Potential Impacts of Land Use Changes on Water Resources in a Tropical Headwater Catchment
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. SWAT Model Data
2.3. Model Calibration and Uncertainty Analysis
2.3.1. Calibration and Validation of Streamflow Data
2.3.2. Parameter Selection
2.3.3. The SUFI-2 Procedure and the Statistical Evaluation Criteria
2.4. Afforestation and Pasture Scenarios
3. Results
3.1. Calibration and Validation of the Streamflow
3.2. Water Balance of the Current Land Use
3.3. The Current Land Use, and Forest and Pasture Scenarios
4. Discussion
4.1. Limitations of the Simulation
4.2. Water Balance Analysis
4.3. Components of the Water Balance of the Current Land Use Forest and Pasture Scenarios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nugroho, P.; Marsono, D.; Sudira, P.; Suryatmojo, H. Impact of Land-use Changes on Water Balance. Procedia Environ. Sci. 2013, 17, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Pumo, D.; Arnone, E.; Francipane, A.; Caracciolo, D.; Noto, L.V. Potential implications of climate change and urbanization on watershed hydrology. J. Hydrol. 2017, 554, 80–99. [Google Scholar] [CrossRef]
- Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K. Impacts of land surface model and land use data on WRF model simulations of rainfall and temperature over Lake Tana Basin, Ethiopia. Heliyon 2019, 5, e02469. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, L.; Zhang, W.; Li, X.; Xu, Q. Spatiotemporal variations in characteristic discharge in the Yangtze River downstream of the Three Gorges Dam. Sci. Total Environ. 2021, 785, 147343. [Google Scholar] [CrossRef] [PubMed]
- Calder, I.; Aylward, B. Floresta e inundações: Mudando para uma abordagem baseada em evidências para a gestão integrada de bacias hidrográficas e inundações. Water Int. 2006, 31, 87–99. [Google Scholar] [CrossRef]
- Crétaz, A.L.; de la Barten, P.K. Land Use Effects on Streamflow and Water Quality in the Northeastern United States; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2007; ISBN 9780429694905. [Google Scholar]
- Viola, M.R.; Mello, C.R.; Beskow, S.; Norton, L.D. Impacts of Land-use Changes on the Hydrology of the Grande River Basin Headwaters, Southeastern Brazil. Water Resour. Manag. 2014, 28, 4537–4550. [Google Scholar] [CrossRef]
- Lepeška, T.; Radecki-Pawlik, A.; Wojkowski, J.; Walega, A. Hydric potential of the river basin: Prądnik, Polish Highlands. Acta Geophys. 2017, 65, 1253–1267. [Google Scholar] [CrossRef]
- Oudin, L.; Salavati, B.; Furusho-Percot, C.; Ribstein, P.; Saadi, M. Hydrological impacts of urbanization at the catchment scale. J. Hydrol. 2018, 559, 774–786. [Google Scholar] [CrossRef] [Green Version]
- Wojkowski, J.; Młyński, D.; Lepeška, T.; Wałęga, A.; Radecki-Pawlik, A. Link between hydric potential and predictability of maximum flow for selected catchments in Western Carpathians. Sci. Total Environ. 2019, 683, 293–307. [Google Scholar] [CrossRef]
- Lepeška, T.; Wojkowski, J.; Wałega, A.; Młyński, D.; Radecki-Pawlik, A.; Olah, B. Urbanization-Its hidden impact on water losses: Pradnik river Basin, Lesser Poland. Water 2020, 12, 1958. [Google Scholar] [CrossRef]
- Pissarra, T.C.T.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Production of clean water in agriculture headwater catchments: A model based on the payment for environmental services. Sci. Total Environ. 2021, 785, 147331. [Google Scholar] [CrossRef]
- Rahman, K.; da Silva, A.G.; Tejeda, E.M.; Gobiet, A.; Beniston, M.; Lehmann, A. An independent and combined effect analysis of land use and climate change in the upper Rhone River watershed, Switzerland. Appl. Geogr. 2015, 63, 264–272. [Google Scholar] [CrossRef]
- Schürmann, A.; Kleemann, J.; Fürst, C.; Teucher, M. Assessing the relationship between land tenure issues and land cover changes around the Arabuko Sokoke Forest in Kenya. Land Use Policy 2020, 95, 104625. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Kou, L.; Zhou, Q. Effects of Climate and Land Use Changes on Water Resources in the Taoer River. Adv. Meteorol. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Ronnquist, A.L.; Westbrook, C.J. Beaver dams: How structure, flow state, and landscape setting regulate water storage and release. Sci. Total Environ. 2021, 785, 147333. [Google Scholar] [CrossRef]
- Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K. Impacts of Climate and Land Use Change on Hydrological Response in Gumara Watershed, Ethiopia. Ecohydrol. Hydrobiol. 2021, 21, 315–332. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Radeloff, V.C.; Joppa, L.N.; Hamilton, C.M.; Helmers, D.P.; Plantinga, A.J.; Lewis, D.J. Scenarios of future land use change around United States’ protected areas. Biol. Conserv. 2015, 184, 446–455. [Google Scholar] [CrossRef]
- Faleiro, F.V.; Machado, R.B.; Loyola, R.D. Defining spatial conservation priorities in the face of land-use and climate change. Biol. Conserv. 2013, 158, 248–257. [Google Scholar] [CrossRef]
- Micha, D.N.; Penello, G.M.; Kawabata, R.M.S.; Camarotti, T. “Vendo o invisível”. Experimentos de visualização do infravermelho feitos com materiais simples e de baixo custo. Rev. Bras. Ensino Fis. 2011, 33, 1–6. [Google Scholar] [CrossRef]
- Araujo, R.D.C.; Ponte, M.X. Efeitos do desmatamento em larga-escala na hidrologia da bacia do Uraim, Amazônia. Rev. Bras. Geogr. Física 2016, 9, 2390–2404. [Google Scholar]
- Räty, M.; Järvenranta, K.; Saarijärvi, E.; Koskiaho, J.; Virkajärvi, P. Losses of phosphorus, nitrogen, dissolved organic carbon and soil from a small agricultural and forested catchment in east-central Finland. Agric. Ecosyst. Environ. 2020, 302, 107075. [Google Scholar] [CrossRef]
- Rennó, C.D.; Soares, J.V. Conceitos Básicos de Modelagem Hidrológica. Geomát. Modelos E Apl. Ambient. 2007, 11, 529–556. [Google Scholar]
- Santos, R.M.B.; Fernandes, L.F.S.; Cortes, R.M.V.; Pacheco, F.A.L. Hydrologic impacts of land use changes in the Sabor river basin: A historical view and future perspectives. Water 2019, 11, 1464. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Neitsch, P.S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil & Water Assessment Tool (SWAT). 2011. Available online: https://swat.tamu.edu/media/99192/swat2009-theory.pdf (accessed on 20 March 2017).
- Germer, S.; Neill, C.; Krusche, A.V.; Elsenbeer, H. Influence of land-use change on near-surface hydrological processes: Undisturbed forest to pasture. J. Hydrol. 2010, 380, 473–480. [Google Scholar] [CrossRef]
- Thomaz, E.L.; Nunes, D.D.; Watanabe, M. Effects of tropical forest conversion on soil and aquatic systems in southwestern Brazilian Amazonia: A synthesis. Environ. Res. 2020, 183, 109220. [Google Scholar] [CrossRef]
- IPAM. Brazil’s Forest Code; IPAM: Brasilia, Brazil, 2016; Available online: https://ipam.org.br/wp-content/uploads/2017/01/relat%C3%B3rio_en_ocf_web.pdf (accessed on 25 March 2018).
- Huggett, R.J. Fundamentals of Geomorphology; Routledge: Manchester, UK, 2016. [Google Scholar]
- Brasil LEI No 9.985, DE 18 DE JULHO DE 2000. Regulamenta o Art. 225, § 1o, Incisos I, II, III e VII da Constituição Federal, Institui o Sistema Nacional de Unidades de Conservação da Natureza e dá Outras Providências. 2000. Available online: http://www.planalto.gov.br/ccivil_03/leis/l9985.htm (accessed on 20 March 2017).
- De Aquino, A.R.; Paletta, F.C.; de Almeida, J.R.; de Aquino, A.R.; Lange, C.N.; de Lima, C.M.; de Amorim, E.P.; Paletta, F.C.; Ferreira, H.P.; Bordon, I.C.A.; et al. Vulnerabilidade Sociambiental; Blücher: São Paulo, Brazil, 2017; ISBN 9788580392425. [Google Scholar]
- Brasil Sistema Nacional de Unidades de Conservação da Natureza—SNUC, lei no 9.985, de 18 de Julho de 2000; Decreto no 4.340, de 22 de Agosto de 2002. 2004. Available online: http://www.planalto.gov.br/ccivil_03/decreto/2002/d4340.htm (accessed on 20 March 2017).
- Schleicher, J. The environmental and social impacts of protected areas and conservation concessions in South America. Curr. Opin. Environ. Sustain. 2018, 32, 1–8. [Google Scholar] [CrossRef]
- Figueirôa, C.F.B.; Salvio, G.M.M. Analysis of the fragility of the environmental protection area Alto Rio Doce, mg, Brazil. Cienc. Florest. 2020, 30, 1008–1018. [Google Scholar] [CrossRef]
- Madureira Cruz, C.B.; da Rocha de Souza, E.M.F.; Richter, M.; dos Santos Rosário, L.; de Abreu e Diego Sperle, M.B. Unidades De Conservação No Entorno Da Bacia De Campos: Análise Da Representatividade E Distribuição Espacial. In Atlas de Sensibilidade Ambiental Ao Óleo; Lima, S., Ed.; Elsevier Ltd.: Rio de Janeiro, Brazil, 2017; pp. 31–47. ISBN 978-85-352-7735-7. [Google Scholar]
- Siqueira, H.E. Identificação de Áreas para Conservação do Solo e da Água na Área de Proteção Ambiental do Rio Uberaba cm Geoprocessamento; UNESP-Universidade Estadual Paulista—Tese: Jaboticabal, SP, Brazil, 2019. [Google Scholar]
- IBGE. Cidades e Estados: Uberaba Código: 3170107. 2019. Available online: https://www.ibge.gov.br/cidades-e-estados/mg/uberaba.html (accessed on 15 June 2021).
- IGAM—INSTITUTO MINEIRO DE GESTÃO DAS ÁGUAS. Monitoramento da Qualidade das Águas Superficiais da Sub-bacia do Ribeirão Pampulha-Relatório Trimestral-4° Trimestre de 2017; Igam: Belo Horizonte, Brazil, 2018. [Google Scholar]
- Novais, G.T.; Brito, J.L.S.; Sanches, F.D.O. Unidades Climáticas do Triângulo Mineiro/Alto Paranaíba. Rev. Bras. Climatol. 2018, 23, 223–243. [Google Scholar] [CrossRef]
- INMET—Instituto Nacional de Meteorologia—Ministério da Agricultura, Pecuária e Abastecimento—Pátria Amada Brasil. Dados Metereológicos. Estação Uberaba-A568. 2019. Available online: https://portal.inmet.gov.br/ (accessed on 15 June 2021).
- Abdala, V.L. Diagnóstico Hídrico do Rio Uberaba-MG como Subsídio Para a Gestão das Áreas de Conflito Ambiental; UNESP—Universidade Estadual Paulista—Tese: Jaboticabal, SP, Brazil, 2012. [Google Scholar]
- Valera, C.A. Avaliação do Novo Código Florestal: As Áreas de Preservação Permanente—APPs, e a Conservação da Qualidade do Solo e da Água Superficial; UNESP: Universidade Estadual Paulista—Tese: Jaboticabal, SP, Brazil, 2017. [Google Scholar]
- Codemig—Portal Da Geologia De Minas Gerais. Available online: http://www.portalgeologia.com.br/index.php/mapa/ (accessed on 15 June 2021).
- Ferreira, P.D., Jr.; Gomes, N.S. Petrografia E Diagênese Da Formação Uberaba, Cretáceo Superior Da Bacia Do Paraná No Triângulo Mineiro. Rev. Bras. Geociênc. 1999, 29, 163–172. [Google Scholar] [CrossRef]
- Batezelli, A.; Saad, A.R.; Fulfaro, V.J.; Corsi, A.C.; Landim, P.M.B.; Perinotto, J.A.d.J. Análise de Bacia Aplicada às Unidades Mesozóicas do Triângulo Mineiro ( Sudeste do Brasil ): Uma Estratégia na Prospecção de Recursos Hídricos Subterrâneos. Águas Subterrâneas 2005, 19, 61–73. [Google Scholar] [CrossRef] [Green Version]
- CODAU. Plano de Manejo Emergencial—Área de Proteção Ambiental Municipal do Rio Uberaba 1–875. Available online: http://www.uberaba.mg.gov.br/portal/acervo/meio_ambiente/APA/Plano%20de%20Manejo%20Emergencial%20-%20APA%20Rio%20Uberaba%20-%202013.pdf (accessed on 25 March 2018).
- Embrapa. Sistema Brasileiro de Classificação de Solos; Embrapa Solos: Brasília, Brazil, 2006; ISBN 8585864192. [Google Scholar]
- Santos, H.G.; Carvalho, W.D., Jr.; Dart, R.D.O.; Áglio, M.L.D.; de Sousa, J.S.; Pares, J.G.; de Oliveira, A.P. O Novo Mapa de Solos do Brasil: Legenda Atualizada. Embrapa Solos-Documentos (INFOTECA-E). Mapa de Solos do Brasil 2001. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/920267/o-novo-mapa-de-solos-do-brasil-legenda-atualizada (accessed on 15 June 2021).
- AGEITEC, A.E.I.T. Árvore do Conhecimento—Solos. Available online: http://www.agencia.cnptia.embrapa.br/gestor/solos_tropicais/arvore/CONTAG01_6_2212200611537.html# (accessed on 20 March 2017).
- Do Valle, R.F., Jr. Diagnóstico de Áreas de Risco de Erosão e Conflito de Uso dos Solos na Bacia do Rio Uberaba; UNESP: Jaboticabal, SP, Brazil, 2008. [Google Scholar]
- Silva, M.M.A.P. Efeitos Naturais e Antrópicos Na Qualidade das Águas Superficiais da Bacia Hidrográfica do Rio Uberaba-Mg Utilizando Técnicas de Geoprocessamento; UNESP: Jaboticabal, SP, Brazil, 2018. [Google Scholar]
- Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J. ArcSWAT Interface for SWAT 2005. User’sGuide, Blackland Research Center, Texas Agricultural Experiment Station; Soil and Water Research Laboratory, USDA Agricultural Research Service: Temple, TX, USA, 2007.
- De Miranda, E.E. Coord. Brasil em Relevo 2005. United States Geological Survey. Earth Resources Observation and Science (EROS) Center. USGS EROS Archive—Digital Elevation—Shuttle Radar Topography Mission (SRTM) Non-Void Filled. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-non?qt-science_center_objects=0#qt-science_center_objects (accessed on 10 February 2017).
- Migliaccio, K.W.; Chaubey, I. Spatial Distributions and Stochastic Parameter Influences on SWAT Flow and Sediment Predictions. J. Hydrol. Eng. 2008, 13, 258–269. [Google Scholar] [CrossRef] [Green Version]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and Water Assessment Tool: Input/Output File Documentation/Version 2009. Texas Water Resorces Instititute Technical Report No 365. 2010. Available online: https://swat.tamu.edu/media/19754/swat-io-2009.pdf (accessed on 20 March 2017).
- Williams, J.R.; Hann, R.W. Hymo, A problem-oriented computer language for building hydrologic models. Water Resour. Res. 1972, 8, 79–86. [Google Scholar] [CrossRef]
- Rallison, R.E.; Miller, N. Past, Present, and Future Scs Runoff Procedure. In Rainfall-Runoff Relationship; Water Resources Publication: Littleton, CO, USA, 1982; pp. 353–364. ISBN 0918334454. [Google Scholar]
- Garcia, C.H. Tabelas para Classificação do Coeficiente de Variação; IPEF-Instituto de Pesquisas e Estudos Florestais: Piracicaba, Brazil, 1989; ISSN 0100-3453. [Google Scholar]
- De Almeida, A.C.; Soares, J.V. Comparação entre uso de água em plantações de Eucalyptus grandis e floresta ombrófila densa (Mata Atlântica) na costa leste do Brasil. Rev. Árvore 2003, 27, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Tonello, K.C.; Teixeira Filho, J. Ecophysiology of three native species from a Brazilianatlantic forest with different water Regimes. Irriga 2012, 17, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation. Version 2005; Grassland, Soil and Water Research Laboratory, Agricultural Research Service: Temple, TX, USA, 2005.
- Viola, M.R.; de Mello, C.R.; Acerbi, F.W., Jr.; da Silva, A.M. Modelagem hidrológica na bacia hidrográfica do Rio Aiuruoca, MG. Rev. Bras. Eng. Agríc. E Ambient. 2009, 13, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Gash, J.H.C.; Nobre, C.A.; Roberts, J.M.; Victoria, R.L.; Baldocchi, D. Amazonian Deforestation and Climate; Wiley: Hoboken, NJ, USA, 1997. [Google Scholar]
- Gomes, N.M.; de Mello, C.R.; da Silva, A.M.; Beskow, S. Aplicabilidade do lisem (limburg soil erosion) para simulação hidrológica em uma bacia hidrográfica tropical. Rev. Bras. Ciência Solo 2008, 32, 2483–2492. [Google Scholar] [CrossRef] [Green Version]
- Pereira, d.R.D.; Martinez, M.A.; Pruski, F.F.; da Silva, D.D. Hydrological simulation in a basin of typical tropical climate and soil using the SWAT model part I: Calibration and validation tests. J. Hydrol. Reg. Stud. 2016, 7, 14–37. [Google Scholar] [CrossRef] [Green Version]
- ANA—Agência Nacional de Águas e Saneamento Básico (ANA) Rede Hidrometeorológica Nacional. Available online: https://dadosabertos.ana.gov.br/datasets/8014bf6e92144a9b871bb4136390f732_0/data?geometry=-48.206%2C-19.762%2C-47.743%2C-19.649 (accessed on 13 November 2017).
- Lerat, J.; Thyer, M.; McInerney, D.; Kavetski, D.; Woldemeskel, F.; Pickett-Heaps, C.; Shin, D.; Feikema, P. A robust approach for calibrating a daily rainfall-runoff model to monthly streamflow data. J. Hydrol. 2020, 591, 125129. [Google Scholar] [CrossRef]
- Wang, Q.J.; Pagano, T.C.; Zhou, S.L.; Hapuarachchi, H.A.P.; Zhang, L.; Robertson, D.E. Monthly versus daily water balance models in simulating monthly runoff. J. Hydrol. 2011, 404, 166–175. [Google Scholar] [CrossRef]
- Cibin, R.; Sudheer, K.P.; Chaubey, I. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrol. Process. 2010, 24, 1133–1148. [Google Scholar] [CrossRef]
- Park, G.A.; Park, J.Y.; Joh, H.K.; Lee, J.W.; Ahn, S.R.; Kim, S.J. Evaluation of mixed forest evapotranspiration and soil moisture using measured and swat simulated results in a hillslope watershed. KSCE J. Civ. Eng. 2014, 18, 315–322. [Google Scholar] [CrossRef]
- Kannan, N.; White, S.M.; Worrall, F.; Whelan, M.J. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000. J. Hydrol. 2007, 332, 456–466. [Google Scholar] [CrossRef]
- Schmalz, B.; Fohrer, N. Comparing model sensitivities of different landscapes using the ecohydrological SWAT model. Adv. Geosci. 2009, 21, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Johnston, C.A. Hydrologic comparison between a forested and a wetland/lakedominated watershed using SWAT. Hydrol. Process. 2008, 22, 1431–1442. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs—A User Manual; Department of Systems Analysis, Intergrated Assessment and Modelling (SIAM), EAWAG, Swiss Federal Institute of Aqualtic Science and Technology: Dübendorf, Switzerland, 2015; p. 100. [Google Scholar]
- Santos, R.M.B.; Fernandes, L.F.S.; Cortes, R.M.V.; Pacheco, F.A.L. Development of a hydrologic and water allocation model to assess water availability in the Sabor river basin (Portugal). Int. J. Environ. Res. Public Health 2019, 16, 2419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strauch, M.; Bernhofer, C.; Koide, S.; Volk, M.; Lorz, C.; Makeschin, F. Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. J. Hydrol. 2012, 414–415, 413–424. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Xia, J.; Yang, H. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Binfner, R.L.; Harmet, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the Swat Model on a Large Rwer Basin with Point and Nonpoint Sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Nkiaka, E.; Nawaz, N.R.; Lovett, J.C. Evaluating global reanalysis datasets as input for hydrological modelling in the Sudano-Sahel region. Hydrology 2017, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Sartori, A.; Lombardi Neto, F.; Genovez, A.M. Classificação Hidrológica de Solos Brasileiros para a Estimativa da Chuva Excedente com o Método do Serviço de Conservação do Solo dos Estados Unidos Parte 1: Classificação. Rev. Bras. Recur. Hídricos 2005, 10, 5–18. [Google Scholar] [CrossRef]
- Malagò, A.; Vigiak, O.; Bouraoui, F.; Pagliero, L.; Franchini, M. The hillslope length impact on SWAT streamflow prediction in large basins. J. Environ. Inform. 2018, 32, 82–97. [Google Scholar] [CrossRef] [Green Version]
- Bieger, K.; Hörmann, G.; Fohrer, N. Detailed spatial analysis of SWAT-simulated surface runoff and sediment yield in a mountainous watershed in China. Hydrol. Sci. J. 2015, 60, 784–800. [Google Scholar] [CrossRef]
- Ilstedt, U.; Malmer, A.; Verbeeten, E.; Murdiyarso, D. The effect of afforestation on water infiltration in the tropics: A systematic review and meta-analysis. For. Ecol. Manag. 2007, 251, 45–51. [Google Scholar] [CrossRef]
- Nunes, A.N.; de Almeida, A.C.; Coelho, C.O.A. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl. Geogr. 2011, 31, 687–699. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Liu, D.L.; Zhang, M.; Leslie, L.M.; Yu, Q. Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. J. Hydrol. 2020, 585, 124822. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Chen, X.; Shi, P. The impact of land use and land cover changes on soil moisture and hydraulic conductivity along the karst hillslopes of southwest China. Environ. Earth Sci. 2009, 59, 811–820. [Google Scholar] [CrossRef]
Symbol—Soil Use | Concept |
---|---|
AGRL—Agriculture | Both perennial and annual agriculture were considered in this class. |
URMD—Urban | The region presents the expansion of the urban network, but this is still concentrated close to the water executory of the EPA of Uberaba River. |
FRST—Natural Landscape | The term “FRST” was designed to natural native forest and permanent preservation areas. |
UIDU—Mining | Mining activity is basalt mining. |
PAST—Pasture | Land use predominant at the EPA of Uberaba River. |
EUCA—Silviculture and/or exposed soil | The term “EUCA”was designed for forest farming in a woodland as Pine and Eucalyptus. Less predominant land use at the EPA of Uberaba River |
Vegetation Cover | BLAI (Maximum Leaf Area Index) (m2∙m−2) | GSi (Canopy Stomatal Conductance) (m∙s−1) | OV_N (Manning’s “n” for the Surface) (s∙m−1/3) |
---|---|---|---|
Native vegetation (Atlantic Forest) | 7.5 [60] | 0.033 [61] | 0.3 [62] |
Eucalyptus | 4.0 [60] | 0.01 [60] | 0.17 [62] |
Pasture | 3.0 [63] | 0.01 [64] | 0.23 [65] |
Agriculture | 7.0 [63] | 0.0095 [66] | 0.14 [62] |
Method and Parameter | Description | Units | Minimum Value | Maximum Value | Fitted Value |
---|---|---|---|---|---|
V_GWQMN.gw * | Flow threshold depth of water in shallow aquifer | mm | 0 | 5000 | 357.676 |
V_EPCO.hru * | Plant uptake compensation factor | – | 0 | 1 | 0.022 |
V_GW_DELAY.gw * | Groundwater delay | days | 0 | 500 | 258.819 |
V_RCHRG_DP.gw | Flow deep aquifer percolation coefficient | – | 0 | 1 | 0.247 |
R_CN2.mgt | Curve number for moisture condition II | – | −0.1 | 0.1 | 0.069 |
V_ESCO.hru | Soil evaporation compensation factor | – | 0 | 1 | 0.943 |
V_ALPHA_BF.gw | Baseflow alpha factor | 1/days | 0 | 1 | 0.298 |
Measures | Values | Acceptable Ranges |
---|---|---|
Calibration | ||
NSE (Nash–Sutcliffe Efficiency) | 0.82 | ≥0.75 very good |
R2 (Coefficient of determination) | 0.85 | ≥0.75 very good |
PBIAS | 11.9% | ±10–±15 good |
RSR (Standardized RMSE) | 0.42 | ≤0.5 very good |
Validation | ||
NSE (Nash–Sutcliffe Efficiency) | 0.70 | 0.65–0.75 good |
R2 (Coefficient of determination) | 0.72 | 0.65–0.75 good |
PBIAS | −4% | ≤±10 very good |
RSR (Standardized RMSE) | 0.55 | 0.5–0.6 good |
Water Balance Ratios | Current Land Use |
---|---|
Streamflow/Precipitation | 0.44 |
Surface runoff/Total flow | 0.25 |
Lateral flow/Total flow | 0.48 |
Groundwater flow/Total flow | 0.27 |
Percolation/Precipitation | 0.16 |
Deep recharge/Precipitation | 0.04 |
Evapotranspiration/Precipitation | 0.51 |
Current Land Use/Scenarios | SURQ | LATQ | GWQ | Total Runoff | ET | SW |
---|---|---|---|---|---|---|
Current land use | ||||||
Value (mm) | 171.92 | 349.03 | 195.95 | 238.97 | 840.79 | 726.61 |
Forest scenario | ||||||
Value (mm) | 100.84 | 370.01 | 213.03 | 227.96 | 863.99 | 678.09 |
Value change (mm) | −71.08 | 20.97 | 17.08 | −11.01 | 23.20 | −48.52 |
Percentage change (%) | −45.27 | 5.68 | 2.56 | −4.77 | 2.88 | −7.05 |
Pasture scenario | ||||||
Value (mm) | 172.94 | 343.60 | 198.03 | 238.19 | 843.32 | 774.94 |
Value change (mm) | 1.02 | −5.44 | 2.08 | −0.78 | 2.53 | 48.33 |
Percentage change (%) | −3.01 | −1.45 | 1.97 | −0.57 | 0.21 | 6.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, M.S.d.M.; Valera, C.A.; Zanata, M.; Santos, R.M.B.; Abdala, V.L.; Pacheco, F.A.L.; Fernandes, L.F.S.; Pissarra, T.C.T. Potential Impacts of Land Use Changes on Water Resources in a Tropical Headwater Catchment. Water 2021, 13, 3249. https://doi.org/10.3390/w13223249
Martins MSdM, Valera CA, Zanata M, Santos RMB, Abdala VL, Pacheco FAL, Fernandes LFS, Pissarra TCT. Potential Impacts of Land Use Changes on Water Resources in a Tropical Headwater Catchment. Water. 2021; 13(22):3249. https://doi.org/10.3390/w13223249
Chicago/Turabian StyleMartins, Magda Stella de Melo, Carlos Alberto Valera, Marcelo Zanata, Regina Maria Bessa Santos, Vera Lúcia Abdala, Fernando António Leal Pacheco, Luís Filipe Sanches Fernandes, and Teresa Cristina Tarlé Pissarra. 2021. "Potential Impacts of Land Use Changes on Water Resources in a Tropical Headwater Catchment" Water 13, no. 22: 3249. https://doi.org/10.3390/w13223249