Hydropower Technology for Sustainable Energy Generation in Wastewater Systems: Learning from the Experience
Abstract
:1. Introduction
1.1. Management Models and Renewable Energy Strategies in the Wastewater Industry
1.2. Hydropower Technology for Energy Generation in Wastewater Systems
1.3. Aim of This Study
- To analyze the existing framework and real experience of hydropower technology application for energy recovery from wastewater, considering:
- Previous methodologies for potential assessment proposed in academic papers (described in Section 2.1);
- Characteristics and performance of real case studies (methods described in Section 2.2 and results displayed in Section 3.1 and Section 3.2).
- To compare both—methodologies with data of the real case studies (methods described in Section 2.3 and results analyzed in Section 3.1 and Section 3.2). From that comparison, to propose the basis of a modified methodology for potential assessment, regarding, options for introducing other decision factors and adaptability to provide useful information at a suitable decision-making level.
2. Materials and Methods
2.1. Methodologies for Hydropower Potential Assessment at Wastewater Treatment Plants
- Firstly, a technical assessment of the energy generation potential, considering an initial sample of several hundreds of the existing WWTPs from the study area.
- Secondly, an economic feasibility study to determine the profitable plants from the selected potential sites in the previous step, according to several assumptions. This second stage usually allows for more detailed analysis as the number of sites in the sample has been reduced significantly, considering only those with higher potential.
2.2. Real Case Studies of Hydropower Applied to Wastewater Systems
2.3. Analysis of Methodologies and Comparison with Real Cases
3. Results and Discussion
3.1. Analysis of Real Case Studies Profiles
3.2. Analysis of Real Case Studies Performance
3.3. Proposed Approach to Adapt Hydropower Assessment Methodologies to the Sustainability Framework
3.3.1. Scope (Adaptation)
3.3.2. Individual Potential Estimation (Validation)
3.3.3. Other Considerations (Introduction)
3.4. Challenges, Limitations and Further Research
- Previous studies of potential assessment of hydropower to recover some energy embedded in wastewater have shown that certainly that potential might not be as high as in other technologies like CHP from biogas. However, they have shown that some potential exists and some energy, that otherwise would be wasted could be recovered.
- There is a low offer of affordable solutions from manufacturers within the smallest ranges and low head options, whilst there could be a large potential market for those.
- Due to the lack of awareness, there is a low demand of this technology from the potential market, in this case, most policy- and decision-makers in the wastewater industry.
- From the technical point of view, flow fluctuations can have a negative effect on efficiency and performance if they are not deemed in the design.
- Research projects in this area should consider gathering more robust data of current performance of existing real case studies, involving different stakeholders.
- Further research should also focus on optimizing efficiency performance. However, few small organizations are willing to take risks implementing new technologies and to be pioneers within their sector unless they take part of research funded projects. Therefore, projects with experimental sites to test different machinery options, configurations and working conditions are also needed. Experimental pilot plants and full-scale prototypes would be particularly useful to adjust the performance of hydraulic machinery to the needs of small WWTPs and, therefore, the potential market.
- Of special interest would be the development of affordable market solutions within the micro- and pico-hydropower ranges. Reliable hydraulic machinery adapted to different working conditions would benefit not only the wastewater sector, but also drinking and irrigation water systems.
- Moreover, availability of demonstration sites, real or experimental, would also be essential for disclosure within the wastewater management stakeholders, thus overcoming the current lack of awareness.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
ID Case Study | Sources of Data |
1 | References: [15,50,62,72,87] |
2 | References: [16,50,87] Other sources of data:
|
3 |
|
4 | References: [15,50,62,63,72,79] Other sources of data:
|
5 | References: [63,79,80] Other sources of data:
|
6 | References: [63,80] Other sources of data:
|
7 | References: [15,40,50,62,63,72,79,80] |
8 | References: [40] Other sources of data:
|
9 | References: [63] Other sources of data:
|
10 |
|
11 | References: [63] Other sources of data:
|
12 | References: [63,79] Other sources of data:
|
13 | References: [63] Other sources of data:
|
14 |
|
15 |
|
16 |
|
17 | References: [15,62,72] |
18 |
|
19 | References: [87] Other sources of data:
|
20 | References: [41,63,87] Other sources of data:
|
21 | References: [87] Other sources of data:
|
22 | References: [87] Other sources of data:
|
23 | References: [62,63,87] Other sources of data:
|
24 | References: [87] Other sources of data:
|
25 | References: [39,45,87] Other sources of data:
|
26 | References: [39,45,87] Other sources of data:
|
27 | References: [87] Other sources of data:
|
28 | References: [87] Other sources of data:
|
29 | References: [87] Other sources of data:
|
30 | References: [50,62,63] Other sources of data:
|
31 |
|
32 | References: [50,63] Other sources of data:
|
33 | References: [63] Other sources of data:
|
34 | References: [37] Other sources of data:
|
35 |
|
36 | |
37 | |
38 | References: [37] Other sources of data:
|
39 |
|
40 |
|
41 | References: [37] |
42 | Other sources of data:
|
43 | |
44 | |
45 | References: [41,63] |
46 | References: [41,63] |
47 | References: [15,50,62,63] Other sources of data:
|
48 | References: [15,62,63] Other sources of data:
|
49 |
|
References
- Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Abeysiriwardana-Arachchige, I.S.A.; Nirmalakhandan, N. Evaluating wastewater treatment infrastructure systems based on UN Sustainable Development Goals and targets. J. Clean. Prod. 2021, 298, 126795. [Google Scholar] [CrossRef]
- Elavarasan, R.M.; Pugazhendhi, R.; Jamal, T.; Dyduch, J.; Arif, M.T.; Kumar, N.M.; Shafiullahg, G.M.; Chopra, S.S.; Nadarajahh, M. Envisioning the UN Sustainable Development Goals (SDGs) through the lens of energy sustainability (SDG 7) in the post-COVID-19 world. Appl. Energy 2021, 292, 116665. [Google Scholar] [CrossRef]
- Garcia, A.V.M.; López-Jiménez, P.A.; Sánchez-Romero, F.J.; Pérez-Sánchez, M. Objectives, keys and results in the water networks to reach the sustainable development goals. Water 2021, 13, 1268. [Google Scholar] [CrossRef]
- World Water Assessment Programme (United Nations). Wastewater: The Untapped Resource: The United Nations World Water Development Report 2017. 2017. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000247153 (accessed on 7 April 2021).
- EurEau—The European Federation of National Associations of Water Services, The Governance of Water Services in EUROPE 2020 Edition. Brussels. 2020. Available online: https://www.eureau.org/resources/publications/eureau-s-publications/5219-the-governance-of-water-services-in-europe-2020-edition/file (accessed on 1 September 2021).
- Kehrein, P.; van Loosdrecht, M.; Osseweijer, P.; Posada, J.; Dewulf, J. The SPPD-WRF framework: A novel and holistic methodology for strategical planning and process design of water resource factories. Sustainability 2020, 12, 4168. [Google Scholar] [CrossRef]
- Guerrini, A.; Romano, G.; Ferretti, S.; Fibbi, D.; Daddi, D. A performance measurement tool leading wastewater treatment plants toward economic efficiency and sustainability. Sustainability 2016, 8, 1250. [Google Scholar] [CrossRef] [Green Version]
- García-López, M.; Melgarejo, J.; Montano, B. The financing of wastewater treatment and the balance of payments for water services: Evidence from municipalities in the region of Valencia. Sustainability 2021, 13, 5874. [Google Scholar] [CrossRef]
- Kehrein, P.; van Loosdrecht, M.; Osseweijer, P.; Garfí, M.; Dewulf, J.; Posada, J. A critical review of resource recovery from municipal wastewater treatment plants-market supply potentials, technologies and bottlenecks. Environ. Sci. Water Res. Technol. 2020, 6, 877–910. [Google Scholar] [CrossRef] [Green Version]
- Capodaglio, A.G.; Olsson, G. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability 2020, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Revollar, S.; Meneses, M.; Vilanova, R.; Vega, P.; Francisco, M. Eco-efficiency assessment of control actions in wastewater treatment plants. Water 2021, 13, 612. [Google Scholar] [CrossRef]
- Zohrabian, A.; Sanders, K.T. Emitting less without curbing usage? Exploring greenhouse gas mitigation strategies in the water industry through load shifting. Appl. Energy 2021, 298, 117194. [Google Scholar] [CrossRef]
- Paulu, A.; Bartáček, J.; Šerešová, M.; Kočí, V. Combining process modelling and lca to assess the environmental impacts of wastewater treatment innovations. Water 2021, 13, 1246. [Google Scholar] [CrossRef]
- Nakkasunchi, S.; Hewitt, N.J.; Zoppi, C.; Brandoni, C. A review of energy optimization modelling tools for the decarbonisation of wastewater treatment plants. J. Clean. Prod. 2021, 279, 23811. [Google Scholar] [CrossRef]
- Diaz-Elsayed, N.; Rezaei, N.; Guo, T.; Mohebbi, S.; Zhang, Q. Wastewater-based resource recovery technologies across scale: A review. Resour. Conserv. Recycl. 2019, 145, 94–112. [Google Scholar] [CrossRef]
- Maktabifard, M.; Zaborowska, E.; Makinia, J. Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production. Rev. Environ. Sci. Biotechnol. 2018, 17, 655–689. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, D.J.; Serrano, H.A.; Delgado, A.; Nolasco, D.; Saltiel, G. From Waste to Resource Shifting Paradigms for Smarter Wastewater Interventions in Latin America and the Caribbean; Worldbank: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Alvarez, V.V.; Buchauer, K. East Asia and Pacific—Wastewater to Energy Processes: A Technical Note for Utility Managers in EAP Countries: Main Report (English); World Bank Group: Washington, DC, USA, 2014; Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/489941468188683153/main-report (accessed on 11 April 2021).
- Campana, P.E.; Mainardis, M.; Moretti, A.; Cottes, M. 100% renewable wastewater treatment plants: Techno-economic assessment using a modelling and optimization approach. Energy Convers. Manag. 2021, 239, 114214. [Google Scholar] [CrossRef]
- Wang, K.; Nakakubo, T. Strategy for introducing sewage sludge energy utilization systems at sewage treatment plants in large cities in Japan: A comparative assessment. J. Clean. Prod. 2021, 316, 128282. [Google Scholar] [CrossRef]
- Ghimire, U.; Sarpong, G.; Gude, V.G. Transitioning wastewater treatment plants toward circular economy and energy sustainability. ACS Omega 2021, 6, 11794–11803. [Google Scholar] [CrossRef] [PubMed]
- Baena-Moreno, F.M.; Malico, I.; Marques, I.P. Promoting sustainability: Wastewater treatment plants as a source of biomethane in regions far from a high-pressure grid. a real portuguese case study. Sustainability 2021, 13, 8933. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Stensel, H.D.; Tsuchihashi, R.; Burton, F.; Abu-Orf, M.; Bowden, G.; Pfrang, W. Wastewater Engineering: Treatment and Resource Recovery, Fifth Edition Metcalf & Eddy I AECOM, 5th ed.; Mc Graw Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Gandiglio, M.; Lanzini, A.; Soto, A.; Leone, P.; Santarelli, M. Enhancing the energy efficiency of wastewater treatment plants through co-digestion and fuel cell systems. Front. Environ. Sci. 2017, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Merlin, G.; Outin, J.; Boileau, H. Co-Digestion of Extended Aeration Sewage Sludge with Whey, Grease and Septage: Experimental and Modeling Determination. Sustainability 2021, 13, 9199. [Google Scholar] [CrossRef]
- Yan, P.; Qin, R.-C.; Guo, J.-S.; Yu, Q.; Li, Z.; Chen, Y.-P.; Shen, Y.; Fang, F. Net-zero-energy model for sustainable wastewater treatment. Environ. Sci. Technol. 2017, 51, 1017–1023. [Google Scholar] [CrossRef]
- Reifsnyder, S.; Cecconi, F.; Rosso, D. Dynamic load shifting for the abatement of GHG emissions, power demand, energy use, and costs in metropolitan hybrid wastewater treatment systems. Water Res. 2021, 200, 117224. [Google Scholar] [CrossRef]
- Risch, E.; Boutin, C.; Roux, P. Applying life cycle assessment to assess the environmental performance of decentralised versus centralised wastewater systems. Water Res. 2021, 196, 116991. [Google Scholar] [CrossRef]
- Zahediasl, A.; Bakhshipour, A.E.; Dittmer, U.; Haghighi, A. Toward decentralised sanitary sewage collection systems: A multiobjective approach for cost-effective and resilient designs. Water 2021, 13, 1886. [Google Scholar] [CrossRef]
- Chae, K.J.; Kim, I.S.; Ren, X.; Cheon, K.H. Reliable energy recovery in an existing municipal wastewater treatment plant with a flow-variable micro-hydropower system. Energy Convers. Manag. 2015, 101, 681–688. [Google Scholar] [CrossRef]
- del Río-Gamero, B.; Ramos-Martín, A.; Melián-Martel, N.; Pérez-Báez, S. Water-energy nexus: A pathway of reaching the zero net carbon in wastewater treatment plants. Sustainability 2020, 12, 9377. [Google Scholar] [CrossRef]
- Jorge, C.; Almeida, M.D.C.; Covas, D. Performance assessment system for energy efficiency in wastewater systems. Water 2021, 13, 1807. [Google Scholar] [CrossRef]
- Rodríguez-Villanueva, P.; Sauri, D. Wastewater treatment plants in mediterranean spain: An exploration of relations between water treatments, water reuse, and governance. Water 2021, 13, 1710. [Google Scholar] [CrossRef]
- Södergren, K.; Palm, J. How organization models impact the governing of industrial symbiosis in public wastewater management. An explorative study in Sweden. Water 2021, 13, 824. [Google Scholar] [CrossRef]
- Chae, K.J.; Kang, J. Estimating the energy independence of a municipal wastewater treatment plant incorporating green energy resources. Energy Convers. Manag. 2013, 75, 664–672. [Google Scholar] [CrossRef]
- Republic of Korea Ministry of Environment. History of Korea’s Sewerage System Development. 2017. Available online: https://www.ib-net.org/docs/History_of_Korea’s_sewerage_system_development.pdf (accessed on 7 April 2021).
- Dirección General del Agua—Secretaría de Estado de Medio Ambiente—Ministerio para la Transición Ecológica y el Reto Demográfico, Plan Nacional de Depuración, Saneamiento, Eficiencia, Ahorro y Reutilización PLAN DSEAR. Madrid (Spain). 2021. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-B-2020-36826 (accessed on 1 September 2021).
- Polo, J.F.; García, D.A.; Baviera, R.B.; Sevilla, J.S.; Ojeda, E.L. Huella Energética en el Ciclo Integral del Agua en la Comunidad de Madrid—Fundación Canal. 2016. Available online: http://www.madrid.org/bvirtual/BVCM019568.pdf (accessed on 13 April 2021).
- Canton de Vaud, Direction Générale de L’environnement (DGE), and Urban et Rural (DIREV) Direction de L’energie (DIREN) et Direction de L’environnement Industriel, Etat des Lieux et Perspectives Énergétiques des STEP Vaudoises. 2018. Available online: https://www.vd.ch/fileadmin/user_upload/themes/environnement/energie/fichiers_pdf/rapp-1803-STEP-energie-etat-lieux.pdf (accessed on 2 September 2021).
- ACWA. Oregon Association of Clean Water Agencies and Energy Trust of Oregon, Energy Independence & Efficiency for Oregon Wastewater Treatment Plants Pilot Project. 2008. Available online: https://www.energytrust.org/wp-content/uploads/2016/11/080703_ACWA__IP_Report.pdf (accessed on 12 April 2021).
- Najar, N.; Persson, K.M. A sustainability index within water and wastewater management in Sweden: An evaluation of eight case studies. Water 2021, 13, 1879. [Google Scholar] [CrossRef]
- Prochaska, C.; Zouboulis, A. A mini-review of urban wastewater treatment in Greece: History, development and future challenges. Sustainability 2020, 12, 6133. [Google Scholar] [CrossRef]
- Waterworld. Águas de Portugal Group Works toward 100% Renewable Power. 31 July 2020. Available online: https://www.waterworld.com/water-utility-management/energy-management/article/14180806/guas-de-portugal-group-to-go-energy-selfsustaining-with-100-renewable-power (accessed on 8 April 2021).
- Canal de Isabel II. Informe de Sostenibilidad 2019. 2020. Available online: https://www.canaldeisabelsegunda.es/documents/20143/4132298/AF_Informe+Sostenibilidad+2019_20102020.pdf/5667a38b-0231-b651-69b4-a703a9af5d27?t=1603193297679 (accessed on 8 April 2021).
- Llácer-Iglesias, R.M.; López-Jiménez, P.A.; Pérez-Sánchez, M. Energy self-sufficiency aiming for sustainable wastewater systems: Are all options being explored? Sustainability 2021, 13, 5537. [Google Scholar] [CrossRef]
- Kretschmer, F.; Neugebauer, G.; Stoeglehner, G.; Ertl, T. Participation as a key aspect for establishing wastewater as a source of renewable energy. Energies 2018, 11, 3232. [Google Scholar] [CrossRef] [Green Version]
- Kougias, I.; Aggidis, G.; Avellan, F.; Deniz, S.; Lundin, U.; Moro, A.; Muntean, S.; Novara, D.; Pérez-Díaz, J.I.; Quaranta, E.; et al. Analysis of emerging technologies in the hydropower sector. Renew. Sustain. Energy Rev. 2019, 113, 109257. [Google Scholar] [CrossRef]
- Adeyeye, K.; Gallagher, J.; McNabola, A.; Ramos, H.M.; Coughlan, P. Socio-technical viability framework for micro hydropower in group water-energy schemes. Energies 2021, 14, 4222. [Google Scholar] [CrossRef]
- Choulot, A.; Denis, V.; Punys, P. Integration of Small Hydro Turbines into Existing Water Infrastructures. In Hydropower—Practice and Application; Samadi-Boroujeni, H., Ed.; IntechOpen: Rijeka, Croatia, 2012; Available online: http://www.intechopen.com/books/hydropower-practice-and-application/integration-of-small-turbines-into-water-infrastructure (accessed on 11 April 2021).
- McNabola, A.; Coughlan, P.; Williams, A.P. Energy recovery in the water industry: An assessment of the potential of micro-hydropower. Water Environ. J. 2014, 28, 294–304. [Google Scholar] [CrossRef]
- Pérez-Sánchez, M.; Sánchez-Romero, F.J.; Ramos, H.M.; López-Jiménez, P.A. Energy recovery in existing water networks: Towards greater sustainability. Water 2017, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Ak, M.; Kentel, E.; Kucukali, S. A fuzzy logic tool to evaluate low-head hydropower technologies at the outlet of wastewater treatment plants. Renew. Sustain. Energy Rev. 2017, 68, 727–737. [Google Scholar] [CrossRef]
- Bekker, A.; van Dijk, M.; Niebuhr, C.M.; Hansen, C. Framework development for the evaluation of conduit hydropower within water distribution systems: A South African case study. J. Clean. Prod. 2021, 283, 125326. [Google Scholar] [CrossRef]
- Ramos, H.; de Almeida, A.B.; Portela, M.M.; de Almeida, H.P. Guideline for Design of Small Hydropower Plants; WREAN and DED: Belfast, UK, 2000. [Google Scholar]
- Quaranta, E.; Revelli, R. Gravity water wheels as a micro hydropower energy source: A review based on historic data, design methods, efficiencies and modern optimizations. Renew. Sustain. Energy Rev. 2018, 97, 414–427. [Google Scholar] [CrossRef]
- Zhou, D.; Deng, Z. Ultra-low-head hydroelectric technology: A review. Renew. Sustain. Energy Rev. 2017, 78, 23–30. [Google Scholar] [CrossRef]
- YoosefDoost, A.; Lubitz, W.D. Archimedes screw turbines: A sustainable development solution for green and renewable energy generation-a review of potential and design procedures. Sustainability 2020, 12, 7352. [Google Scholar] [CrossRef]
- BHA British Hydropower Association. The British Hydropower Association A Guide to UK Mini-Hydro; British Hydropower Association: Dorset, UK, 2012. [Google Scholar]
- Williamson, S.J.; Stark, B.H.; Booker, J.D. Low head pico hydro turbine selection using a multi-criteria analysis. Renew. Energy 2014, 61, 43–50. [Google Scholar] [CrossRef]
- Bracken, L.J.; Bulkeley, H.A.; Maynard, C.M. Micro-hydro power in the UK: The role of communities in an emerging energy resource. Energy Policy 2014, 68, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Power, C.; McNabola, A.; Coughlan, P. Development of an evaluation method for hydropower energy recovery in wastewater treatment plants: Case studies in Ireland and the UK. Sustain. Energy Technol. Assess. 2014, 7, 166–177. [Google Scholar] [CrossRef]
- Bousquet, C.; Samora, I.; Manso, P.; Rossi, L.; Heller, P.; Schleiss, A.J. Assessment of hydropower potential in wastewater systems and application to Switzerland. Renew. Energy 2017, 113, 64–73. [Google Scholar] [CrossRef]
- Mitrovic, D.; Chacón, M.; García, A.; Morillo, J.; Diaz, J.; Ramos, H.; Adeyeye, K.; Carravetta, A.; McNabola, A. Multi-country scale assessment of available energy recovery potential using micro-hydropower in drinking, pressurised irrigation and wastewater networks, covering part of the eu. Water 2021, 13, 899. [Google Scholar] [CrossRef]
- Loots, I.; van Dijk, M.; Barta, B.; van Vuuren, S.J.; Bhagwan, J.N. A review of low head hydropower technologies and applications in a South African context. Renew. Sustain. Energy Rev. 2015, 50, 1254–1268. [Google Scholar] [CrossRef] [Green Version]
- García, A.M.; Díaz, J.A.R.; Morillo, J.G.; McNabola, A. Energy recovery potential in industrial and municipal wastewater networks using micro-hydropower in Spain. Water 2021, 13, 691. [Google Scholar] [CrossRef]
- Gallagher, J.; Styles, D.; McNabola, A.; Williams, A.P. Life cycle environmental balance and greenhouse gas mitigation potential of micro-hydropower energy recovery in the water industry. J. Clean. Prod. 2015, 99, 152–159. [Google Scholar] [CrossRef]
- Gallagher, J.; Styles, D.; McNabola, A.; Williams, A.P. Making green technology greener: Achieving a balance between carbon and resource savings through ecodesign in hydropower systems. Resour. Conserv. Recycl. 2015, 105, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Ueda, T.; Roberts, E.; Norton, A.; Styles, D.; Williams, A.; Ramos, H.; Gallagher, J. A life cycle assessment of the construction phase of eleven micro-hydropower installations in the UK. J. Clean. Prod. 2019, 218, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nautiyal, H.; Goel, V. Sustainability assessment of hydropower projects. J. Clean. Prod. 2020, 265, 121661. [Google Scholar] [CrossRef]
- Palma-Heredia, D.; Poch, M.; Cugueró-Escofet, M. Implementation of a decision support system for sewage sludge management. Sustainability 2020, 12, 89. [Google Scholar] [CrossRef]
- Choulot, A.; Denis, V.; Bruno, G.S. Energy Recovery in Existing Infrastructures with Small Hydropower Plants Multipurpose Schemes-Overview and Examples. 2010. Available online: http://www.infrawatt.ch/sites/default/files/2010_06_07_Mhylab%20&%20ESHA_Energy%20recovery%20in%20existing%20infrastructures%20with%20small%20hydropower%20plants_0.pdf (accessed on 12 April 2021).
- Power, C.; Coughlan, P.; McNabola, A. Microhydropower Energy Recovery at Wastewater-Treatment Plants: Turbine Selection and Optimization. J. Energy Eng. 2017, 143, 1–7. [Google Scholar] [CrossRef]
- Jawahar, C.P.; Michael, P.A. A review on turbines for micro hydro power plant. Renew. Sustain. Energy Rev. 2017, 72, 882–887. [Google Scholar] [CrossRef]
- Delgado, J.; Ferreira, J.P.; Covas, D.I.C.; Avellan, F. Variable speed operation of centrifugal pumps running as turbines. Experimental investigation. Renew. Energy 2019, 142, 437–450. [Google Scholar] [CrossRef]
- Gallagher, J.; Harris, I.M.; Packwood, A.J.; McNabola, A.; Williams, A.P. A strategic assessment of micro-hydropower in the UK and Irish water industry: Identifying technical and economic constraints. Renew. Energy 2015, 81, 808–815. [Google Scholar] [CrossRef]
- McNabola, A.; Coughlan, P.; Corcoran, L.; Power, C.; Williams, A.P.; Harris, I.; Gallagher, J.; Styles, D. Energy recovery in the water industry using micro-hydropower: An opportunity to improve sustainability. Water Policy 2014, 16, 168–183. [Google Scholar] [CrossRef]
- Gallagher, J.; Basu, B.; Browne, M.; Kenna, A.; McCormack, S.; Pilla, F.; Styles, D. Adapting Stand-Alone Renewable Energy Technologies for the Circular Economy through Eco-Design and Recycling. J. Ind. Ecol. 2019, 23, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Chenal, R.; Vuillerat, C.-A.; Rouit, J. Projekteleitung DIANE, and INFOENERGIE, Elektrizität aus Abwasser-Systemen. Konzept, Realisation, Potential. DIANE 10. Petites Centrales Hydrauliques; Office fédéral de l’énergie: Berne, Switzerland, 1995. [Google Scholar]
- MHyLab—Service de l’Environnement et de l’Energie Canton de Vaud. Cadastre Hydraulique du Canton de Vaud Eaux de Surface Eaux de Reseau. 2008. Available online: https://www.vd.ch/fileadmin/user_upload/themes/environnement/energie/fichiers_pdf/Rapport_Potentiel_Hydraulique.pdf (accessed on 2 September 2021).
- McNabola, A.; Mitrovic, D.; Chacon, M.C.; Garcia, A.M.; Morillo, J.G.; Diaz, J.A.R. REDAWN-Reducing Energy Dependency in Atlantic Area Water Networks—Project Report WP4 Report on Micro-Hydropower Resource Assessment in the Atlantic Area. Interreg Atlantic Area. 2021. Available online: https://www.redawn.eu/sites/default/files/MHP%20Resource%20Assessment%20in%20AA_WP4_TCD_0.pdf (accessed on 2 September 2021).
- Adams, R.; Jeanrenaud, S.; Bessant, J.; Overy, P.; Denyer, D. Innovating for Sustainability A Systematic Review of the Body of Knowledge. Network for Business Sustainability; Network for Business Sustainability: London, ON, Canada, 2012. [Google Scholar]
- Strazzabosco, A.; Kenway, S.J.; Lant, P.A. Quantification of renewable electricity generation in the Australian water industry. J. Clean. Prod. 2020, 254, 120119. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.M.H.; Lenzen, M.; Sack, F.; Yousefzadeh, M. Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids. Appl. Energy 2020, 268, 114960. [Google Scholar] [CrossRef]
- Bergmann, A.; Rotzek, J.N.; Wetzel, M.; Guenther, E. Hang the low-hanging fruit even lower—Evidence that energy efficiency matters for corporate financial performance. J. Clean. Prod. 2017, 147, 66–74. [Google Scholar] [CrossRef]
- Ramos, H.M.; Simão, M.; McNabola, A.; Novara, D.; Carravetta, A. Fostering Renewable Energies and Energy Efficiency in the Water Sector Using PATs and Wheels. Proceedings 2018, 2, 1438. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. Urban Wastewater Treatment Map. 2021. Available online: https://www.eea.europa.eu/themes/water/european-waters/water-use-and-environmental-pressures/uwwtd/interactive-maps/urban-waste-water-treatment-maps-3 (accessed on 14 September 2021).
- Capodaglio, A.G.; Bolognesi, S.; Cecconet, D. Sustainable, decentralized sanitation and reuse with hybrid nature-based systems. Water 2021, 13, 1583. [Google Scholar] [CrossRef]
Scope | Urban WWTPs | Cut-Off Points | Main Assumptions and Remarks | Ref. | ||
---|---|---|---|---|---|---|
Initial | Potential | Results | ||||
Urban WWTPs (Ireland + UK) | >100 | 14 + 11 (Ireland + UK) | 3 + 5 (Ireland + UK) | Power > 3 kW Payback p. <10 years | 65% efficiency Kaplan Qdesign = 1.3 – 1.5 Qaverage | [62] |
Urban WWTPs (Switzerland) | 900 | 106 | 19 | Power > 5–10 kW (gen. > 50 MWh/y) Payback period | Hpot: GIS, DEM data Qpot = Qaverage Upstream + Downstream 70% efficiency Pelton (H) + Screw (Q) | [63] |
Fish Farms + Industrial + Urban WWTPs (Spain) | 16,788 (3 types) | 471 (first screening 3 types) | 95 (urban WWTPs) | Power > 2 Kw (from H required) * | Hpot: GIS, DEM data Qpot = Qaverage 60% efficiency PAT Most H < 10–12 m * | [66] |
Drinking + Irrigation + Urban WWTPs (Ireland + N.Ireland + Wales + Scotland + Spain + Portugal) | 535 (Ireland) | 66 + 343 (Ireland + Spain) | 15 + 89 (Ireland + Spain) | Power > 2 kW | Hpot: GIS, DEM data Qpot = Qaverage 50% efficiency PAT | [64,81] |
ID 1 | Case Study | Location 3 | Year 4 | Installed Hydro Power (kW) | Range |
---|---|---|---|---|---|
1 | Plobb-Seefeld 2 | Seefeld Zirl-AT | 2005 | 1192 | Small |
2 | Ebswien | Vienna (Simmering)-AT | 2009, 2013 | 400 | Mini |
3 | Chaux-de-Fonds 2 | La Chaux-de-Fonds-SW | 2007, 2016 | 1532 | Small |
4 | Le Châble Profray | Val Bagnes, Verbier (Valais)-SW | 1993, 2008 | 350 | Mini |
5 | La Douve 1 | Aigle, Leysin (Vaud)-SW | 1989, 2000 | 430 | Mini |
6 | La Douve 2 | Aigle, Leysin (Vaud)-SW | 2001 | 75 | Micro |
7 | L’Asse 2 | Nyon (Vaud)-SW | 1990 | 215 | Mini |
8 | Coppet-Terre Sainte (SITSE) | Commugny (Vaud)-SW | 2014 | 110 | Mini |
9 | Grächen | Grächen (Valais)-SW | 2011 | 262 | Mini |
10 | Iseltwald | Iseltwald (Berna)-SW | 2014 | 6.6 | Micro |
11 | Engelberg | Engelberg-SW | 2010 | 55 | Micro |
12 | Morgental (Hofen) 2 | Steinach (St. Gallen)-SW | 1916, 2014 | 1260 | Small |
13 | Aïre | Genève-SW | before 2015 | 200 | Mini |
14 | Meiersboden (Rabiosa) 2 | Chur-SW | 2016 | 194 | Mini |
15 | La Saunerie | Colombier (Neuchâtel)-SW | 2014 | 15 | Micro |
16 | Schwyz 2 | Seewen-SW | 2011 | 15.5 | Micro |
17 | La Louve 2 | Lausanne-SW | 2006 | 170 | Mini |
18 | Kuesnacht-Erlenbach-Zumikon 2 | Kuesnacht-SW | 2016 | N/A | N/A |
19 | Chartres Métropole 2 | Mainvilliers-FR | 2020 | 200 | Mini |
20 | Emmerich (TWE) | Emmerich am Rhein-GE | 2000 | 13 | Micro |
21 | Böhmenkirch 2 | Roggental-GE | 2001 | 40 | Micro |
22 | Buchenhofen | Wuppertal-GE | 1966, 2012 | 560 | Mini |
23 | Esholt | Bradford (Yorkshire)-UK | 2009 | 175 | Mini |
24 | La Cartuja | Zaragoza-SP | 2015 | 225 | Mini |
25 | Sur | Getafe (Madrid)-SP | before 2014 | 180 | Mini |
26 | La Gavia | Madrid-SP | before 2017 | 75 | Micro |
27 | Glina | Bucharest (Ilfov County)-RO | before 2019 | 426 | Mini |
28 | Brussels-North | Brussels-BE | before 2019 | 640 | Mini |
29 | Namur (Lives Brumagne) | Lives-sur-Meuse (Namur)-BE | 2016 | N/A | N/A |
30 | North Head | Sydney-AU | 2010 | 4500 | Small |
31 | Gippsland Water Factory 2 | Maryvale (Gippsland)-AU | 2010 | 300 | Mini |
32 | As samra | Amman City-JO | 2008 | 1660 + 1614 | Small |
33 | As samra II | Amman City-JO | 2015 | 515 | Mini |
34 | Asan | Chungnam asan-KR | 2000 | 36 | Micro |
35 | Cheonan | Chungnam Cheonan-KR | 2002 | 40 | Micro |
36 | Jinhae | Gyeongnam jinhae-KR | 2004 | 10 | Micro |
37 | Shinshun | Daegu-KR | 2005 | 139 | Mini |
38 | Seoksu | Gyeonggi Anyang-KR | 2007 | 400 | Mini |
39 | Seobu | Daegu-KR | 2010 | 74 | Micro |
40 | Chungju | Chungju-KR | 2011 | 135 | Mini |
41 | Nan Ji | Seoul-KR | 2014 | N/A | N/A |
42 | Tan Chun | Seoul-KR | before 2017 | 60 | Micro |
43 | Joong Rang | Seoul-KR | 2015 | 60 | Micro |
44 | Seo Nam | Seoul-KR | 2015 | 100 | Micro |
45 | N/A | Taichung-TW | before 2008 | 68 | Micro |
46 | Hsinchu | Hsinchu-TW | before 2008 | 11 | Micro |
47 | Deer Island | Boston (Massachusetts)-US | 2002 | 2000 | Small |
48 | Point Loma | San Diego-US | 2001 | 1350 | Small |
49 | Clarkson | Mississauga-CA | 2015 | 225 | Mini |
ID 1 | Case Study | Scheme 3 | Q (m3/s) WWTP /Design | H (m) Net/Gross | Hydraulic Machine (Number, Type) 4 |
---|---|---|---|---|---|
1 | Plobb-Seefeld 2 | TE | 0.089/0.250 | -/625 | N/A |
2 | Ebswien | TE | 6.206/6.500 | -/5 | 1 Screw + 1 Kaplan |
3 | Chaux-de-Fonds 2 | TE | -/0.500 | 380/393 | 1 Pelton |
4 | Le Châble Profray | RWW | -/0.100 | 430/449 | 1 Pelton (V) |
5 | La Douve 1 | N/A | -/0.108 | 510/559 | 1 Pelton |
6 | La Douve 2 | TE | -/0.108 | 79/83 | 1 Pelton (V) |
7 | L’Asse 2 | N/A | -/0.290 | -/94 | 1 PAT |
8 | Coppet-Terre Sainte (SITSE) | TE | 0.083/0.170 | 77/- | 1 Pelton |
9 | Grächen | N/A | -/0.089 | 351/- | 1 Pelton (H) |
10 | Iseltwald | N/A | -/0.0095 | 120/- | 1 PAT |
11 | Engelberg | TE | 0.069/0.139 | -/50 | 1 Pelton |
12 | Morgental (Hofen) 2 | TE | 0.174/0.840 | 190/- | 1 Pelton (H) |
13 | Aïre | TE | 2.000/3.200 | 5/- | 1 Kaplan |
14 | Meiersboden (Rabiosa) 2 | SWW | -/0.015 | -/522 | 1 Pelton |
15 | La Saunerie | N/A | 0.127/0.240 | 4.5/- | 1 Turbine |
16 | Schwyz 2 | TE | 0.242/0.250 | -/7 | N/A |
17 | La Louve 2 | RWW | -/0.120 | -/180 | 1 Pelton |
18 | Kuesnacht-Erlenbach-Zumikon 2 | SWW | -/- | -/180 | N/A |
19 | Chartres Métropole 2 | TE | 0.400/0.800 | -/- | N/A |
20 | Emmerich (TWE) | N/A | 0.185/0.400 | 3.8/- | N/A |
21 | Böhmenkirch 2 | RWW | 0.017/- | -/100 | 1 Pelton |
22 | Buchenhofen | N/A | 1.309/10.000 | 7/- | 1 Kaplan |
23 | Esholt | SWW | -/2.678 | 8.2/- | 2 A.Screw |
24 | La Cartuja | TE | 1.643/- | 8.5/- | 1 SemiKaplan |
25 | Sur | TE | 2.895/2 × 3.500 | 3.2/- | 2 Turbines |
26 | La Gavia | TE | 0.965/- | -/- | 1 Turbine |
27 | Glina | TE | 7.851/- | -/- | N/A |
28 | Brussels-North | TE | 3.260/- | -/- | N/A |
29 | Namur (Lives Brumagne) | TE | 0.249/- | -/6 | 1 Turbine |
30 | North Head | TE | 3.889/3.500 | -/60 | 2 Kaplan |
31 | Gippsland Water Factory 2 | N/A | 0.405/- | -/- | Kinetic |
32 | As samra (inlet) | RWW | 3.000/2 × 1.250 | 78/104 | 2 Pelton (V) |
32 | As samra (outlet) | TE | -/2 × 2.300 | 41/42 | 2 Francis (V) |
33 | As samra II | TE | 4.213/- | -/- | 1 Francis |
34 | Asan | TE | 0.521/0.370 | 6.9/7.2 | 1 Kaplan |
35 | Cheonan | N/A | -/- | 2.5/- | 1 Kaplan |
36 | Jinhae | N/A | -/- | 1.6/- | 1 Kaplan |
37 | Shinshun | N/A | -/- | 3.7/- | 1 Kaplan |
38 | Seoksu | TE | 3.472/2.338 | 14.8/- | 1 Kaplan |
39 | Seobu | N/A | 6.019/- | 2/- | 1 Propeller |
40 | Chungju | N/A | -/- | 6.5/- | 1 Propeller |
41 | Nan Ji | N/A | 9.954/- | -/- | Low head (<2 m) |
42 | Tan Chun | N/A | 10.417/- | -/- | Low head (<2 m) |
43 | Joong Rang | N/A | 18.403/- | -/- | Low head (<2 m) |
44 | Seo Nam | N/A | 18.866/- | -/- | Low head (<2 m) |
47 | Deer Island | TE | 15.741/- | 2.7/- | 2 Kaplan |
48 | Point Loma | TE | 6.103/- | -/27.4 | N/A |
49 | Clarkson | N/A | 2.638/- | -/5 | N/A |
ID 1 | Case Study | Energy Generation (GWh per Year) | Capacity Factor (%) |
---|---|---|---|
1 | Plobb-Seefeld | 5.5 | 52.7 |
2 | Ebswien | 1.8 | 51.4 |
4 | Le Châble Profray | 0.843 | 27.5 |
5 | La Douve 1 | 1.85 | 49.1 |
6 | La Douve 2 | 0.33 | 50.2 |
7 | L’Asse | 0.5 | 26.5 |
8 | Coppet-Terre Sainte (SITSE) | 0.338 | 35.1 |
9 | Grächen | 0.858 | 37.4 |
11 | Engelberg | 0.202 | 41.9 |
12 | Morgental (Hofen) | 3.672 | 33.3 |
14 | Meiersboden (Rabiosa) | 0.339 | 19.9 |
16 | Schwyz | 0.06 | 44.2 |
17 | La Louve | 0.46 | 30.9 |
21 | Böhmenkirch | 0.076 | 21.7 |
22 | Buchenhofen | 2.5 | 51.0 |
25 | Sur | 0.51 | 32.3 |
26 | La Gavia | 0.102 | 15.5 |
28 | Brussels-North | 2.1 | 37.5 |
41–44 | 4 WWTPs in Seoul 2 | 1.905 | 47.3 |
47 | Deer Island | 3.455 | 19.7 |
49 | Clarkson | 0.426 | 21.6 |
ID 1 | Case Study | Year | Electricity Generation from Hydropower (GWh/year) | Capacity Factor (%) |
---|---|---|---|---|
47 | Deer Island | 2013 2014 2015 2016 2017 2018 | 5.916 5.920 5.861 4.243 4.449 3.455 | 33.8 33.8 33.5 24.2 25.4 19.7 |
ID 1 | Case Study | Computed H (m) | Computed Q (m3/s) | Potential Energy Generation (GWh/Year) | Real Energy Generation (GWh/Year) |
---|---|---|---|---|---|
1 | Plobb -Seefeld | 528 | 0.089 | 2.019 | 5.5 |
2 | Ebswien | 4 | 6.206 | 1.067 | 1.8 |
22 | Buchenhofen | 8 | 1.309 | 0.450 | 2.5 |
25 | Madrid Sur | 4 | 2.895 | 0.498 | 0.51 |
26 | La Gavia | 12 | 0.965 | 0.498 | 0.102 |
28 | Brussels-North | 6 | 3.260 | 0.840 | 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llácer-Iglesias, R.M.; López-Jiménez, P.A.; Pérez-Sánchez, M. Hydropower Technology for Sustainable Energy Generation in Wastewater Systems: Learning from the Experience. Water 2021, 13, 3259. https://doi.org/10.3390/w13223259
Llácer-Iglesias RM, López-Jiménez PA, Pérez-Sánchez M. Hydropower Technology for Sustainable Energy Generation in Wastewater Systems: Learning from the Experience. Water. 2021; 13(22):3259. https://doi.org/10.3390/w13223259
Chicago/Turabian StyleLlácer-Iglesias, Rosa M., P. Amparo López-Jiménez, and Modesto Pérez-Sánchez. 2021. "Hydropower Technology for Sustainable Energy Generation in Wastewater Systems: Learning from the Experience" Water 13, no. 22: 3259. https://doi.org/10.3390/w13223259
APA StyleLlácer-Iglesias, R. M., López-Jiménez, P. A., & Pérez-Sánchez, M. (2021). Hydropower Technology for Sustainable Energy Generation in Wastewater Systems: Learning from the Experience. Water, 13(22), 3259. https://doi.org/10.3390/w13223259