Sorption of Ce(III) by Silica SBA-15 and Titanosilicate ETS-10 from Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbents Synthesis
2.1.1. Silica SBA-15
2.1.2. Titanosilicate ETS-10
2.1.3. Sorption Procedure
2.2. Methods
2.3. Sorbents Regeneration
3. Results and Discussion
3.1. Adsorbents’ Characterization
3.2. Adsorption Experiment
3.2.1. Solution Acidity
3.2.2. Initial Cerium Concentration and Equilibrium Studies
3.2.3. Contact Time and Kinetic Studies
3.2.4. Temperature and Thermodynamic Study
3.3. Sorbents Regeneration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Vijayaraghavan, K.; Sathishkumar, M.; Balasubramanian, R. Biosorption of lanthanum, cerium, europium, and ytterbium by a brown marine alga, turbinaria conoides. Ind. Eng. Chem. Res. 2010, 49, 4405–4411. [Google Scholar] [CrossRef]
- Allahkarami, E.; Rezai, B. Removal of cerium from different aqueous solutions using different adsorbents: A review. Process Saf. Environ. Prot. 2019, 124, 345–362. [Google Scholar] [CrossRef]
- Sadovsky, D.; Brenner, A.; Astrachan, B.; Asaf, B.; Gonen, R. Biosorption potential of cerium ions using Spirulina biomass. J. Rare Earths 2016, 34, 644–652. [Google Scholar] [CrossRef]
- Ahmed, I.M.; Gamal, R.; Helal, A.A.; Abo-El-Enein, S.A.; Helal, A.A. Kinetic sorption study of Cerium (IV) on magnetite nanoparticles. Part. Sci. Technol. 2017, 35, 643–652. [Google Scholar] [CrossRef]
- Torab-Mostaedi, M.; Asadollahzadeh, M.; Hemmati, A.; Khosravi, A. Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: Equilibrium, kinetic and thermodynamic studies. Res. Chem. Intermed. 2015, 41, 559–573. [Google Scholar] [CrossRef]
- Zhao, G.X.S.; Lee, J.L.; Chia, P.A. Unusual adsorption properties of microporous titanosilicate ETS-10 toward heavy metal lead. Langmuir 2003, 19, 1977–1979. [Google Scholar] [CrossRef]
- Zhai, Q.-Z.; Li, X.-D. Efficient removal of cadmium(II) with SBA-15 nanoporous silica: Studies on equilibrium, isotherm, kinetics and thermodynamics. Appl. Water Sci. 2019, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.; Hor, M.P.; Su, F.; Zhao, X.S. Competitive adsorption of Pb2+, Cu2+, and Cd2+ ions on microporous titanosilicate ETS-10. J. Colloid Interface Sci. 2005, 287, 178–184. [Google Scholar] [CrossRef]
- Nandanwar, S.U.; Coldsnow, K.; Utgikar, V.; Sabharwall, P.; Aston, D.E.; Zhang, Y. Synthesis and characterization of ETS-10: Supported hollow carbon nano-polyhedrons nanosorbent for adsorption of krypton at near ambient temperatures. Adsorption 2016, 22, 129–137. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, S.D.; Kwon, Y.J.; Kim, W.J. Adsorption behaviors of ETS-10 and its variant, ETAS-10 on the removal of heavy metals, Cu2+, Co2+, Mn2+ and Zn2+ from a waste water. Microporous Mesoporous Mater. 2006, 96, 157–167. [Google Scholar] [CrossRef]
- Da’na, E.; Sayari, A. Adsorption of heavy metals on amine-functionalized SBA-15 prepared by co-condensation: Applications to real water samples. Desalination 2012, 285, 62–67. [Google Scholar] [CrossRef]
- Mureseanu, M.; Reiss, A.; Stefanescu, I.; David, E.; Parvulescu, V.; Renard, G.; Hulea, V. Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere 2008, 73, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Bidhendi, M.E.; Nabi Bidhendi, G.R.; Mehrdadi, N.; Rashedi, H. Modified Mesoporous Silica (SBA-15) with Trithiane as a new effective adsorbent for mercury ions removal from aqueous environment. J. Environ. Health Sci. Eng. 2014, 12, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, S.; Fonseka, C.; Naidu, G.; Loganathan, P.; Moon, H.; Kandasamy, J.; Vigneswaran, S. Recovery of rare earth elements (Lu, Y) by adsorption using functionalized SBA-15 and MIL-101 (Cr). Chemosphere 2021, 281, 130869. [Google Scholar] [CrossRef]
- Thakkar, J.; Wissler, B.; Dudenas, N.; Yin, X.; Vailhe, M.; Bricker, J.; Zhang, X. Recovery of Critical Rare-Earth Elements Using ETS-10 Titanosilicate. Ind. Eng. Chem. Res. 2019, 58, 11121–11126. [Google Scholar] [CrossRef]
- Hartmann, M.; Vinu, A. Mechanical stability and porosity analysis of large-pore SBA-15 mesoporous molecular sieves by mercury porosimetry and organics adsorption. Langmuir 2002, 18, 8010–8016. [Google Scholar] [CrossRef]
- Lv, L.; Su, F.; Zhao, X.S. A reinforced study on the synthesis of microporous titanosilicate ETS-10. Microporous Mesoporous Mater. 2004, 76, 113–122. [Google Scholar] [CrossRef]
- Anderson, M.W.; Terasaki, O.; Ohsuna, T.; Philippou, A.; MacKay, S.P.; Ferreira, A.; Rocha, J.; Lidin, S. Structure of the microporous titanosilicate ETS-10. Nature 1994, 367, 347–351. [Google Scholar] [CrossRef]
- Rocha, J.; Anderson, M.W. Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides. Eur. J. Inorg. Chem. 2000, 2000, 801–818. [Google Scholar] [CrossRef]
- Donohue, M.D.; Aranovich, G.L. Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 1998, 76–77, 137–152. [Google Scholar] [CrossRef]
- Gobara, H.M.; Elsalamony, R.A.; Hassan, S.A. Sonophotocatalytic degradation of eriochrome black-T dye in water using Ti grafted SBA-15. J. Porous Mater. 2016, 23, 1311–1318. [Google Scholar] [CrossRef]
- Das, T.K.; Chandwadkar, A.J.; Budhkar, A.P.; Sivasanker, S. Studies on the synthesis of ETS-10: II. Use of organic templates. Microporous Mater. 1996, 5, 401–410. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M.; Ko, C.H.; Ryoo, R. Characterization of the porous structure of SBA-15. Chem. Mater. 2000, 12, 1961–1968. [Google Scholar] [CrossRef]
- Halamová, D.; Badaničová, M.; Zeleňák, V.; Gondová, T.; Vainio, U. Naproxen drug delivery using periodic mesoporous silica SBA-15. Appl. Surf. Sci. 2010, 256, 6489–6494. [Google Scholar] [CrossRef] [Green Version]
- Kapeluszna, E.; Kotwica, Ł.; Różycka, A.; Gołek, Ł. Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: Microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis. Constr. Build. Mater. 2017, 155, 643–653. [Google Scholar] [CrossRef]
- Bhaumik, A.; Samanta, S.; Mal, N.K. Highly active disordered extra large pore titanium silicate. Microporous Mesoporous Mater. 2004, 68, 29–35. [Google Scholar] [CrossRef]
- Liu, Y.; Du, H.; Xu, Y.; Ding, H.; Pang, W.; Yue, Y. Synthesis and characterization of a novel microporous titanosilicate with a structure of penkvilksite-1M. Microporous Mesoporous Mater. 1999, 28, 511–517. [Google Scholar] [CrossRef]
- Awual, M.R.; Yaita, T.; Shiwaku, H. Design a novel optical adsorbent for simultaneous ultra-trace cerium(III) detection, sorption and recovery. Chem. Eng. J. 2013, 228, 327–335. [Google Scholar] [CrossRef]
- Lv, L.; Tsoi, G.; Zhao, X.S. Uptake equilibria and mechanisms of heavy metal ions on microporous titanosilicate ETS-10. Ind. Eng. Chem. Res. 2004, 43, 7900–7906. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; Pergamon Press: New York, NY, USA, 1966. [Google Scholar]
- Dashtian, K.; Zare-Dorabei, R. Synthesis and characterization of functionalized mesoprous SBA-15 decorated with Fe3O4 nanoparticles for removal of Ce(III) ions from aqueous solution: ICP–OES detection and central composite design optimization. J. Colloid Interface Sci. 2017, 494, 114–123. [Google Scholar] [CrossRef]
- Zhao, L.; Azhar, M.R.; Li, X.; Duan, X.; Sun, H.; Wang, S.; Fang, X. Adsorption of cerium (III) by HKUST-1 metal-organic framework from aqueous solution. J. Colloid Interface Sci. 2019, 542, 421–428. [Google Scholar] [CrossRef]
- Kütahyali, C.; Şert, S.; Çetinkaya, B.; Inan, S.; Eral, M. Factors affecting lanthanum and cerium biosorption on Pinus brutia leaf powder. Sep. Sci. Technol. 2010, 45, 1456–1462. [Google Scholar] [CrossRef]
- Jabeen, S.; Khan, M.S.; Khattak, R.; Zekker, I.; Burlakovs, J.; Dc Rubin, S.S.; Ghangrekar, M.M.; Kallistova, A.; Pimenov, N.; Zahoor, M.; et al. Palladium-supported zirconia-based catalytic degradation of rhodamine-b dye from wastewater. Water 2021, 13, 1522. [Google Scholar] [CrossRef]
- Umar, A.; Khan, M.S.; Alam, S.; Zekker, I.; Burlakovs, J.; Dc Rubin, S.S.; Bhowmick, G.D.; Kallistova, A.; Pimenov, N.; Zahoor, M. Article synthesis and characterization of Pd-Ni bimetallic nanoparticles as efficient adsorbent for the removal of acid orange 8 present in wastewater. Water 2021, 13, 1095. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Abdusamadzoda, D.; Grozdov, D.; Shvetsova, M. Efficient removal of metals from synthetic and real galvanic zinc-containing effluents by Brewer’s yeast Saccharomyces cerevisiae. Materials 2020, 13, 3624. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Vergel, K.; Popova, N.; Artemiev, G.; Safonov, A. Metal removal from nickel-containing effluents using mineral–organic hybrid adsorbent. Materials 2020, 13, 4462. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Dudarko, O.; Kobylinska, N.; Mishra, B.; Kessler, V.G.; Tripathi, B.P.; Seisenbaeva, G.A. Facile strategies for synthesis of functionalized mesoporous silicas for the removal of rare-earth elements and heavy metals from aqueous systems. Microporous Mesoporous Mater. 2021, 315, 110919. [Google Scholar] [CrossRef]
- Gao, S.; Luo, T.; Zhou, Q.; Luo, W. A novel and efficient method on the recovery of nanosized CeO2 in Ce3+ wastewater remediation using modified sawdust as adsorbent. J. Colloid Interface Sci. 2018, 512, 629–637. [Google Scholar] [CrossRef]
- Farahmand, E. Adsorption of Cerium (IV) from Aqueous Solutions Using Activated Carbon Developed from Rice Straw. Open J. Geol. 2016, 6, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Fakhri, H.; Mahjoub, A.R.; Aghayan, H. Effective removal of methylene blue and cerium by a novel pair set of heteropoly acids based functionalized graphene oxide: Adsorption and photocatalytic study. Chem. Eng. Res. Des. 2017, 120, 303–315. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng. 1998, 76, 822–827. [Google Scholar] [CrossRef]
- Betiha, M.A.; Moustafa, Y.M.; El-Shahat, M.F.; Rafik, E. Polyvinylpyrrolidone-Aminopropyl-SBA-15 schiff Base hybrid for efficient removal of divalent heavy metal cations from wastewater. J. Hazard. Mater. 2020, 397, 122675. [Google Scholar] [CrossRef] [PubMed]
- Botelho Junior, A.B.; Pinheiro, É.F.; Espinosa, D.C.R.; Tenório, J.A.S.; Baltazar, M.d.P.G. Adsorption of lanthanum and cerium on chelating ion exchange resins: Kinetic and thermodynamic studies. Sep. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Li, T.; Zhou, C. Physicochemical studies toward the removal of Zn(ii) and Pb(ii) ions through adsorption on montmorillonite-supported zero-valent iron nanoparticles. RSC Adv. 2015, 5, 29859–29871. [Google Scholar] [CrossRef]
- Inyinbor, A.A.; Adekola, F.A.; Olatunji, G.A. Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour. Ind. 2016, 15, 14–27. [Google Scholar] [CrossRef] [Green Version]
Model | Parameters | Silica SBA-15 | Titanosilicate ETS-10 |
---|---|---|---|
Langmuir | qm, mg/g | 68 | 162 |
b, L/mg | 0.018 | 0.008 | |
RL | 0.35–0.84 | 0.55–0.92 | |
R2 | 0.99 | 0.96 | |
Freundlich | KF, mg/g | 3.5 | 2.5 |
1/n | 0.55 | 0.72 | |
R2 | 0.97 | 0.94 | |
Temkin | aT, L/g | 0.16 | 0.09 |
bT, kJ/mol | 0.15 | 0.17 | |
R2 | 0.99 | 0.95 |
Sorbent | q, mg/g | Reference |
---|---|---|
Silica SBA-15 | 68 | Present study |
Titanosilicate ETS-10 | 162 | Present study |
Fe3O4 | 160 | [4] |
Fe3O4/HA | 260 | [4] |
Grapefruit peel | 159.30 | [5] |
Spirulina biomass endemic | 18.1 | [3] |
Spirulina biomass commercial | 38.2 | [3] |
modified sawdust | 153.9 | [40] |
Activated Carbon Developed from Rice Straw | 4.13 | [41] |
Functionalized graphene oxide compounds | 96.15 and 90.90 | [42] |
Parameter | Silica SBA-15 | Titanosilicate ETS-10 | |
---|---|---|---|
qexp, mg/g | 9.2 | 9.4 | |
PFO | qe,cal, mg/g | 9.25 | 9.4 |
k1, min−1 | 0.5 | 3.1 | |
R2 | 0.97 | 0.99 | |
PSO | qe,cal, mg/g | 9.26 | 9.46 |
k2, g/mg·min | 3.82 | 2 | |
R2 | 0.99 | 0.99 | |
EM | α, mg/g·min | 1.06 | 2.6 |
β, g/min | 11.2 | 9.4 | |
R2 | 0.89 | 0.88 | |
IPM | kdiff | 0.78 | 0.81 |
Cint | 5.9 | 5.4 | |
R2 | 0.19 | 0.2 |
Sorbent | ∆G°, kJ/mol | ∆H°, kJ/mol | ∆S°, J/mol·K | R2 | |||
---|---|---|---|---|---|---|---|
293 K | 303 K | 313 K | 323 K | ||||
Silica SBA-15 | −15.0 | −15.5 | −16.0 | −16.5 | −0.7 | 49 | 0.93 |
Titanosilicate ETS-10 | −15.1 | −14.2 | −13.4 | −12.5 | −39.9 | −84 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinicovscaia, I.; Yushin, N.; Humelnicu, D.; Grozdov, D.; Ignat, M.; Demcak, S.; Humelnicu, I. Sorption of Ce(III) by Silica SBA-15 and Titanosilicate ETS-10 from Aqueous Solution. Water 2021, 13, 3263. https://doi.org/10.3390/w13223263
Zinicovscaia I, Yushin N, Humelnicu D, Grozdov D, Ignat M, Demcak S, Humelnicu I. Sorption of Ce(III) by Silica SBA-15 and Titanosilicate ETS-10 from Aqueous Solution. Water. 2021; 13(22):3263. https://doi.org/10.3390/w13223263
Chicago/Turabian StyleZinicovscaia, Inga, Nikita Yushin, Doina Humelnicu, Dmitrii Grozdov, Maria Ignat, Stefan Demcak, and Ionel Humelnicu. 2021. "Sorption of Ce(III) by Silica SBA-15 and Titanosilicate ETS-10 from Aqueous Solution" Water 13, no. 22: 3263. https://doi.org/10.3390/w13223263
APA StyleZinicovscaia, I., Yushin, N., Humelnicu, D., Grozdov, D., Ignat, M., Demcak, S., & Humelnicu, I. (2021). Sorption of Ce(III) by Silica SBA-15 and Titanosilicate ETS-10 from Aqueous Solution. Water, 13(22), 3263. https://doi.org/10.3390/w13223263