Effects of Seasonal Thermal Stratification on Nitrogen Transformation and Diffusion at the Sediment-Water Interface in a Deep Canyon Artificial Reservoir of Wujiang River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Calculation of Nitrogen Diffusion at SWI
2.4. Data Processing
3. Results
3.1. Seasonal Variation of Inorganic Nitrogen in Sediment Pore Water
3.2. Seasonal Changes in Water-Soluble and Adsorbed Nitrogen in Sediment
3.3. Characteristics of the Vertical Distribution of Stable Nitrogen Isotope (δ15N-PON) and the C/N Ratio in Sediment Particulate Organic Matter
3.4. Diffusion Fluxes of Inorganic Nitrogen at the SWI
4. Discussion
4.1. Effects of Seasonal Thermal Stratification on Nitrogen Transformation in Sediment Pore Water
4.2. Contribution of Absorbed Nitrogen Species in Sediment Nitrogen Cycling
4.3. Impact of Dam Construction on Sedimentary Nitrogen Sources
4.4. Endogenous Release of Sediment Nitrogen
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Green, P.A.; Vorosmarty, C.J.; Meybeck, M.; Galloway, J.N.; Peterson, B.J.; Boyer, E.W. Pre-industrial and contemporary fluxes of nitrogen through rivers: A global assessment based on typology. Biogeochemistry 2004, 68, 71–105. [Google Scholar] [CrossRef]
- Valiela, I.; Geist, M.; McClelland, J.; Tomasky, G. Nitrogen loading from watersheds to estuaries: Verification of the waquoit bay nitrogen loading model. Biogeochemistry 2000, 49, 277–293. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wu, Z.H.; Xu, M.Y.; Pei, Z.L.; Lu, X.; Zhang, D.C.; Wu, T.; Li, B.; Xu, S.J. Nutrient deposition over the past 60 years in a reservoir within a medium-sized agricultural catchment. Sci. Total Environ. 2021, 764, 142896. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.L. Tracing zinc sources with zn isotope of fluvial suspended particulate matter in Zhujiang river, Southwest China. Ecol. Indic. 2020, 118, 106723. [Google Scholar] [CrossRef]
- Liu, X.L.; Liu, C.Q.; Li, S.L.; Wang, F.S.; Wang, B.L.; Wang, Z.L. Spatiotemporal variations of nitrous oxide (N2O) emissions from two reservoirs in SW China. Atmos. Environ. 2011, 45, 5458–5468. [Google Scholar] [CrossRef]
- Lei, P.; Zhu, J.J.; Zhong, H.; Pan, K.; Zhang, L.; Zhang, H. Distribution of nitrogen and phosphorus in pore water profiles and estimation of their diffusive fluxes and annual loads in guanting reservoir (Gtr), Northern China. Bull. Environ. Contam. Toxicol. 2021, 106, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Y.; Tang, W.Z.; Jin, X.; Shan, B.Q. Using biochar capping to reduce nitrogen release from sediments in eutrophic lakes. Sci. Total Environ. 2019, 646, 93–104. [Google Scholar] [CrossRef]
- Aalto, S.L.; Saarenheimo, J.; Ropponen, J.; Juntunen, J.; Rissanen, A.J.; Tiirola, M. Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments. Water Res. 2018, 138, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Hardison, A.K.; Algar, C.K.; Giblin, A.E.; Rich, J.J. Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (Dnra) and N2 production. Geochim. Et Cosmochim. Acta 2015, 164, 146–160. [Google Scholar] [CrossRef] [Green Version]
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2015, 77, 161–170. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.L.; Yang, K.H. Assessment and sources of heavy metals in suspended particulate matter in a tropical catchment, Northeast Thailand. J. Clean. Prod. 2020, 265, 10. [Google Scholar] [CrossRef]
- Mulligan, M.V.; Soesbergen, A.; Saenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 2020, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Winton, R.S.; Calamita, E.; Wehrli, B. Reviews and syntheses: Dams, water quality and tropical reservoir stratification. Biogeosciences 2019, 16, 1657–1671. [Google Scholar] [CrossRef] [Green Version]
- Dadi, T.; Rinke, K.; Friese, K. Trajectories of sediment-water interactions in reservoirs as a result of temperature and oxygen conditions. Water 2020, 12, 19. [Google Scholar] [CrossRef] [Green Version]
- Muller, S.; Mitrovic, S.M.; Baldwin, D.S. Oxygen and dissolved organic carbon control release of n, p and fe from the sediments of a shallow, polymictic lake. J. Soils Sediments 2016, 16, 1109–1120. [Google Scholar] [CrossRef]
- Liikanen, A.; Murtoniemi, T.; Tanskanen, H.; Vaisanen, T.; Martikainen, P.J. Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake. Biogeochemistry 2002, 59, 269–286. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Cao, Y.J.; Tang, C.Y. Evidence for the primary role of phytoplankton on nitrogen cycle in a subtropical reservoir: Reflected by the stable isotope ratios of particulate nitrogen and total dissolved nitrogen. Front. Microbiol. 2019, 10, 2202. [Google Scholar] [CrossRef] [Green Version]
- Ozkundakci, D.; Hamilton, D.P.; Gibbs, M.M. Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion. Hydrobiologia 2011, 661, 5–20. [Google Scholar] [CrossRef]
- Lavery, P.S.; Oldham, C.E.; Ghisalberti, M. The use of fick’s first law for predicting porewater nutrient fluxes under diffusive conditions. Hydrol. Process. 2001, 15, 2435–2451. [Google Scholar] [CrossRef]
- Chowdhury, M.; Al Bakri, D. Diffusive nutrient flux at the sediment-water interface in suma park reservoir, Australia. Hydrol. Sci. J. 2006, 51, 144–156. [Google Scholar] [CrossRef]
- Liu, X.L.; Han, G.L.; Zeng, J.; Liu, M.; Li, X.Q.; Boeckx, P. Identifying the sources of nitrate contamination using a combined dual isotope, chemical and bayesian model approach in a tropical agricultural river: Case study in the mun river, Thailand. Sci. Total Environ. 2021, 760, 143938. [Google Scholar] [CrossRef]
- Han, G.L.; Tang, Y.; Liu, M.; Van Zwieten, L.; Yang, X.M.; Yu, C.X.; Wang, H.L.; Song, Z.L. Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China. Agric. Ecosyst. Environ. 2020, 301, 11. [Google Scholar] [CrossRef]
- Zeng, J.; Yue, F.J.; Li, S.L.; Wang, Z.J.; Qin, C.Q.; Wu, Q.X.; Xu, S. Agriculture driven nitrogen wet deposition in a karst catchment in Southwest China. Agric. Ecosyst. Environ. 2020, 294, 10. [Google Scholar] [CrossRef]
- Han, G.L.; Liu, C.Q. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou province, China. Chem. Geol. 2004, 204, 1–21. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.L. Preliminary copper isotope study on particulate matter in Zhujiang river, Southwest China: Application for source identification. Ecotoxicol. Environ. Saf. 2020, 198, 8. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Wang, F.S.; Mei, Y.H.; Yao, C.Q.; Go, M.Y. Distribution of phosphorus forms in the sediments of cascade reservoir with different trophic states in Wujiang catchment. Chin. J. Ecol. 2010, 29, 91–97, (In Chinese with English Abstract). [Google Scholar]
- Liu, X.L. Effects of Cascade Reservoirs Development on the Nitrogen Biogeochemical Processes in the Watershed—A Case Study of the Main Stream and Tributary in the Middle and Upper Reaches of the Wujiang River, Maotiao River. Ph.D. Thesis, Institute of Geochemistry, Chinese Academy of Science, Guiyang, China, 2010. [Google Scholar]
- Hogarh, J.N.; Adu-Gyamfi, E.; Nukpezah, D.; Akoto, O.; Adu-Kumi, S. Contamination from mercury and other heavy metals in a mining district in Ghana: Discerning recent trends from sediment core analysis. Environ. Syst. Res. 2016, 5, 1–9. [Google Scholar] [CrossRef]
- Lockhart, W.L.; Macdonald, R.W.; Outridge, P.M.; Wilkinson, P.; DeLaronde, J.B.; Rudd, J.W.M. Tests of the fidelity of lake sediment core records of mercury deposition to known histories of mercury contamination. Sci. Total Environ. 2000, 260, 171–180. [Google Scholar] [CrossRef]
- Barra, R.; Cisternas, M.; Urrutia, R.; Pozo, K.; Pacheco, P.; Parra, O.; Focardi, S. First report on chlorinated pesticide deposition in a sediment core from a small lake in central chile. Chemosphere 2001, 45, 749–757. [Google Scholar] [CrossRef]
- Copetti, D.; Tartari, G.; Valsecchi, L.; Salerno, F.; Viviano, G.; Mastroianni, D.; Yin, H.B.; Vigano, L. Phosphorus content in a deep river sediment core as a tracer of long-term (1962–2011) anthropogenic impacts: A lesson from the Milan metropolitan area. Sci. Total Environ. 2019, 646, 37–48. [Google Scholar] [CrossRef]
- Zhao, H.C.; Zhang, L.; Wang, S.R.; Jiao, L.X. Features and influencing factors of nitrogen and phosphorus diffusive fluxes at the sediment-water interface of Erhai lake. Environ. Sci. Pollut. Res. 2018, 25, 1933–1942. [Google Scholar] [CrossRef]
- Krom, M.D.; Berner, R.A. The diffusion coefficients of sulphate, ammonium and phosphate in anoxic marine sediments. Limnol. Oceanogr 1980, 25, 327–337. [Google Scholar] [CrossRef]
- Ni, Z.X.; Zhang, L.; Yu, S.; Jiang, Z.J.; Zhang, J.P.; Wu, Y.C.; Zhao, C.Y.; Liu, S.L.; Zhou, C.H.; Huang, X.P. The porewater nutrient and heavy metal characteristics in sediment cores and their benthic fluxes in daya bay, South China. Mar. Pollut. Bull. 2017, 124, 547–554. [Google Scholar] [CrossRef]
- Toussaint, E.; De Borger, E.; Braeckman, U.; De Backer, A.; Soetaert, K.; Vanaverbeke, J. Faunal and environmental drivers of carbon and nitrogen cycling along a permeability gradient in shallow North sea sediments. Sci. Total Environ. 2021, 767, 144994. [Google Scholar] [CrossRef] [PubMed]
- Kraft, B.; Tegetmeyer, H.E.; Sharma, R.; Klotz, M.G.; Ferdelman, T.G.; Hettich, R.L.; Geelhoed, J.S.; Strous, M. The environmental controls that govern the end product of bacterial nitrate respiration. Science 2014, 345, 676–679. [Google Scholar] [CrossRef]
- Liu, X.L.; Li, S.L.; Wang, Z.L.; Wang, B.L.; Han, G.L.; Wang, F.S.; Bai, L.; Xiao, M.; Yue, F.J.; Liu, C.Q. Sources and key processes controlling particulate organic nitrogen in impounded river-reservoir system on the Maotiao river, Southwest China. Inland Waters 2018, 8, 167–175. [Google Scholar] [CrossRef]
- Liu, J.K.; Han, G.L. Tracing riverine particulate black carbon sources in Xijiang River Basin: Insight from stable isotopic composition and bayesian mixing model. Water Res. 2021, 194, 8. [Google Scholar] [CrossRef]
- Yang, Y.X.; Xiang, P.; Lu, W.Q.; Wang, S.L. The sediment rate and burial fluxes of carbon and nitrogen in Wujiangdu reservoir, Guizhou, China. Earth Environ. 2017, 45, 66–73, (In Chinese with English Abstract). [Google Scholar]
- Arndt, S.; Jorgensen, B.B.; LaRowe, D.E.; Middelburg, J.J.; Pancost, R.D.; Regnier, P. Quantifying the degradation of organic matter in marine sediments: A review and synthesis. Earth-Sci. Rev. 2013, 123, 53–86. [Google Scholar] [CrossRef]
- Xiao, H.Y. Nitrogen Biogeochemical Cycles in a Seasonally Anoxic Lake. Ph.D. Thesis, Institute of Geochemistry, Chinese Academy of Science, Guiyang, China, 2002. [Google Scholar]
- Wang, H.; Han, Y.P.; Pan, L.D. Spatial-temporal variation of nitrogen and diffusion flux across the water-sediment interface at the hydro-fluctuation belt of Danjiangkou reservoir in China. Water Supply 2020, 20, 1241–1252. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.L.; Wu, T.; Yang, J.; Jiang, X.; Zhong, J.C. Spatio-temporal variation in nutrient profiles and exchange fluxes at the sediment-water interface in Yuqiao reservoir, China. Int. J. Environ. Res. Public Health 2019, 16, 16. [Google Scholar] [CrossRef] [Green Version]
- De Vittor, C.; Faganeli, J.; Emili, A.; Covelli, S.; Predonzani, S.; Acquavita, A. Benthic fluxes of oxygen, carbon and nutrients in the Marano and Grado lagoon (Northern Adriatic Sea, Italy). Estuar. Coast. Shelf Sci. 2012, 113, 57–70. [Google Scholar] [CrossRef]
- Kuwabara, J.S.; Topping, B.R.; Lynch, D.D.; Carter, J.L.; Essaid, H.I. Benthic nutrient sources to hypereutrophic upper Klamath Lake, Oregon, USA. Environ. Toxicol. Chem. 2009, 28, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Qin, Y.; Hao, F.; Lang, Y.; Wang, F. Using seismic surveys to investigate sediment distribution and to estimate burial fluxes of OC, N, and P in a Canyon reservoir. Acta Geochim. 2019, 38, 785–795. [Google Scholar] [CrossRef]
- Chen, S.N.; Yue, F.J.; Liu, X.L.; Zhong, J.; Yi, Y.B.; Wang, W.F.; Qi, Y.L.; Xiao, H.Y.; Li, S.L. Seasonal variation of nitrogen biogeochemical processes constrained by nitrate dual isotopes in cascade reservoirs, Southwestern China. Environ. Sci. Pollut. Res. 2021, 28, 26617–26627. [Google Scholar] [CrossRef]
T (°C) | DO (mg·L−1) | EC (ms·cm−1) | pH | NH4+-N (mg·L−1) | |
---|---|---|---|---|---|
Range | 10.7~28.6 | 6.6~15.9 | 0.18~0.32 | 7.8~8.9 | 0.01~1.44 |
K+ (mg·L−1) | Na+ (mg·L−1) | Ca2+ (mg·L−1) | Mg2+ (mg·L−1) | NO3−-N (mg·L−1) | |
Range | 1.56~1.81 | 3.36~4.38 | 61.32~65.64 | 10.78~11.80 | 1.23~3.50 |
Sampling Period | Types | Nitrogen Species | Min (mg·kg−1) | Max (mg·kg−1) | Average (mg·kg−1) | SD | Coefficientof Variation |
---|---|---|---|---|---|---|---|
SP | water-soluble nitrogen | NH4+-N | 12.15 | 31.37 | 21.01 | 5.12 | 0.24 |
TN | 63.51 | 121.36 | 86.83 | 14.34 | 0.17 | ||
absorbed nitrogen | NH4+-N | 58.07 | 85.71 | 70.99 | 7.65 | 0.11 | |
NO3−-N | 4.81 | 12.70 | 7.16 | 2.28 | 0.32 | ||
TN | 90.95 | 255.65 | 159.20 | 45.35 | 0.28 | ||
NSP | water-soluble nitrogen | NH4+-N | 5.74 | 27.64 | 14.86 | 4.44 | 0.30 |
NO3−-N | 0.06 | 0.58 | 0.31 | 0.14 | 0.46 | ||
TN | 57.39 | 339.36 | 144.49 | 62.43 | 0.43 | ||
absorbed nitrogen | NH4+-N | 48.04 | 89.97 | 71.93 | 9.75 | 0.14 | |
NO3−-N | 5.78 | 24.75 | 12.67 | 4.75 | 0.37 | ||
TN | 120.68 | 398.65 | 223.85 | 63.77 | 0.28 |
T (°C) | NH4+-N (cm2·s−1) | NO3−-N (cm2·s−1) |
---|---|---|
0 | 9.8 × 10−6 | 9.78 × 10−6 |
12.2 | 9.87 × 10−6 | 9.33 × 10−6 |
14.7 | 10.54 × 10−6 | 10.01 × 10−6 |
25 | 19.8 × 10−6 | 19 × 10−6 |
Sampling Time | Inorganic Nitrogen | Exponential Function | R2 | φ | ∂c⁄∂z (mg·L−1·cm−1) | F (mg·m−2·d−1) |
---|---|---|---|---|---|---|
January 2018 | NH4+ | y = 3.2791e−0.368x | 0.88 | 0.82 | −1.27 | 9.48 |
NO3− | y = 0.838e0.2492x | 0.92 | 0.21 | −1.49 | ||
July 2019 | NH4+ | y = 6.3376e−0.353x | 0.73 | −2.24 | 15.66 | |
NO3− | y = 0.24e0.1345x | 0.63 | 0.032 | −0.21 |
Sampling Time | Items | Before Construction | After Construction | t-Test |
---|---|---|---|---|
January 2018 | C/N ratio | 11.11 ± 1.68 | 8.99 ± 0.51 | 5.09 *** |
δ15N-PON | 6.29 ± 0.35 | 6.22 ± 0.21 | 0.62 | |
July 2019 | C/N ratio | 11.72 ± 0.97 | 9.45 ± 0.74 | 8.09 *** |
δ15N-PON | 5.46 ± 0.31 | 5.81 ± 0.62 | −2.23 * |
Study Site | Location | Diffusion Flux (mg·m−2·d−1) | Reference | |
---|---|---|---|---|
NH4+-N | NO3−-N | |||
WJD Reservoir | China | 9.48~15.66 | −1.49~−0.21 | This study |
Danjiangkou Reservoir | China | 0.39~17.66 | −16.97~−4.33 | [42] |
Yuqiao Reservoir | China | 4.38~30.57 | −31.96~−4.13 | [43] |
Guanting Reservoir | China | 1.59~13.00 | - | [6] |
Erhai Lake | China | 8.97~74.84 | - | [32] |
Suma Park Reservoir | Australia | 1.70 ± 1.20 | 0.30 ± 0.20 | [20] |
Marano and Grado Lagoon | Italy | 4.88 ± 0.76 | −21.30 ± 3.45 | [44] |
Upper Klamath Lake | America | 4~134 | −20~−0.1 | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Liu, X.; Chen, S.; Ren, J.; Bai, L.; Li, J.; Gu, Y.; Wei, L. Effects of Seasonal Thermal Stratification on Nitrogen Transformation and Diffusion at the Sediment-Water Interface in a Deep Canyon Artificial Reservoir of Wujiang River Basin. Water 2021, 13, 3194. https://doi.org/10.3390/w13223194
Hou Y, Liu X, Chen S, Ren J, Bai L, Li J, Gu Y, Wei L. Effects of Seasonal Thermal Stratification on Nitrogen Transformation and Diffusion at the Sediment-Water Interface in a Deep Canyon Artificial Reservoir of Wujiang River Basin. Water. 2021; 13(22):3194. https://doi.org/10.3390/w13223194
Chicago/Turabian StyleHou, Yongmei, Xiaolong Liu, Sainan Chen, Jie Ren, Li Bai, Jun Li, Yongbo Gu, and Lai Wei. 2021. "Effects of Seasonal Thermal Stratification on Nitrogen Transformation and Diffusion at the Sediment-Water Interface in a Deep Canyon Artificial Reservoir of Wujiang River Basin" Water 13, no. 22: 3194. https://doi.org/10.3390/w13223194
APA StyleHou, Y., Liu, X., Chen, S., Ren, J., Bai, L., Li, J., Gu, Y., & Wei, L. (2021). Effects of Seasonal Thermal Stratification on Nitrogen Transformation and Diffusion at the Sediment-Water Interface in a Deep Canyon Artificial Reservoir of Wujiang River Basin. Water, 13(22), 3194. https://doi.org/10.3390/w13223194