Nature-Based Units as Building Blocks for Resource Recovery Systems in Cities
Abstract
:1. Introduction
- Preserving natural resources by reducing their import;
- Minimizing waste production by using resources in cycles.
- Restoring and maintaining the water cycle (by rainwater management) (UCC1);
- Water and waste treatment, recovery, and reuse (UCC2);
- Nutrient recovery and reuse (UCC3);
- Material recovery and reuse (UCC4);
- Food and biomass production (UCC5);
- Energy efficiency and recovery (UCC6);
- Building system recovery (UCC7).
2. Methodology
- Relevant for the recovery of resources such as water, CO2, nutrients, energy, organics, and metals from city (waste) streams;
- Applicable in an urban environment.
3. Results
3.1. Liquid Incoming Streams
3.1.1. Treatment Wetlands
Working Principle
In- and Outputs
Connected Units
Case Studies and Literature
Observed Co-Benefits and Limitations
Contribution of This NBS Unit to the Mitigation of Urban Circularity Challenges
3.1.2. Photobioreactors
Working Principle
In- and Outputs
Connected Units
Case Studies and Literature
Observed Co-Benefits and Limitations
Contribution of This NBS Unit to the Mitigation of Urban Circularity Challenges
3.1.3. Anaerobic Treatment
Working Principle
In- and Outputs
Connected Units
Literature Case Studies
Observed Co-Benefits and Limitations
Contribution of This NBS Unit to the Mitigation of Urban Circularity Challenges
3.1.4. Aerobic Treatment
Working Principle
In- and Outputs
Connected Units
Literature Case Studies
Observed Co-Benefits and Limitations
Contribution of This NBS Unit to the Mitigation of Urban Circularity Challenges
3.2. Solid Incoming Streams
3.2.1. Composting and Vermicomposting
Working Principle
In- and Outputs
Case Studies and Literature Case Studies
Observed Co-Benefit and Limitations
Contribution of This NBS Unit to the Mitigation of Urban Circularity Challenges
3.2.2. Decentralized Solid Waste Anaerobic Treatment in Urban Areas
Working Principle
In- and Outputs
Connected Units
Literature Case Studies
Observed Co-Benefits and Limitations
Contribution of This NBS Unit to the Mitigation of Urban Circularity Challenges
3.2.3. Insect Farming
Working Principle
In- and Output
Connected Units
Literature Case Studies
Observed Co-Benefit and Limitations
Contribution of This NBS Unit to the Mitigation of Urban Circularity Challenges
3.2.4. Soil Conservation and Phytomining
Working Principle
In- and Output
Connected Units
Case Studies and Literature
Observed Co-Benefits and Limitations
Contribution of This NBS Unit to the Mitigation of Urban Circularity Challenges
3.3. Liquid and Solid Streams
3.3.1. Street Trees/Pocket Garden/Large Parks
Working Principles
In- and Outputs
Case Studies
Observed Co-Benefits and Limitations
Contribution of This NBS Unit to the Mitigation of Urban Circularity Challenges
3.3.2. Gaseous Streams
Working Principle
In- and Outputs
Connected Units
Literature Case Studies
Benefits and Limitations
4. Supporting Units
4.1. Physical Separation Units
4.1.1. Water-Saving/Water-Free Toilets without Urine Diversion
Working Principle
In- and Outputs
Connected Units
Literature Case Studies
4.1.2. Urine-Diverting Toilets
Working Principle
In- and Outputs
Connected Units
Literature Case Studies
4.1.3. Water-Free Urinal
Working Principle
In- and Outputs
Connected Units
Literature Case Studies
4.1.4. Benefits and Limitations of Water-Saving and Water-Free Urinals and Toilets
4.2. Bio-Physical Units
4.2.1. Bioengineering
Working Principle
In- and Outputs
Connected Units
Literature Case Studies
Benefits and Limitations
4.3. Post- and Pre-Treatment Units
4.3.1. Disinfection (UV, Cavitation)
Working Principles
In- and Outputs
Connected Units
Literature Case Studies
Benefits and Limitations
4.3.2. Activated Carbon
Working Principle
In- and Outputs
Connected Units
Literature Case Studies
Benefits and Limitations
4.3.3. Advanced Oxidation Processes (AOPs)
Working Principles
In- and Outputs
Literature Case Studies
Benefits and Limitations
4.4. Resource Recovery Supporting Units
4.4.1. Phosphorus Precipitation
Working Principle
In- and Outputs
Connected Units
Literature Case Studies
Benefits and Limitations
4.4.2. Ammonia Stripping/Absorption
Working Principle
In- and Outputs
Connected Units
Literature Case Studies
Benefits and Limitations
4.4.3. Membranes
Working Principle
In- and Outputs
Connected Units
Case Studies and Literature
Observed Co-Benefits and Limitations
4.4.4. Biochar/Hydrochar Production
Working Principle
In- and Outputs
Literature Case Studies
Benefits and Limitations
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EMF—Ellen MacArthur Foundation. Urban Biocycles; EMF—Ellen MacArthur Foundation: Cowes, UK, 2017; Available online: https://emf.thirdlight.com/link/ptejjhurhaj5-iigai0/@/download/1 (accessed on 30 September 2021).
- Zeller, V.; Towa, E.; Degrez, M.; Achten, W.M.J. Urban waste flows and their potential for a circular economy model at city-region level. Waste Manag. 2019, 83, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Langergraber, G.; Pucher, B.; Simperler, L.; Kisser, J.; Katsou, E.; Buehler, D.; Mateo, M.C.G.; Atanasova, N. Implementing nature-based solutions for creating a resourceful circular city. Blue-Green Syst. 2020, 2, 173–185. [Google Scholar] [CrossRef]
- Fratini, C.F.; Georg, S.; Jørgensen, M.S. Exploring circular economy imaginaries in European cities: A research agenda for the governance of urban sustainability transitions. J. Clean. Prod. 2019, 228, 974–989. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Paiho, S.; Mäki, E.; Wessberg, N.; Paavola, M.; Tuominen, P.; Antikainen, M.; Heikkilä, J.; Rozado, C.A.; Jung, N. Towards circular cities—Conceptualizing core aspects. Sustain. Cities Soc. 2020, 59, 102143. [Google Scholar] [CrossRef]
- Schönborn, A.; Junge, R. Redefining ecological engineering in the context of circular economy and sustainable development. Circ. Econ. Sustain. 2021, 1, 375–394. [Google Scholar] [CrossRef]
- Nika, C.E.; Gusmaroli, L.; Ghafourian, M.; Atanasova, N.; Buttiglieri, G.; Katsou, E. Nature-based solutions as enablers of circularity in water systems: A review on assessment methodologies, tools and indicators. Water Res. 2020, 183, 115988. [Google Scholar] [CrossRef]
- Kisser, J.; Wirth, M.; De Gusseme, B.; Van Eekert, M.; Zeeman, G.; Schoenborn, A.; Vinnerås, B.; Finger, D.C.; Kolbl Repinc, S.; Bulc, T.G.; et al. A review of nature-based solutions for resource recovery in cities. Blue-Green Syst. 2020, 2, 138–172. [Google Scholar] [CrossRef] [Green Version]
- Atanasova, N.; Castellar, J.A.C.; Pineda-Martos, R.; Nika, C.E.; Katsou, E.; Istenič, D.; Pucher, B.; Andreucci, M.B.; Langergraber, G. Nature-based solutions and circularity in cities. Circ. Econ. Sustain. 2021, 1, 319–332. [Google Scholar] [CrossRef]
- Langergraber, G.; Castellar, J.A.; Pucher, B.; Baganz, G.F.; Milosevic, D.; Andreucci, M.B.; Kearney, K.; Pineda-Martos, R.; Atanasova, N. A framework for addressing circularity challenges in cities with nature-based solutions. Water 2021, 13, 2355. [Google Scholar] [CrossRef]
- Neczaj, E.; Grosser, A. Circular economy in wastewater treatment plant–Challenges and barriers. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 614. [Google Scholar] [CrossRef] [Green Version]
- Sgroi, M.; Vagliasindi, F.G.; Roccaro, P. Feasibility, sustainability and circular economy concepts in water reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 20–25. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Amulya, K.; Annie Modestra, J. Urban biocycles–Closing metabolic loops for resilient and regenerative ecosystem: A perspective. Bioresour. Technol. 2020, 306, 123098. [Google Scholar] [CrossRef]
- Corona, B.; Shen, L.; Reike, D.; Rosales Carreón, J.; Worrell, E. Towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics. Resour. Conserv. Recycl. 2019, 151, 104498. [Google Scholar] [CrossRef]
- Wielemaker, R.; Stuiver, J.; Zeeman, G.; Weijma, J. Identifying Amsterdam’s nutrient hotspots: A new method to map human excreta at building and neighborhood scale. J. Ind. Ecol. 2019, 24, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Spuhler, D.; Scheidegger, A.; Maurer, M. Comparative analysis of sanitation systems for resource recovery: Influence of configurations and single technology components. Water Res. 2020, 186, 116281. [Google Scholar] [CrossRef]
- Gao, H.; Tian, X.; Zhang, Y.; Shi, L.; Shi, F. Evaluating circular economy performance based on ecological network analysis: A framework and application at city level. Resour. Conserv. Recycl. 2021, 168, 105257. [Google Scholar] [CrossRef]
- Benedetti, L.; Dirckx, G.; Bixio, D.; Thoeye, C.; Vanrolleghem, P.A. Substance flow analysis of the wastewater collection and treatment system. Urban Water J. 2006, 3, 33–42. [Google Scholar] [CrossRef]
- Wielemaker, R.; Oenema, O.; Zeeman, G.; Weijma, J. Fertile cities: Nutrient management practices in urban agriculture. Sci. Total. Environ. 2019, 668, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.; Vobruba, T.; Hartl, M.; Kisser, J. Potential Nutrient Conversion Using Nature-Based Solutions in Cities and Utilization Concepts to Create Circular Urban Food Systems. Circ. Econ. Sustain. 2021. [Google Scholar] [CrossRef]
- Firmansyah, I.; Spiller, M.; de Ruijter, F.J.; Carsjens, G.J.; Zeeman, G. Assessment of nitrogen and phosphorus flows in agricultural and urban systems in a small island under limited data availability. Sci. Total. Environ. 2017, 574, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Paiho, S.; Wessberg, N.; Pippuri-Mäkeläinen, J.; Mäki, E.; Sokka, L.; Parviainen, T.; Nikinmaa, M.; Siikavirta, H.; Paavola, M.; Antikainen, M.; et al. Creating a Circular City–An analysis of potential transportation, energy and food solutions in a case district. Sustain. Cities Soc. 2021, 64, 102529. [Google Scholar] [CrossRef]
- Somarakis, G.; Stagakis, S.; Chrysoulakis, N. ThinkNature Nature Based Solutions Handbook. ThinkNature Proj. funded by EU Horiz. Res. Innov. Program. 2020, 1–226. [Google Scholar] [CrossRef]
- Dotro, G.; Langergraber, G.; Molle, P.; Nivala, J.; Puigagut, J.; Stein, O.; Von Sperling, M. Treatment Wetlands; IWA Publishing: London, UK, 2017; p. 172. [Google Scholar] [CrossRef] [Green Version]
- Masi, F.; Bresciani, R.; Martinuzzi, N.; Cigarini, G.; Rizzo, A. Large scale application of French reed beds: Municipal wastewater treatment for a 20,000 inhabitant’s town in Moldova. Water Sci. Technol. 2017, 76, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Masi, F.; Bresciani, R.; Rizzo, A.; Edathoot, A.; Patwardhan, N.; Panse, D.; Langergraber, G. Green walls for greywater treatment and recycling in dense urban areas: A case-study in Pune. J. Water Sanit. Hyg. Dev. 2016, 6, 342–347. [Google Scholar] [CrossRef]
- Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Galvão, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Sci. Total Environ. 2020, 711, 134731. [Google Scholar] [CrossRef]
- Prodanovic, V.; McCarthy, D.; Hatt, B.; Deletic, A. Designing green walls for greywater treatment: The role of plants and operational factors on nutrient removal. Ecol. Eng. 2019, 130, 184–195. [Google Scholar] [CrossRef]
- Zraunig, A.; Estelrich, M.; Gattringer, H.; Kisser, J.; Langergraber, G.; Radtke, M.; Rodriguez-Roda, I.; Buttiglieri, G. Long term decentralized greywater treatment for water reuse purposes in a tourist facility by Vertical Ecosystem. Ecol. Eng. 2019, 138, 138–147. [Google Scholar] [CrossRef]
- Von, S. Wastewater Characteristics, Treatment and Disposal; IWA Publishing: London, UK, 2007; Volume 1. [Google Scholar] [CrossRef]
- Henze, M.; Comeau, Y. Wastewater Characterization. In Biological Wastewater Treatment: Principles and Design; Henze, M., van Loosdrecht, M.C.M., Ekama, G.A., Brdjanović, D., Eds.; IWA Publishing: London, UK, 2008; pp. 33–52. [Google Scholar]
- Molle, P.; Liénard, A.; Boutin, C.; Merlin, G.; Iwema, A. How to treat raw sewage with constructed wetlands: An overview of the French systems. Water Sci. Technol. 2005, 51, 11–21. [Google Scholar] [CrossRef]
- Avellán, T.; Gremillion, P. Constructed wetlands for resource recovery in developing countries. Renew. Sustain. Energy Rev. 2019, 99, 42–57. [Google Scholar] [CrossRef]
- Lachapelle, T.X.; Labrecque, M.; Comeau, Y. Treatment and valorization of a primary municipal wastewater by a short rotation willow coppice vegetation filter. Ecol. Eng. 2019, 130, 32–44. [Google Scholar] [CrossRef]
- Istenič, D.; Božič, G. Short-rotation willows as a wastewater treatment plant: Biomass production and the fate of macronutrients and metals. Forests 2021, 12, 554. [Google Scholar] [CrossRef]
- Canet-Martí, A.; Pineda-Martos, R.; Junge, R.; Bohn, K.; Paço, T.A.; Delgado, C.; Alenčikienė, G.; Gangenes Skar, S.L.; Baganz, G.F.M.; Baganz, G.F. Nature-based solutions for agriculture in circular cities: Challenges, gaps, and opportunities. Water 2021, 13, 2565. [Google Scholar] [CrossRef]
- Hertel, S.; Navarro, P.; Deegener, S.; Körner, I. Biogas and nutrients from blackwater, lawn cuttings and grease trap residues—experiments for Hamburg’s Jenfelder Au district. Energy Sustain. Soc. 2015, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Todt, D.; Bisschops, I.; Chatzopoulos, P.; Van Eekert, M.H. Practical performance and user experience of novel DUAL-Flush vacuum toilets. Water 2021, 13, 2228. [Google Scholar] [CrossRef]
- Bani, A.; Pavlova, D.; Rodríguez-Garrido, B.; Kidd, P.; Konstantinou, M.; Kyrkas, D.; Morel, J.-L.; Prieto-Fernandez, A.; Puschenreiter, M.; Echevarria, G. Element case studies in the temperate/mediterranean regions of Europe: Nickel. In Agromining: Farming for Metals; Mineral Resource Reviews; Van der Ent, A., Echevarria, G., Baker, A.J.M., Morel, J.L., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Osmani, M.; Bani, A.; Hoxha, B. The phytomining of nickel from industrial polluted site of Elbasan-Albania. Eur. Acad. Res. 2018, 10, 5347–5364. [Google Scholar]
- Osmani, M.; Bani, A.; Gjoka, F.; Pavlova, D.; Naqellari, P.; Shahu, E.; Duka, I.; Echevarria, G. The natural plant colonization of ultramafic post-mining area of Përrenjas, Albania. Period. Di Mineral. 2018, 87, 135–146. [Google Scholar] [CrossRef]
- Ghermandi, A.; Fichtman, E. Cultural ecosystem services of multifunctional constructed treatment wetlands and waste stabilization ponds: Time to enter the mainstream? Ecol. Eng. 2015, 84, 615–623. [Google Scholar] [CrossRef]
- Rizzo, A.; Bresciani, R.; Masi, F.; Boano, F.; Revelli, R.; Ridolfi, L. Flood reduction as an ecosystem service of constructed wetlands for combined sewer overflow. J. Hydrol. 2018, 560, 150–159. [Google Scholar] [CrossRef]
- Assimakopoulos, M.N.; De Masi, R.F.; de Rossi, F.; Papadaki, D.; Ruggiero, S. Green wall design approach towards energy performance and indoor comfort improvement: A case study in Athens. Sustainability 2020, 12, 3772. [Google Scholar] [CrossRef]
- Estelrich, M.; Vosse, J.; Comas, J.; Atanasova, N.; Costa, J.C.; Gattringer, H.; Buttiglieri, G. Feasibility of vertical ecosystem for sustainable water treatment and reuse in touristic resorts. J. Environ. Manag. 2021, 294, 112968. [Google Scholar] [CrossRef] [PubMed]
- Masi, F.; Rizzo, A.; Regelsberger, M. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J. Environ. Manag. 2018, 216, 275–284. [Google Scholar] [CrossRef]
- Maddison, M.; Soosaar, K.; Mauring, T.; Mander, Ü. The biomass and nutrient and heavy metal content of cattails and reeds in wastewater treatment wetlands for the production of construction material in Estonia. Desalination 2009, 246, 120–128. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Sitz, E.D.; Bajwa, S.G.; Barnick, A.R. Evaluation of cattail (Typha spp.) for manufacturing composite panels. Ind. Crop. Prod. 2015, 75, 195–199. [Google Scholar] [CrossRef]
- Krus, M.; Werner, T.; Großkinsky, T.; Georgiev, G. A new load-bearing insulation material made of cattail. Acad. J. Civ. Eng. 2015, 33, 666–673. [Google Scholar] [CrossRef]
- Cai, T.; Park, S.Y.; Li, Y. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew. Sustain. Energy Rev. 2013, 19, 360–369. [Google Scholar] [CrossRef]
- Žitnik, M.; Šunta, U.; Torkar, K.G.; Klemenčič, A.K.; Atanasova, N.; Bulc, T.G. The study of interactions and removal efficiency of Escherichia coli in raw blackwater treated by microalgae Chlorella vulgaris. J. Clean. Prod. 2019, 238, 117865. [Google Scholar] [CrossRef]
- Barsanti, L.; Gualtieri, P. Algae: Anatomy, Biochemistry and Biotechnology, 2nd ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Ramanan, R.; Kim, B.H.; Cho, D.H.; Oh, H.M.; Kim, H.S. Algae–bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 2016, 34, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Park, J.B.K.; Craggs, R.J. Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci. Technol. 2010, 633–639. [Google Scholar] [CrossRef]
- Craggs, R.; Sutherland, D.; Campbell, H. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J. Appl. Phycol. 2012, 24, 329–337. [Google Scholar] [CrossRef]
- Passos, F.; Gutiérrez, R.; Brockmann, D.; Steyer, J.P.; García, J.; Ferrer, I. Microalgae production in wastewater treatment systems, anaerobic digestion and modelling using ADM1. Algal Res. 2015, 10, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, L.; Graça, S.; Sousa, C.; Ambrosano, L.; Ribeiro, B.; Botrel, E.P.; Neto, P.C.; Ferreira, A.F.; Silva, C.M. Microalgae biomass production using wastewater: Treatment and costs: Scale-up considerations. Algal Res. 2016, 16, 167–176. [Google Scholar] [CrossRef]
- Segovia Bifarini, M.A.; Žitnik, M.; Griessler Bulc, T.; Krivograd Klemenčič, A. Treatment and re-use of raw blackwater by Chlorella vulgaris-based system. Water 2020, 12, 2660. [Google Scholar] [CrossRef]
- Tuantet, K.; Temmink, H.; Zeeman, G.; Janssen, M.; Wijffels, R.H.; Buisman, C.J. Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Res. 2014, 55, 162–174. [Google Scholar] [CrossRef]
- Vasconcelos Fernandes, T.; Shrestha, R.; Sui, Y.; Papini, G.; Zeeman, G.; Vet, L.E.; Lamers, P. Closing domestic nutrient cycles using microalgae. Environ. Sci. Technol. 2015, 49, 12450–12456. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Park, J.; Heubeck, S.; Ralph, P.J.; Craggs, R.J. Size matters–Microalgae production and nutrient removal in wastewater treatment high rate algal ponds of three different sizes. Algal Res. 2020, 45, 101734. [Google Scholar] [CrossRef]
- Coppens, J.; Grunert, O.; Van Den Hende, S.; Vanhoutte, I.; Boon, N.; Haesaert, G.; De Gelder, L. The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J. Appl. Phycol. 2016, 28, 2367–2377. [Google Scholar] [CrossRef]
- Milledge, J.J.; Nielsen, B.V.; Maneein, S.; Harvey, P.J. A brief review of anaerobic digestion of algae for bioenergy. Energies 2019, 12, 1166. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.J.; Lewis, D.M.; Green, F.B. Anaerobic digestion of algae biomass: A review. Algal Res. 2014, 5, 204–214. [Google Scholar] [CrossRef]
- Craggs, R.J.; Heubeck, S.; Lundquist, T.J.; Benemann, J.R. Algal biofuels from wastewater treatment high rate algal ponds. Water Sci. Technol. 2011, 63, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, V.; Gutiérrez, R.; Ferrer, I.; García, J.; Bayona, J.M. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: A pilot-scale study. J. Hazard. Mater. 2015, 288, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Weinrich, S.; Nelles, M. Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1)–Model development and stoichiometric analysis. Bioresour. Technol. 2021, 333, 125124. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Agyeman, I.; Eyice, Ö.; Cetecioglu, Z.; Plaza, E. The study of structure of anaerobic granules and methane producing pathways of pilot-scale UASB reactors treating municipal wastewater under sub-mesophilic conditions. Bioresour. Technol. 2019, 290, 121733. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Agyeman, I.; Plaza, E.; Cetecioglu, Z. Production of volatile fatty acids through co-digestion of sewage sludge and external organic waste: Effect of substrate proportions and long-term operation. Waste Manag. 2020, 112, 30–39. [Google Scholar] [CrossRef]
- Atasoy, M.; Owusu-Agyeman, I.; Plaza, E.; Cetecioglu, Z. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresour. Technol. 2018, 268, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Perez-Zabaleta, M.; Atasoy, M.; Khatami, K.; Eriksson, E.; Cetecioglu, Z. Bio-based conversion of volatile fatty acids from waste streams to polyhydroxyalkanoates using mixed microbial cultures. Bioresour. Technol. 2021, 323, 124604. [Google Scholar] [CrossRef]
- Seghezzo, L.; Zeeman, G.; van Lier, J.B.; Hamelers, H.V.M.; Lettinga, G. A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour. Technol. 1998, 65, 175–190. [Google Scholar] [CrossRef]
- Zeeman, G. New Sanitation: Bridging Cities and Agriculture; Inaugural Lecture Wageningen University: Wageningen, The Netherlands, 2012. [Google Scholar]
- Zeeman, G.; Kujawa, K.; De Mes, T.; Hernandez, L.; De Graaff, M.; Abu-Ghunmi, L.; Mels, A.; Meulman, B.; Temmink, H.; Buisman, C.; et al. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste (water). Water Sci. Technol. 2008, 57, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
- Malovanyy, A.; Yang, J.; Trela, J.; Plaza, E. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment. Bioresour. Technol. 2015, 180, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Fumasoli, A.; Etter, B.; Sterkele, B.; Morgenroth, E.; Udert, K.M. Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine. Water Sci. Technol. 2016, 73, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Nolde, E. Decentralized Water and Energy Recycling in Buildings: A Cornerstone for Water, Energy and CO2 Emissions Reduction. In Proceedings of the Water Efficiency Conference, Brighton, UK, 9–11 September 2014; pp. 61–72. Available online: https://www.watefnetwork.co.uk/files/default/resources/Conference2014/WATEFCON_2014_presentations/SUDS_and_alternative_water_supply/06-NOLDE.pdf (accessed on 5 April 2021).
- Duygan, B.D.Ö.; Udert, K.M.; Remmele, A.; McArdell, C.S. Removal of pharmaceuticals from human urine during storage, aerobic biological treatment, and activated carbon adsorption to produce a safe fertilizer. Resour. Conserv. Recycl. 2021, 166, 105341. [Google Scholar] [CrossRef]
- Li, F.; Wichmann, K.; Otterpohl, R. Review of the technological approaches for grey water treatment and reuses. Sci. Total. Environ. 2009, 407, 3439–3449. [Google Scholar] [CrossRef]
- Vlaeminck, S.E.; Terada, A.; Smets, B.F.; Linden, D.V.D.; Boon, N.; Verstraete, W.; Carballa, M. Nitrogen removal from digested black water by one-stage partial nitritation and anammox. Environ. Sci. Technol. 2009, 43, 5035–5041. [Google Scholar] [CrossRef] [PubMed]
- De Graaff, M.S.; Temmink, H.; Zeeman, G.; Van Loosdrecht, M.C.M.; Buisman, C.J.N. Autotrophic nitrogen removal from black water: Calcium addition as a requirement for settleability. Water Res. 2011, 45, 63–74. [Google Scholar] [CrossRef] [PubMed]
- De Graaff, M.S.; Temmink, H.; Zeeman, G.; Buisman, C.J.N. Energy and phosphorus recovery from black water. Water Sci. Technol. 2011, 63, 2759–2765. [Google Scholar] [CrossRef] [Green Version]
- Butkovskyi, A.; Leal, L.H.; Rijnaarts, H.H.M.; Zeeman, G. Fate of pharmaceuticals in full-scale source separated sanitation system. Water Res. 2015, 85, 384–392. [Google Scholar] [CrossRef] [PubMed]
- De Bertoldi, M.D.; Vallini, G.E.; Pera, A. The biology of composting: A review. Waste Manag. Res. 1983, 1, 157–176. [Google Scholar] [CrossRef]
- Epstein, E. The Science of Composting; CRC Press: Boca Raton, FL, USA, 2017; ISBN 1-56676-478-5. [Google Scholar]
- PWGSC. Technical Document on Municipal Solid Waste Organics Processing; Environment and Climate Change Canada: Vancouver, BC, Canada, 2013; ISBN 978-1-100-21707-9.
- Lazcano, C.; Gómez-Brandón, M.; Domínguez, J. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 2008, 72, 1013–1019. [Google Scholar] [CrossRef]
- Loehr, R.C.; Neuhauser, E.F.; Malecki, M.R. Factors affecting the vermistabilization process: Temperature, moisture content and polyculture. Water Res. 1985, 19, 1311–1317. [Google Scholar] [CrossRef]
- Lohri, C.R.; Diener, S.; Zabaleta, I.; Mertenat, A.; Zurbrügg, C. Treatment technologies for urban solid biowaste to create value products: A review with focus on low-and middle-income settings. Rev. Environ. Sci. Bio/Technol. 2017, 16, 81–130. [Google Scholar] [CrossRef] [Green Version]
- Harder, R.; Wielemaker, R.; Larsen, T.A.; Zeeman, G.; Öberg, G. Recycling nutrients contained in human excreta to agriculture: Pathways, processes, and products. Crit. Rev. Environ. Sci. Technol. 2019, 49, 695–743. [Google Scholar] [CrossRef] [Green Version]
- Community Composters. 2021. Available online: http://www.compostcommunity.it/wp-content/uploads/2021/01/brochure_inglese.pdf (accessed on 26 May 2021).
- Žitnik, M.; Vidic, T. Food Among Waste; Statistical Office of the Republic of Slovenia: Ljubljana, Slovenia, 2016; Available online: https://www.stat.si/StatWeb/File/DocSysFile/9206/FOOD_AMONG_WASTE_internet.pdf (accessed on 26 May 2021).
- Mato, S.; Pérez-Losada, C.; Martínez-Abraldes, M.; Villar, I. Towards the recycling of bio-waste: The case of pontevedra, Spain (REVITALIZA). In Municipal Solid Waste Management; IntechOpen: London, UK, 2019; ISBN 978-1-78923-832-7. [Google Scholar] [CrossRef] [Green Version]
- Malpils Biotechnology Centre. 2021. Available online: https://smartcitysweden.com/best-practice/192/biowaste-treatment-by-vermicomposting/ (accessed on 26 May 2021).
- Dhamodharan, K.; Varma, V.S.; Veluchamy, C.; Pugazhendhi, A.; Rajendran, K. Emission of volatile organic compounds from composting: A review on assessment, treatment and perspectives. Sci. Total. Environ. 2019, 695, 133725. [Google Scholar] [CrossRef]
- Colón, J.; Cadena, E.; Pognani, M.; Barrena, R.; Sánchez, A.; Font, X.; Artola, A. Determination of the energy and environmental burdens associated with the biological treatment of source-separated municipal solid wastes. Energy Environ. Sci. 2012, 5, 5731–5741. [Google Scholar] [CrossRef] [Green Version]
- Robertson, S.; Douglas, P.; Jarvis, D.; Marczylo, E. Bioaerosol exposure from composting facilities and health outcomes in workers and in the community: A systematic review update. Int. J. Hyg. Environ. Health 2019, 222, 364–386. [Google Scholar] [CrossRef] [PubMed]
- Gui, J.; Sun, Y.; Wang, J.; Chen, X.; Zhang, S.; Wu, D. Microplastics in composting of rural domestic waste: Abundance, characteristics, and release from the surface of macroplastics. Environ. Pollut. 2021, 274, 116553. [Google Scholar] [CrossRef]
- Hartenstein, R.; Neuhauser, E.F.; Collier, J. Accumulation of heavy metals in the earthworm Eisenia foetida. J. Environ. Qual. 1980, 9, 23–26. [Google Scholar] [CrossRef]
- Leita, L.; De Nobili, M. Water soluble fractions of heavy metals during composting of municipal solid waste. J. Environ. Qual. 1991, 20, 73–78. [Google Scholar] [CrossRef]
- Shahmansouri, M.R.; Pourmoghadas, H.; Parvaresh, A.R.; Alidadi, H. Heavy metals bioaccumulation by Iranian and Australian earthworms (Eisenia fetida) in the sewage sludge vermicomposting. J. Environ. Health Sci. Eng. 2005, 2, 28–32. [Google Scholar]
- Mohee, R.; Soobhany, N. Comparison of heavy metals content in compost against vermicompost of organic solid waste: Past and present. Resour. Conserv. Recycl. 2014, 92, 206–213. [Google Scholar] [CrossRef]
- Paré, T.; Dinel, H.; Schnitzer, M. Extractability of trace metals during co-composting of biosolids and municipal solid wastes. Biol. Fertil. Soils 1999, 29, 31–37. [Google Scholar] [CrossRef]
- Fertile Auro. Community Composting: A Practical Guide for Local Management of Biowaste. Zero Waste Guide no 1. 2019. Available online: https://zerowasteeurope.eu/wp-content/uploads/2019/04/zero_waste_europe_fertile_auro_guide_community-composting_en.pdf (accessed on 26 May 2021).
- Angeli, J.B.; Morales, A.; LeFloc’h, T.; Lakel, A.; Andres, Y. Anaerobic digestion and integration at urban scale: Feedback and comparative case study. Energy Sustain. Soc. 2018, 8, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Fuldauer, L.I.; Parker, B.M.; Yaman, R.; Borrion, A. Managing anaerobic digestate from food waste in the urban environment: Evaluating the feasibility from an interdisciplinary perspective. J. Clean. Prod. 2018, 185, 929–940. [Google Scholar] [CrossRef]
- Weidner, T.; Yang, A. The potential of urban agriculture in combination with organic waste valorization: Assessment of resource flows and emissions for two european cities. J. Clean. Prod. 2020, 244, 118490. [Google Scholar] [CrossRef]
- Guilayn, F.; Rouez, M.; Crest, M.; Patureau, D.; Jimenez, J. Valorization of digestates from urban or centralized biogas plants: A critical review. Rev. Environ. Sci. Biotechnol. 2020, 19, 419–462. [Google Scholar] [CrossRef]
- Nguyen, P.D.; Tran, N.S.T.; Nguyen, T.T.; Dang, B.T.; Le, M.T.T.; Bui, X.T.; Mukai, F.; Kobayashi, H.; Ngo, H.H. Long-term operation of the pilot scale two-stage anaerobic digestion of municipal biowaste in ho chi minh city. Sci. Total Environ. 2021, 766, 142562. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.; Theaker, H.; Yaman, R.; Poggio, D.; Nimmo, W.; Bywater, A.; Blanch, G.; Pourkashanian, M. Assessment of micro-scale anaerobic digestion for management of urban organic waste: A case study in London, UK. Waste Manag. 2017, 61, 258–268. [Google Scholar] [CrossRef] [PubMed]
- González, R.; Hernández, J.E.; Gómez, X.; Smith, R.; Arias, J.G.; Martínez, E.J.; Blanco, D. Performance evaluation of a small-scale digester for achieving decentralised management of waste. Waste Manag. 2020, 118, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Degueurce, A.; Picard, S.; Peu, P.; Trémier, A. Storage of food waste: Variations of physical–chemical characteristics and consequences on biomethane potential. Waste Biomass Valorization 2020, 11, 2441–2454. [Google Scholar] [CrossRef] [Green Version]
- Bautista Angeli, J.R.; LeFloc’h, T.; Lakel, A.; Lacarrière, B.; Andres, Y. Anaerobic digestion of urban wastes: Integration and benefits of a small-scale system. Environ. Technol. 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Angouria-Tsorochidou, E.; Teigiserova, D.A.; Thomsen, M. Limits to circular bioeconomy in the transition towards decentralized biowaste management systems. Resour. Conserv. Recycl. 2021, 164, 105207. [Google Scholar] [CrossRef]
- Thiriet, P.; Bioteau, T.; Tremier, A. Optimization method to construct micro-anaerobic digesters networks for decentralized biowaste treatment in urban and peri-urban areas. J. Clean. Prod. 2020, 243, 118478. [Google Scholar] [CrossRef]
- Ojha, S.; Bußler, S.; Schlüter, O.K. Food waste valorisation and circular economy concepts in insect production and processing. Waste Manag. 2020, 118, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Cortes Ortiz, J.A.; Ruiz, A.T.; Morales-Ramos, J.A.; Thomas, M.; Rojas, M.G.; Tomberlin, J.K.; Yi, L.; Han, R.; Giroud, L.; Jullien, R.L. Chapter 6—Insect mass production technologies. In Insects as Sustainable Food Ingredients; Dossey, A.T., Morales-Ramos, J.A., Rojas, M.G., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 153–201. [Google Scholar] [CrossRef]
- Larouche, J. Processing Methods for the Black Soldier Fly (Hermetia illucens) Larvae: From Feed Withdrawal Periods to Killing Methods. Master’s Thesis, Université Laval, Québec, QC, Canada, 2019. [Google Scholar]
- Harnden, L.M.; Tomberlin, J.K. Effects of temperature and diet on black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), development. Forensic Sci. Int. 2016, 266, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Dortmans, B.M.A.; Diener, S.; Verstappen, B.M.; Zurbrügg, C. Black Soldier Fly Biowaste Processing—A Step-by-Step Guide Eawag; Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2017; Available online: https://www.eawag.ch/fileadmin/Domain1/Abteilungen/sandec/publikationen/SWM/BSF/BSF_Biowaste_Processing_LR.pdf (accessed on 30 September 2021).
- Da Silva, G.D.P.; Hesselberg, T. A review of the use of black soldier fly larvae, Hermetia illucens (diptera: Stratiomyidae), to compost organic waste in tropical regions. Neotrop. Entomol. 2020, 49, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Diener, S.; Studt Solano, N.M.; Roa Gutiérrez, F.; Zurbrügg, C.; Tockner, K. Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valorization 2011, 2, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Muros, M.-J.; Barroso, F.G.; Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 2014, 65, 16–27. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Shelomi, M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Sarpong, D.; Oduro-Kwarteng, S.; Gyasi, S.F.; Buamah, R.; Donkor, E.; Awuah, E.; Baah, M.K. Biodegradation by composting of municipal organic solid waste into organic fertilizer using the black soldier fly (Hermetia illucens) (Diptera: Stratiomyidae) larvae. Int. J. Recycl. Org. Waste Agric. 2019, 8, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Mcconville, J.; Niwagaba, C.; Nordin, A.; Ahlström, M.; Namboozo, V.; Kiffe, M. Guide to Sanitation Resource-Recovery Products; Technologies: A Supplement to the Compendium of Sanitation Systems and Technologies (Report Nr. 116; Nummer 116). 2020. Available online: https://pub.epsilon.slu.se/21284/ (accessed on 30 September 2021).
- Bakker, L.T.A. Product Market Applications of the Black Soldier Fly, a Literature Study. Bachelor’s Thesis, Wageningen University, Wageningen, The Netherlands, 2020. Available online: https://edepot.wur.nl/520307 (accessed on 30 September 2021).
- Nasekomo, Impact—We Are Closing the Protein Gap and Combat Climate Change, n.d. Available online: https://nasekomo.life/impact (accessed on 16 June 2021).
- InsectiPro, About Us, n.d. Available online: https://www.insectipro.com (accessed on 16 July 2021).
- Gold, M.; Tomberlin, J.K.; Diener, S.; Zurbrügg, C.; Mathys, A. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Manag. 2018, 82, 302–318. [Google Scholar] [CrossRef]
- Lalander, C.; Senecal, J.; Gros Calvo, M.; Ahrens, L.; Josefsson, S.; Wiberg, K.; Vinnerås, B. Fate of pharmaceuticals and pesticides in fly larvae composting. Sci. Total. Environ. 2016, 565, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalander, C.; Fidjeland, J.; Diener, S.; Eriksson, S.; Vinnerås, B. High waste-to-biomass conversion and efficient Salmonella spp. Reduction using black soldier fly for waste recycling. Agron. Sustain. Dev. 2014, 35, 261–271. [Google Scholar] [CrossRef]
- Wu, N.; Wang, X.; Yan, Z.; Xu, X.; Xie, S.; Liang, J. Transformation of pig manure by passage through the gut of black soldier fly larvae (Hermetia illucens): Metal speciation, potential pathogens and metal-related functional profiling. Ecotoxicol. Environ. Saf. 2021, 211, 111925. [Google Scholar] [CrossRef]
- Wang, X.; Wu, N.; Cai, R.; Geng, W.; Xu, X. Changes in speciation, mobility and bioavailability of Cd, Cr and As during the transformation process of pig manure by black soldier fly larvae (Hermetia illucens). J. Integr. Agric. 2021, 20, 1157–1166. [Google Scholar] [CrossRef]
- Van Huis, A. Insects as food and feed, a new emerging agricultural sector: A review. J. Insects Food Feed. 2020, 6, 27–44. [Google Scholar] [CrossRef] [Green Version]
- EEA. Progress in Management of Contaminated Sites in Europe; EEA: Copenhagen, Denmark, 2014. [Google Scholar]
- Bani, A.; Echevarria, G.; Sulçe, S.; Morel, J.L. Improving the agronomy of Alyssum murale for extensive phytomining: A five-year field study. Int. J. Phytoremediation 2015, 17, 117–127. [Google Scholar] [CrossRef]
- Bani, A.; Echevarria, G.; Zhang, X.; Benizri, E.; Laubie, B.; Morel, J.L.; Simonnot, M.-O. The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Aust. J. Bot. 2015, 63, 72–77. [Google Scholar] [CrossRef]
- Van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Chaney, R.L. Agromining: Farming for metals in the future? Environ. Sci. Technol. 2015, 49, 4773–4778. [Google Scholar] [CrossRef]
- Wang, L.; Hou, D.; Shen, Z.; Zhu, J.; Jia, X.; Ok, Y.S.; Tack, F.M.G.; Rinklebe, J. Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2724–2774. [Google Scholar] [CrossRef]
- Reeves, R.D.; Baker, A.J.; Jaffré, T.; Erskine, P.D.; Echevarria, G.; van der Ent, A. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 2018, 218, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.; Moreno, F.; Meech, J. A field demonstration of gold phytoextraction technology. Miner. Eng. 2005, 18, 385–392. [Google Scholar] [CrossRef]
- Salt, D.E.; Smith, R.D.; Raskin, I. Phytoremediation, annual review of plant physiology and plant molecular biology. Annu. Rev. 1998, 49, 643–668. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Phytomining: A review. Miner. Eng. 2009, 22, 1007–1019. [Google Scholar] [CrossRef]
- Zhang, X.; Houzelot, V.; Bani, A.; Morel, J.L.; Echevarria, G.; Simonnot, M.-O. Selection and combustion of Ni- yperaccumulators for the phytomining process. Int. J. Phytoremediation 2014, 16, 1058–1072. [Google Scholar] [CrossRef]
- Koppolu, L.; Prasad, R.; Clements, L.D. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part III: Pilot scale pyrolysis of synthetic hyperaccumulator biomass. Biomass Bioenerg. 2004, 26, 463–472. [Google Scholar] [CrossRef]
- Houzelot, V.; Laubie, B.; Pontvianne, S.; Simonnot, M.-O. Effect of up-scaling on the quality of ashes obtained from hyperaccumulator biomass to recover Ni by agromining. Chem. Eng. Res. Des. 2017, 120, 26–33. [Google Scholar] [CrossRef]
- Simonnot, M.O.; Vaughan, J.; Laubie, B. Processing of bio-ore to products BT. In Agromining: Farming for Metals:Extracting Unconventional Resources Using Plants; Van der Ent, A., Echevarria, G., Baker, A.J.M., More, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 39–51. [Google Scholar] [CrossRef]
- Kisser, J.; Gattringer, H.J.; Iordanopoulos-Kisser, M. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants. In Proceedings of the 3rd International Conference on Sustainable Solid Waste Management, Tinos Island, Greece, 2–4 July 2015. [Google Scholar]
- Rosenkranz, T.; Kisser, J.; Wenzel, W.W.; Puschenreiter, M. Waste or substrate for metal hyperaccumulating plants—The potential of phytomining on waste incineration bottom ash. Sci. Total. Environ. 2017, 575, 910–918. [Google Scholar] [CrossRef]
- Dodson, J.R.; Parker, H.L.; Muñoz García, A.; Hicken, A.; Asemave, K.; Farmer, T.J.; He, H.; Clark, J.H.; Hunt, A.J. Bio-derived materials as a green route for precious; critical metal recovery and re-use. Green Chem. 2015, 17, 1951–1965. [Google Scholar] [CrossRef]
- Chaney, R.L.; Mahoney, M. Phytostabilization and phytomining principles and successes. In Proceedings of the Life of Mines Conference, Brisbane, Australia, 15–17 July 2014; Australian Institute of Mining and Metallurgy: Brisbane, Australia, 2014; p. 104. [Google Scholar]
- Castellar, J.A.C.; Popartan, L.A.; Pueyo-Ros, J.; Atanasova, N.; Langergraber, G.; Säumel, I.; Corominas, L.; Comas, J.; Acuña, V. Nature-based solutions in the urban context: Terminology, classification and scoring for urban challenges and ecosystem services. Sci. Total. Environ. 2021, 779, 146237. [Google Scholar] [CrossRef]
- Landberg, T.; Greger, M. Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl. Geochem. 1996, 11, 175–180. [Google Scholar] [CrossRef]
- Istenič, D.; Arias, C.A.; Vollertsen, J.; Nielsen, A.H.; Wium-Andersen, T.; Hvitved-Jacobsen, T.; Brix, H. Improved urban stormwater treatment and pollutant removal pathways in amended wet detention ponds. J. Environ. Sci. Health Part A 2012, 47, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Thibodeaux, L.J.; Mackay, D. (Eds.) Handbook of Chemical Mass Transport in the Environment; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Terzaghi, E.; De Nicola, F.; Cerabolini, B.E.L.; Posada-Baquero, R.; Ortega-Calvo, J.-J.; Di Guardo, A. Role of photo- and biodegradation of two PAHs on leaves: Modelling the impact on air quality ecosystem services provided by urban trees. Sci. Total. Environ. 2020, 739, 139893. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.F.; Ling, D.L. Guidance for noise reduction provided by tree belts. Landsc. Urban Plan. 2005, 71, 29–34. [Google Scholar] [CrossRef]
- Koprowska, K.; Łaszkiewicz, E.; Kronenberg, J.; Marcińczak, S. Subjective perception of noise exposure in relation to urban green space availability. Urban For. Urban Green. 2018, 31, 93–102. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R. The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK. Urban For. Urban Green. 2013, 12, 282–286. [Google Scholar] [CrossRef]
- Costanza, R.; Mitsch, W.J.; Day, J.W., Jr. A new vision for New Orleans and the Mississippi delta: Applying ecological economics and ecological engineering. Front. Ecol. Environ. 2006, 4, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Springer, T.L. Biomass yield from an urban landscape. Biomass Bioenergy 2012, 37, 82–87. [Google Scholar] [CrossRef]
- Ferla, G.; Caputo, P.; Colaninno, N.; Morello, E. Urban greenery management and energy planning: A GIS-based potential evaluation of pruning by-products for energy application for the city of Milan. Renewable Energy 2020, 160, 185–195. [Google Scholar] [CrossRef]
- Sikorska, D.; Macegoniuk, S.; Łaszkiewicz, E.; Sikorski, P. Energy crops in urban parks as a promising alternative to traditional lawns–Perceptions and a cost-benefit analysis. Urban For. Urban Green. 2020, 49, 126579. [Google Scholar] [CrossRef]
- Speak, A.; Escobedo, F.J.; Russo, A.; Zerbe, S. Total urban tree carbon storage and waste management emissions estimated using a combination of LiDAR, field measurements and an end-of-life wood approach. J. Clean. Prod. 2020, 256, 120420. [Google Scholar] [CrossRef]
- Chen, W.Y. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: A nationwide estimate. Cities 2015, 44, 112–120. [Google Scholar] [CrossRef]
- Timilsina, N.; Staudhammer, C.L.; Escobedo, F.J.; Lawrence, A. Tree biomass, wood waste yield, and carbon storage changes in an urban forest. Landsc. Urban Plan. 2014, 127, 18–27. [Google Scholar] [CrossRef]
- Säumel, I.; Weber, F.; Kowarik, I. Toward livable and healthy urban streets: Roadside vegetation provides ecosystem services where people live and move. Environ. Sci. Policy 2016, 62, 24–33. [Google Scholar] [CrossRef]
- Seamans, G.S. Mainstreaming the environmental benefits of street trees. Urban For. Urban Green. 2013, 12, 2–11. [Google Scholar] [CrossRef]
- Von Döhren, P.; Haase, D. Risk assessment concerning urban ecosystem disservices: The example of street trees in Berlin, Germany. Ecosyst. Serv. 2019, 40, 101031. [Google Scholar] [CrossRef]
- Wang, F.H.; Qiao, M.; Lv, Z.E.; Guo, G.X.; Jia, Y.; Su, Y.H.; Zhu, Y.G. Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China. Environ. Pollut. 2014, 184, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Zalacáin, D.; Bienes, R.; Sastre-Merlín, A.; Martínez-Pérez, S.; García-Díaz, A. Influence of reclaimed water irrigation in soil physical properties of urban parks: A case study in Madrid (Spain). Catena 2019, 180, 333–340. [Google Scholar] [CrossRef]
- Song, Y.; Kirkwood, N.; Maksimović, Č.; Zheng, X.; O’Connor, D.; Jin, Y.; Hou, D. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Sci. Total. Environ. 2019, 663, 568–579. [Google Scholar] [CrossRef]
- Viretto, A.; Gontard, N.; Angellier-Coussy, H. Urban parks and gardens green waste: A valuable resource for the production of fillers for biocomposites applications. Waste Manag. 2021, 120, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Sartison, K.; Artmann, M. Edible cities—An innovative nature-based solution for urban sustainability transformation? An explorative study of urban food production in German cities. Urban For. Urban Green. 2020, 49, 126604. [Google Scholar] [CrossRef]
- Russo, A.; Escobedo, F.J.; Timilsina, N.; Zerbe, S. Transportation carbon dioxide emission offsets by public urban trees: A case study in Bolzano, Italy. Urban For. Urban Green. 2015, 14, 398–403. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A. Evaluating the potential of nature-based solutions to reduce ozone, nitrogen dioxide, and carbon dioxide through a multi-type green infrastructure study in Ontario, Canada. City Environ. Interact. 2020, 6, 100043. [Google Scholar] [CrossRef]
- Dion, L.M.; Lefsrud, M.; Orsat, V. Review of CO2 recovery methods from the exhaust gas of biomass heating systems for safe enrichment in greenhouses. Biomass Bioenergy 2011, 35, 3422–3432. [Google Scholar] [CrossRef]
- Chalabi, Z.S.; Biro, A.; Bailey, B.J.; Aikman, D.P.; Cockshull, K.E. SE—Structures and environment: Optimal control strategies for carbon dioxide enrichment in greenhouse tomato Crops—Part 1: Using pure carbon dioxide. Biosyst. Eng. 2002, 81, 421–431. [Google Scholar] [CrossRef]
- Jaffrin, A.; Bentounes, N.; Joan, A.M.; Makhlouf, S. Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosyst. Eng. 2003, 86, 113–123. [Google Scholar] [CrossRef]
- Sánchez-Guerrero, M.C.; Lorenzo, P.; Medrano, E.; Baille, A.; Castilla, N. Effects of EC-based irrigation scheduling and CO2 enrichment on water use efficiency of a greenhouse cucumber crop. Agric. Water Manag. 2009, 96, 429–436. [Google Scholar] [CrossRef]
- Tisserat, B.; Vaughn, S.F.; Berhow, M.A. Ultrahigh CO2 levels enhances cuphea growth and morphogenesis. Ind. Crop. Prod. 2008, 27, 133–135. [Google Scholar] [CrossRef]
- IPCC. Climate change: Synthesis report. In Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Nath, A.J.; Lal, R.; Das, A.K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Conserv. 2015, 3, 654–663. [Google Scholar] [CrossRef] [Green Version]
- Hinkle, H.; McGinley, M.; Hargett, T.; Dascher, S. Carbon Farming with Timber Bamboo: A Superior Sequestration System Compared to Wood; Bamcore Report. 2019. Available online: https://www.bamcore.com/wp-content/uploads/2020/08/Carbon-Farming-Timber-Bamboo.pdf (accessed on 30 September 2021).
- Bezemer, M. Phytoremediation: How Plants Help Restore Balance to Our Environment. Into Green 2017. Available online: https://intogreen.eu/phytoremediation-how-plants-help-restore-balance-to-our-environment/ (accessed on 30 September 2021).
- Velasco, E.; Roth, M.; Norford, L.; Molina, L.T. Does urban vegetation enhance carbon sequestration? Landsc. Urban Plan. 2016, 148, 99–107. [Google Scholar] [CrossRef]
- Bisschops, I.; Kjerstadius, H.; Meulman, B.; van Eekert, M. Integrated nutrient recovery from source-separated domestic wastewaters for application as fertilisers. Curr. Opin. Environ. Sustain. 2019, 40, 7–13. [Google Scholar] [CrossRef]
- WEDC. A Collection of Contemporary Toilet Design. 2014. Available online: https://repository.lboro.ac.uk/articles/book/A_collection_of_contemporary_toilet_designs/9585221 (accessed on 12 August 2021).
- Gundlach, J.; Bryla, M.; Larsen, T.A.; Kristoferitsch, L.; Gründl, H.; Holzner, M. Novel NoMix toilet concept for efficient separation of urine and feces and its design optimization using computational fluid mechanics. J. Build. Eng. 2021, 33, 101500. [Google Scholar] [CrossRef]
- EAWAG 2019 Forum Chriesbach. EAWAG. 2019. Available online: https://www.eawag.ch/en/aboutus/sustainability/sustainable-building/forum-chriesbach/ (accessed on 30 September 2021).
- Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; Van Beek, R.; Nicoll, B.C.; Achim, A. (Eds.) Slope Stability and Erosion Control: Ecotechnological Solutions; Springer Science Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef] [Green Version]
- Mickovski, S.B. Re-thinking soil bioengineering to address climate change challenges. Sustainability 2021, 13, 3338. [Google Scholar] [CrossRef]
- Jabłońska, E.; Wiśniewska, M.; Marcinkowski, P.; Grygoruk, M.; Walton, C.R.; Zak, D.; Hoffmann, C.C.; Larsen, S.E.; Trepel, M.; Kotowski, W. Catchment-scale analysis reveals high cost-effectiveness of wetland buffer zones as a remedy to non-point nutrient pollution in north-eastern Poland. Water 2020, 12, 629. [Google Scholar] [CrossRef] [Green Version]
- Fortier, J.; Truax, B.; Gagnon, D.; Lambert, F. Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land. J. Environ. Manag. 2015, 154, 333–345. [Google Scholar] [CrossRef] [Green Version]
- Symmank, L.; Natho, S.; Scholz, M.; Schröder, U.; Raupach, K.; Schulz-Zunkel, C. The impact of bioengineering techniques for riverbank protection on ecosystem services of riparian zones. Ecol. Eng. 2020, 158, 106040. [Google Scholar] [CrossRef]
- Bond, T.; Templeton, M.R.; Rifai, O.; Ali, H.; Graham, N.J. Chlorinated and nitrogenous disinfection by-product formation from ozonation and post-chlorination of natural organic matter surrogates. Chemosphere 2014, 111, 218–224. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (US EPA). 2018 Edition of the Drinking Water Standards and Health Advisories Tables (EPA 822-F-18-001); Office of Water: Washington, DC, USA, 2018. Available online: https://www.epa.gov/sites/production/files/2018-03/documents/dwtable2018.pdf (accessed on 18 May 2021).
- Papageorgiou, A.; Voutsa, D.; Papadakis, N. Occurrence and fate of ozonation by-products at a full-scale drinking water treatment plant. Sci. Total. Environ. 2014, 481, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Von Sonntag, C.; von Gunten, U. Ozone kinetics in drinking water and wastewater. In Chemistry of Ozone In Water and Wastewater Treatment: From Basic Principles to Applications; IWA Publishing: London, UK, 2012; pp. 23–47. [Google Scholar] [CrossRef]
- Richardson, S.D.; Thruston, A.D.; Caughran, T.V.; Chen, P.H.; Collette, T.W.; Schenck, K.M.; Lykins, B.W., Jr.; Rav-Acha, C.; Glezer, V. Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramine, and chlorine. Water Air Soil Pollut. 2000, 123, 95–102. [Google Scholar] [CrossRef]
- Krasner, S.W. The formation and control of emerging disinfection by-products of health concern. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 4077–4095. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, D.; Xu, X.; Wang, Z. Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation. Sci. Total. Environ. 2017, 587, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Marsh, H.; Reinoso, F.R. Activated Carbon; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 978-0-08-044463-5. [Google Scholar]
- Chowdhury, Z.K. Activated Carbon: Solutions for Improving Water Quality; American Water Works Association: Denver, CO, USA, 2013. [Google Scholar]
- Reyes Contreras, C.; López, D.; Leiva, A.M.; Domínguez, C.; Bayona, J.M.; Vidal, G. Removal of organic micropollutants in wastewater treated by activated sludge and constructed wetlands: A comparative study. Water 2019, 11, 2515. [Google Scholar] [CrossRef] [Green Version]
- Bourgin, M.; Beck, B.; Boehler, M.; Borowska, E.; Fleiner, J.; Salhi, E.; Teichler, R.; von Gunten, U.; Siegrist, H.; McArdell, C.S. Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products. Water Res. 2018, 129, 486–498. [Google Scholar] [CrossRef] [Green Version]
- Batelaan, M.V.; van den Berg, E.A.; Koetse, E.; Wortel, N.C.; Rimmelzwaan, J.; Vellinga, S. Evaluation Report Pharmafilter: Full Scale Demonstration in the Reinier de Graaf Gasthuis (Hospital) Delft; STOWA: Engelsbrand, Germany, 2013; Available online: https://www.stowa.nl/sites/default/files/assets/PUBLICATIES/Publicaties%202013/STOWA%202013-16.pdf (accessed on 12 August 2021).
- Köpping, I.; McArdell, C.S.; Borowska, E.; Böhler, M.A.; Udert, K.M. Removal of pharmaceuticals from nitrified urine by adsorption on granular activated carbon. Water Res. X 2020, 9, 100057. [Google Scholar] [CrossRef]
- Vuna GmbH 2020 Aurin Recycled Fertilizer. Available online: https://vuna.ch/en/aurin-recycling-dunger/ (accessed on 12 August 2021).
- Rizzo, L.; Gernjak, W.; Krzeminski, P.; Malato, S.; McArdell, C.S.; Sanchez Perez, J.A.; Schaar, H.; Fatta-Kassinos, D. Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. Sci. Total. Environ. 2020, 270, 136312. [Google Scholar] [CrossRef]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. J. Environ. Manag. 2018, 208, 56–76. [Google Scholar] [CrossRef]
- Commission Implementing Decision (EU) 2018/840 of 5 June 2018 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495. Available online: https://op.europa.eu/en/publication-detail/-/publication/06ece275-6a22-11e8-9483-01aa75ed71a1/language-en (accessed on 17 May 2021).
- Nunes, O.C. The challenge of removing waste from wastewater: Let technology use nature! Microb. Biotechnol. 2020, 14, 63–67. [Google Scholar] [CrossRef]
- Cerreta, G.; Roccamante, M.A.; Oller, I.; Malato, S.; Rizzo, L. Contaminants of emerging concern removal from real wastewater by UV/free chlorine process: A comparison with solar/free chlorine and UV/H2O2 at pilot scale. Chemosphere 2019, 236, 124354. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, N. State of the art of UV/Chlorine advanced oxidation processes: Their mechanism, byproducts formation, process variation, and applications. J. Water Environ. Technol. 2019, 17, 302–335. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. The Electro-peroxone technology as a promising advanced oxidation process for water and wastewater treatment. In Electro-Fenton Process; Springer: Singapore, 2017; pp. 57–84. [Google Scholar] [CrossRef]
- Vilar, V.J.; Moreira, J.M.; Fonseca, A.; Saraiva, I.; Boaventura, R.A. Application of Fenton and solar photo-Fenton processes to the treatment of a sanitary landfill leachate in a pilot plant with CPCs. J. Adv. Oxid. Technol. 2012, 15, 107–116. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, M.; Oturan, N.; Li, Y.; Oturan, M.A. Electrocatalytic destruction of pharmaceutical imatinib by electro-Fenton process with graphene-based cathode. Electrochim. Acta 2019, 305, 285–294. [Google Scholar] [CrossRef]
- Dewil, R.; Mantzavinos, D.; Poulios, I.; Rodrigo, M.A. New perspectives for advanced oxidation processes. J. Environ. Manag. 2017, 195, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markovski, J.S.; Hristovski, K.D.; Rajaković-Ognjanović, V.N.; Marinković, A.D. Building a sustainable water management system in the Republic of Serbia: Challenges and issues. In Water Challenges and Solutions on a Global Scale; ACS Symposium Series: Washington, DC, USA, 2015; Volume 1206, pp. 257–283. [Google Scholar]
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Đolić, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Ribeiro, A.R.L.; et al. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total. Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef]
- Singer, P.C.; Reckhow, D.A. Chemical oxidation. In Water Quality and Treatment, 5th ed.; Letterman, R.D., Ed.; McGraw-Hill, Inc.: New York, NY, USA, 1999; pp. 12.1–12.51. [Google Scholar]
- von Gunten, U. Oxidation processes in water treatment: Are we on track? Environ. Sci. Technol. 2018, 52, 5062–5075. [Google Scholar] [CrossRef]
- Cunha, J.R.; Schott, C.; van der Weijden, R.D.; Leal, L.H.; Zeeman, G.; Buisman, C. Calcium phosphate granules recovered from black water treatment: A sustainable substitute for mined phosphorus in soil fertilization. Resour. Conserv. Recycl. 2020, 158, 104791. [Google Scholar] [CrossRef]
- Cunha, J.R.; Schott, C.; van der Weijden, R.D.; Leal, L.H.; Zeeman, G.; Buisman, C. Calcium addition to increase the production of phosphate granules in anaerobic treatment of black water. Water Res. 2018, 130, 333–342. [Google Scholar] [CrossRef]
- Wei, S.P.; van Rossum, F.; van de Pol, G.J.; Winkler, M.K.H. Recovery of phosphorus and nitrogen from human urine by struvite precipitation, air stripping and acid scrubbing: A pilot study. Chemosphere 2018, 212, 1030–1037. [Google Scholar] [CrossRef]
- Krzeminski, P.; Leverette, L.; Malamis, S.; Katsou, E. Membrane bioreactors—A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J. Membr. Sci. 2017, 527C, 207–227. [Google Scholar] [CrossRef] [Green Version]
- Masi, F.; Langergraber, G.; Santoni, M.; Istenič, D.; Atanasova, N.; Buttiglieri, G. Chapter four—Possibilities of nature-based and hybrid decentralized solutions for reclaimed water reuse. In Advances in Chemical Pollution, Environmental Management and Protection; Verlicchi, P., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 5, pp. 145–187. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.M.; Achilli, A.; Ghassemi, A.; et al. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef]
- Houweling, D.; Peeters, J.; Cote, P.; Long, Z.; Adams, N. Proving membrane aerated biofilm reactor (MABR) performance and reliability: Results from four pilots and a full-scale plant. Proc. Water Environ. Fed. 2017, 16, 272–284. [Google Scholar] [CrossRef]
- Plaza, E.; Levlin, E.; Morling, S.; Falk, L. Pilotförsök Med MABR på Ekeby Avloppsreningsverk—Teknisk Rapport av ESEM; Report No. TRITA-ABE-RPT-1834; Royal Institute of Technology: Stockholm, Sweden, 2018; p. 49. Available online: http://kth.diva-portal.org/smash/get/diva2:1264309/FULLTEXT01.pdf (accessed on 30 September 2021).
- Tirosh, U.; Shechter, R. Membrane aerated biofilm reactor (MABR)—Distributed treatment of wastewater at low energy consumption. In Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability. Advances in Science, Technology; Innovation (IEREK Interdisciplinary Series for Sustainable Development); Naddeo, V., Balakrishnan, M., Choo, K.H., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Peter-Varbanets, M.; Zurbrügg, C.; Swartz, C.; Pronk, W. Decentralized systems for potable water and the potential of membrane technology. Water Res. 2009, 43, 245–265. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Fit-for-purpose urban wastewater reuse: Analysis of issues and available technologies for sustainable multiple barrier approaches. Crit. Rev. Environ. Sci. Technol. 2020, 1619–1666. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Q.; Sommerfeld, M.; Puruhito, E.; Chen, Y. Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour. Technol. 2010, 101, 5297–5304. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, M.S.; Markakis, N.; Petousi, I.; Manios, T. Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing. Sci. Total. Environ. 2016, 551–552, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Matulova, Z.; Hlavinek, P.; Drtil, M. One-year operation of single household membrane bioreactor plant. Water Sci. Technol. 2010, 61, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Tai, C.S.; Snider-Nevin, J.; Dragasevich, J.; Kempson, J. Five years operation of a decentralized membrane bioreactor package plant treating domestic wastewater. Water Pract. Technol. 2014, 9, 206–214. [Google Scholar] [CrossRef]
- Andersson, S.L.; Westling, K.; Andersson, S.; Karlsson, J.; Narongin, M.; Carranza Munoz, A.; Persson, G. Long Term Trials with Membrane Bioreactor for Enhanced Wastewater Treatment Coupled with Compact Sludge Treatment; Report No. B2409; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2021; p. 96. Available online: https://sjostad.ivl.se/download/18.2f05652c1775c6085c02250/1613674873128/B2409%5B1%5D.pdf (accessed on 30 September 2021).
- Bleuler, M.; Gold, M.; Strande, L.; Schönborn, A. Pyrolysis of dry toilet substrate as a means of nutrient recycling in agricultural systems: Potential risks and benefits. Waste Biomass Valorization 2021, 12, 4171–4183. [Google Scholar] [CrossRef]
- Hu, B.; Wang, K.; Wu, L.; Yu, S.H.; Antonietti, M.; Titirici, M.M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 2010, 22, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Bettendorf, T.; Buzie, C.; Glaser, B.; Otterpohl, R.; Klimek, F. Terra Preta Sanitation 1-Background, Principles and Innovations; Deutsche Bundesstiftung für Umwelt (DBU): Hamburg, Germany, 2015. [Google Scholar]
- Glaser, B.; Parr, M.; Braun, C.; Kopolo, G. Biochar is carbon negative. Nat. Geosci. 2009, 2, 2. [Google Scholar] [CrossRef]
- Hu, Q.; Jung, J.; Chen, D.; Leong, K.; Song, S.; Li, F.; Mohan, B.C.; Yao, Z.; Prabhakar, A.K.; Lin, X.H.; et al. Biochar industry to circular economy. Sci. Total. Environ. 2021, 757, 143820. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Godbout, S.; Brar, S.K.; Solomatnikova, O.; Lemay, S.P.; Larouche, J.P. Biofuels production from biomass by thermochemical conversion technologies. Int. J. Chem. Eng. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A synthesis of its agronomic impact be yond carbon sequestration. J. Environ. Qual. 2012, 41, 973–989. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 1053. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Ma, L.; Gao, B.; Harris, W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 2009, 43, 3285–3291. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Gao, B.; Inyang, M.; Zimmerman, A.R.; Cao, X.; Pullammanappallil, P.; Yang, L. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresour. Technol. 2011, 102, 6273–6278. [Google Scholar] [CrossRef]
- Meyer, S.; Bright, R.M.; Fischer, D.; Schulz, H.; Glaser, B. Albedo impact on the suitability of biochar systems to mitigate global warming. Environ. Sci. Technol. 2012, 46, 12726–12734. [Google Scholar] [CrossRef]
- Xue, Y.; Gao, B.; Yao, Y.; Inyang, M.; Zhang, M.; Zimmerman, A.R.; Ro, K.S. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J. 2012, 200, 673–680. [Google Scholar] [CrossRef]
- Fregolente, L.G.; Miguel, T.B.A.R.; de Castro Miguel, E.; de Almeida Melo, C.; Moreira, A.B.; Ferreira, O.P.; Bisinoti, M.C. Toxicity evaluation of process water from hydrothermal carbonization of sugarcane industry by-products. Environ. Sci. Pollut. Res. 2019, 26, 27579–27589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shettigondahalli Ekanthalu, V.; Morscheck, G.; Narra, S.; Nelles, M. Hydrothermal carbonization—A sustainable approach to deal with the challenges in sewage sludge management. In Urban Mining and Sustainable Waste Management; Ghosh, S., Ed.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- European Commission. Evaluating the Impact of Nature-Based Solutions: A Handbook for Practitioners; Directorate-General for Research and Innovation (European Commission): Brussels, Belgium, 2021. [Google Scholar] [CrossRef]
- Oral, H.V.; Carvalho, P.; Gajewska, M.; Ursino, N.; Masi, F.; Hullebusch, E.D.; van Kazak, J.K.; Exposito, A.; Cipolletta, G.; Andersen, T.R.; et al. A review of nature-based solutions for urban water management in European circular cities: A critical assessment based on case studies and literature. Blue-Green Syst. 2020, 2, 112–136. [Google Scholar] [CrossRef] [Green Version]
- Besson, M.; Berger, S.; Tiruta-Barna, L.; Paul, E.; Spérandio, M. Environmental assessment of urine, black and grey water separation for resource recovery in a new district compared to centralized wastewater resources recovery plant. J. Clean. Prod. 2021, 301, 126868. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52019DC0640&from=EN (accessed on 30 September 2021).
- European Commission. Pathway to a Healthy Planet for All—EU Action Plan: “Towards Zero Pollution for Air, Water and Soil”. 2021. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:a1c34a56-b314-11eb-8aca-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 30 September 2021).
- European Commission. A New Circular Economy Action Plan—For a Cleaner and More Competitve Europe. 2020. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:9903b325-6388-11ea-b735-01aa75ed71a1.0017.02/DOC_2&format=PDF (accessed on 30 September 2021).
- United Nations. UN Sustainable Development Goals. 2015. Available online: https://sdgs.un.org/goals (accessed on 28 June 2021).
- Diaz-Elsayed, N.; Rezaei, N.; Ndiaye, A.; Zhang, Q. Trends in the environmental and economic sustainability of wastewater-based resource recovery: A review. J. Clean. Prod. 2020, 265, 121598. [Google Scholar] [CrossRef]
Case Study | NBS Units | Supporting Units | Product and Reuse | References |
---|---|---|---|---|
Sneek—Noorderhoek, the Netherlands | Anaerobic BW treatment (UASB) Aerobic GW + effluent BW treatment OLAND (nitritation/anammox) | Vacuum toilets, struvite precipitation, membrane filtration | Biogas, Struvite, reclaimed water | https://www.saniwijzer.nl/ accessed on 30 September 2021 |
Lübeck, Flintenbreite, Germany | Vertical flow treatment wetland for greywater, anaerobic treatment for blackwater and biowaste | Vacuum toilet | Liquid biofertilizer for farmlands and gardens, reclaimed grew water for discharge and groundwater recharge | https://www.cyclifier.org/project/flintenbreite-neighborhood/ http://www.susana.org/_resources/documents/default/2-59-en-susana-cs-germany-luebeck-ecological-housing-bobx.pdf accessed on 30 September 2021 |
Hannover, Germany | Treatment wetland for greywater | Vacuum toilet, urine-diverting toilets | Reclaimed water for toilet flushing | https://www.susana.org/_resources/documents/default/2-1986-en-ecosan-pds-007-germany-hannover-oekotechnikpark-2005.pdf accessed on 30 September 2021 |
Lima, Peru | Composting of organic waste, vermicomposting for solid fraction of blackwater, treatment wetland for greywater, treatment wetland for liquid fraction of blackwater | Urine-diverting toilets, solid separation unit | Treated blackwater for irrigation of lawns, reclaimed greywater | https://www.susana.org/_resources/documents/default/2-70-en-susana-cs-peru-lima-sanchristoferus-2009.pdf accessed on 30 September 2021 |
Grecia Salentina area, Italy | Composting from house organic waste; vermicomposting; home composting; community compost | Compost/vermicompost for home and city use | http://www.compostcommunity.it/wp-content/uploads/2021/01/brochure_inglese.pdf accessed on 30 September 2021 | |
Vienna, Austria | Anaerobic treatment and composting of kitchen waste and green waste from urban green areas | Compost for urban green areas, gardens | https://www.wenigermist.at/biomuell-und-speisereste-richtig-entsorgen accessed on 30 September 2021 | |
Ljubljana, Slovenia | Anaerobic treatment and composting of kitchen waste and green waste from urban green areas | Compost for urban green areas, gardens | http://www.rcero-ljubljana.eu/ accessed on 30 September 2021 | |
Mālpils, Latvia | Vermicomposting from different types of biowaste (e.g., sewage sludge, manure, leaves) | Compost for urban green areas, gardens | https://smartcitysweden.com/best-practice/192/biowaste-treatment-by-vermicomposting/ accessed on 30 September 2021 | |
Culemborg, EVA-Lanxmeer, the Netherlands | VF treatment wetland (greywater) | Reclaimed water | https://edepot.wur.nl/180531 (In Dutch) https://www.urbangreenbluegrids.com/projects/eva-lanxmeer-results/ accessed on 30 September 2021 | |
Cressy, Switzerland | Composting unit VF treatment wetland (greywater) | Dry toilet | Compost, reclaimed water | https://www.cooperative-equilibre.ch/projets/cressy/ accessed on 30 September 2021 |
Hamburg, Jenfelder au, Germany | Anaerobic treatment (CSTR) | Vacuum toilets | biogas | [38] |
Helsingborg, H+, Sweden | Anaerobic treatment (UASB); aerobic GW treatment | Vacuum toilet; struvite precipitation; ammonium stripper | Struvite, organic fertilizer, ammonium sulfate, biogas | http://run4lifeproject.eu/ accessed on 30 September 2021 |
Sneek Lemmerweg, the Netherlands | TAD (Thermophilic anaerobic treatment) (UASB) | Ultra-low flush vacuum toilet | Hygienized effluent containing fertilizers | [39] |
Wageningen, NIOO, the Netherlands | Anaerobic treatment (UASB) Pilot Photobioreactor | Vacuum toilets | Biogas, algae biomass, reclaimed water | https://www.saniwijzer.nl/ (In Dutch) accessed on 30 September 2021 |
Oslo, Klosterenga, Norway | Septic tank Aerobic biofilter Horizontal subsurface flow treatment wetland | Reclaimed water | https://www.susana.org accessed on 30 September 2021 https://www.susana.org/_resources/documents/default/2-248-jenssen-urban-greywater-oslo-en.pdf accessed on 30 September 2021 | |
Gent, Belgium | Anaerobic treatment Aerobic treatment | Struvite precipitation, Vacuum toilets, Membranes | Struvite; reclaimed water, biogas | http://run4lifeproject. eu/ accessed on 30 September 2021 Democase Gent—Nereus Project (nereus-project.eu) accessed on 30 September 2021 |
The Hague, Rijnstraat, the Netherlands | Anaerobic treatment | Struvite precipitation vacuum toilets Waterfree urinals | Struvite, biogas | http://www.saniwijzer.nl (In Dutch) accessed on 30 September 2021 |
Hamburg, BIQ, International Building Exhibition (IBA), Germany | Photobioreactor | Flotation unit, heat exchanger, an external biogas plant | Algae biomass, heat for heating and sanitary water, heat and sound insulation | https://www.archdaily.com/339451/worlds-first-algae-bioreactor-facade-nears-complet accessed on 30 September 2021 |
Tampere, algal ponds, Finland | Algae ponds | Source-separation of urine | Algal biomass for fertilizer use | https://www.vanajavesi.fi/levasieppari-hanke-ravinteet-talteen-ja-kiertoon-luonnonmukaisesti/ accessed on 30 September 2021 |
erlin, Block 6, Germany | Blackwater treatment Greywater treatment Urban farming | Heat recovery from greywater | Heat and reclaimed water, organic fertilizer | http://www.roofwaterfarm.com/en/block-6/ accessed on 30 September 2021 |
Pogradec Albania- mineralized soil and Prrenjas, Elbasan Albania contaminated soil | Phytomining-Agromining | - | Nickel salt, energy, inorganic fertilizer | https://www.life-agromine.com/ accessed on 30 September 2021 [40,41,42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Hullebusch, E.D.; Bani, A.; Carvalho, M.; Cetecioglu, Z.; De Gusseme, B.; Di Lonardo, S.; Djolic, M.; van Eekert, M.; Griessler Bulc, T.; Haznedaroglu, B.Z.; et al. Nature-Based Units as Building Blocks for Resource Recovery Systems in Cities. Water 2021, 13, 3153. https://doi.org/10.3390/w13223153
van Hullebusch ED, Bani A, Carvalho M, Cetecioglu Z, De Gusseme B, Di Lonardo S, Djolic M, van Eekert M, Griessler Bulc T, Haznedaroglu BZ, et al. Nature-Based Units as Building Blocks for Resource Recovery Systems in Cities. Water. 2021; 13(22):3153. https://doi.org/10.3390/w13223153
Chicago/Turabian Stylevan Hullebusch, Eric D., Aida Bani, Miguel Carvalho, Zeynep Cetecioglu, Bart De Gusseme, Sara Di Lonardo, Maja Djolic, Miriam van Eekert, Tjaša Griessler Bulc, Berat Z. Haznedaroglu, and et al. 2021. "Nature-Based Units as Building Blocks for Resource Recovery Systems in Cities" Water 13, no. 22: 3153. https://doi.org/10.3390/w13223153
APA Stylevan Hullebusch, E. D., Bani, A., Carvalho, M., Cetecioglu, Z., De Gusseme, B., Di Lonardo, S., Djolic, M., van Eekert, M., Griessler Bulc, T., Haznedaroglu, B. Z., Istenič, D., Kisser, J., Krzeminski, P., Melita, S., Pavlova, D., Płaza, E., Schoenborn, A., Thomas, G., Vaccari, M., ... Zeeman, G. (2021). Nature-Based Units as Building Blocks for Resource Recovery Systems in Cities. Water, 13(22), 3153. https://doi.org/10.3390/w13223153