,560 | 0.59 *** | 0.56 *** | 0.62 *** | 0.45 ** |
RSI700,675 | 0.36 ** | 0.29 * | 0.35 ** | 0.35 ** |
NDSI699,705,670,677 | 0.00 | 0.00 | 0.01 | 0.03 |
RSI850,550 | 0.25 * | 0.20 * | 0.30 * | 0.21 * |
NDSI560,520 | 0.62 *** | 0.59 *** | 0.66 ** | 0.50 ** |
RSI622,602 | 0.73 *** | 0.69 *** | 0.64 *** | 0.51 ** |
RSI690,650 | 0.71 *** | 0.62 *** | 0.68 *** | 0.61 *** |
RSI760,484 | 0.65 *** | 0.60 *** | 0.68 *** | 0.55 *** |
RSI700,650 | 0.63 *** | 0.54 ** | 0.62 *** | 0.58 *** |
RSI1130,500 | 0.70 *** | 0.66 *** | 0.70 *** | 0.51 ** |
NDSI610,614,608 | 0.74 *** | 0.71 *** | 0.63 *** | 0.53 ** |
NDSI700,650,712 | 0.75 *** | 0.66 *** | 0.73 *** | 0.64 *** |
NDSI700,648,712 | 0.75 *** | 0.65 *** | 0.72 *** | 0.64 *** |
NDSI648,712,696 | 0.77 *** | 0.69 *** | 0.74 *** | 0.63 *** |
NDSI698,650,712 | 0.77 *** | 0.68 *** | 0.74 *** | 0.64 *** |
NDSI620,614,602 | 0.75 *** | 0.72 *** | 0.67 *** | 0.53 ** |
NDSI620,600,614 | 0.74 *** | 0.71 *** | 0.66 *** | 0.52 ** |
NDSI696,710,652 | 0.77 *** | 0.69 *** | 0.75 *** | 0.62 *** |
WQPs | Parameters | Indices | Calibration | Validation | |
---|---|---|---|---|---|
R2 | R2 | RMSE | |||
TN | (22, 2), ReLu | DSI698,650,712; NDSI620,610,622; NDSI620,600,614; RSI760,48; RSI1130,500 | 0.92 *** | 0.84 *** | 1.558 |
NH4+ | (20, 8) logistic | DSI696,710,652 | 0.97 *** | 0.80 *** | 0.695 |
PO43− | (2, 18) tanh | NDSI620,600,614; NDSI620,614,602; RSI760,484; RSI700,650; RSI700,560; RSI622,602; NDSI700,650,712; NDSI698,650,712; NDSI700,648,712; NDSI560,520; RSI700,675; NDSI696,710,652; NDSI648,712,696; NDSI699,705,670,677; RSI833,1004; RSI1130,500; NDSI620,610,622 | 0.98 *** | 0.89 *** | 0.014 |
COD | (14, 2) tanh | DSI698,650,712 | 0.79 *** | 0.66 *** | 2.644 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsayed, S.; Ibrahim, H.; Hussein, H.; Elsherbiny, O.; Elmetwalli, A.H.; Moghanm, F.S.; Ghoneim, A.M.; Danish, S.; Datta, R.; Gad, M. Assessment of Water Quality in Lake Qaroun Using Ground-Based Remote Sensing Data and Artificial Neural Networks. Water 2021, 13, 3094. https://doi.org/10.3390/w13213094
Elsayed S, Ibrahim H, Hussein H, Elsherbiny O, Elmetwalli AH, Moghanm FS, Ghoneim AM, Danish S, Datta R, Gad M. Assessment of Water Quality in Lake Qaroun Using Ground-Based Remote Sensing Data and Artificial Neural Networks. Water. 2021; 13(21):3094. https://doi.org/10.3390/w13213094
Chicago/Turabian StyleElsayed, Salah, Hekmat Ibrahim, Hend Hussein, Osama Elsherbiny, Adel H. Elmetwalli, Farahat S. Moghanm, Adel M. Ghoneim, Subhan Danish, Rahul Datta, and Mohamed Gad. 2021. "Assessment of Water Quality in Lake Qaroun Using Ground-Based Remote Sensing Data and Artificial Neural Networks" Water 13, no. 21: 3094. https://doi.org/10.3390/w13213094
APA StyleElsayed, S., Ibrahim, H., Hussein, H., Elsherbiny, O., Elmetwalli, A. H., Moghanm, F. S., Ghoneim, A. M., Danish, S., Datta, R., & Gad, M. (2021). Assessment of Water Quality in Lake Qaroun Using Ground-Based Remote Sensing Data and Artificial Neural Networks. Water, 13(21), 3094. https://doi.org/10.3390/w13213094