Simultaneous Recovery of Struvite and Irrigation Water for Agricultural Purposes Obtained from Dewatering Liquor through Electrodialysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dewatering Liquor (DL)—Graphical Representation of the Procedure
2.2. DL Samples
2.3. Electrodialysis (ED)
2.4. Struvite Recovery
2.5. Heavy Metal and Dissolved Solids (DS) Analysis
3. Results and Discussion
3.1. Electrodialysis (ED)
3.2. Struvite Recovery
3.3. Heavy Metal, Phosphate, and Dissolved Solids (DS) Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosemarin, A.; Macura, B.; Carolus, J.; Barquet, K.; Ek, F.; Järnberg, L.; Lorick, D.; Johannesdottir, S.; Pedersen, S.M.; Koskiaho, J.; et al. Circular nutrient solutions for agriculture and wastewater—A review of technologies and practices. Curr. Opin. Environ. Sustain. 2020, 45, 78–91. [Google Scholar] [CrossRef]
- Rufí-Salís, M.; Brunnhofer, N.; Petit-Boix, A.; Gabarrell, X.; Guisasola, A.; Villalba, G. Can wastewater feed cities? Determining the feasibility and environmental burdens of struvite recovery and reuse for urban regions. Sci. Total Environ. 2020, 737, 139783. [Google Scholar] [CrossRef]
- Li, B.; Li, P.; Zeng, X.C.; Yu, W.; Huang, Y.F.; Wang, G.Q.; Young, B.R. Assessing the sustainability of phosphorus use in China: Flow patterns from 1980 to 2015. Sci. Total Environ. 2020, 704, 135305. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Yin, Z.; Chen, Q.; Zhao, C.; Fu, Y.; Li, J.; Feng, Y.; Li, L. A new approach to removing and recovering phosphorus from livestock wastewater using dolomite. Chemosphere 2020, 255, 127005. [Google Scholar] [CrossRef]
- Tong, T.; Elimelech, M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2016, 50, 6846–6855. [Google Scholar] [CrossRef] [PubMed]
- EC MEMO 14/377. The European Critical Raw Materials Review. European Commission. 2014. Available online: https://ec.europa.eu/commission/presscorner/detail/en/MEMO_14_377 (accessed on 29 November 2020).
- Mavhungu, A.; Masindi, V.; Foteinis, S.; Mbaya, R.; Tekere, M.; Kortidis, I.; Chatzisymeon, E. Advocating circular economy in wastewater treatment: Struvite formation and drinking water reclamation from real municipal effluents. J. Environ. Chem. Eng. 2020, 8, 103957. [Google Scholar] [CrossRef]
- Munir, M.T.; Li, B.; Mardon, I.; Young, B.R.; Baroutian, S. Integrating wet oxidation and struvite precipitation for sewage sludge treatment and phosphorus recovery. J. Clean. Prod. 2019, 232, 1043–1052. [Google Scholar] [CrossRef]
- Cai, Y.; Han, Z.; Lin, X.; Duan, Y.; Du, J.; Ye, Z.; Zhu, J. Study on removal of phosphorus as struvite from synthetic wastewater using a pilot-scale electrodialysis system with magnesium anode. Sci. Total Environ. 2020, 726, 138221. [Google Scholar] [CrossRef]
- De-Bashan, L.E.; Bashan, Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res. 2004, 38, 4222–4246. [Google Scholar] [CrossRef] [PubMed]
- Kaszycki, P.; Głodniok, M.; Petryszak, P. Towards a bio-based circular economy in organic waste management and wastewater treatment—the Polish perspective. New Biotechnol. 2021, 61, 80–89. [Google Scholar] [CrossRef]
- Sena, M.; Seib, M.; Noguera, D.R.; Hicks, A. Environmental impacts of phosphorus recovery through struvite precipitation in wastewater treatment. J. Clean. Prod. 2021, 280, 124222. [Google Scholar] [CrossRef]
- Ghosh, S.; Lobanov, S.; Lo, V.K. An overview of technologies to recover phosphorus as struvite from wastewater: Advantages and shortcomings. Environ. Sci. Pollut. Res. 2019, 26, 19063–19077. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Li, J.; Li, Y.; Liu, Y.; Wang, F.; Zhao, J. Adsorption and precipitation behaviors of zinc, copper and tetracycline with struvite products obtained by phosphorus recovery from swine wastewater. J. Environ. Chem. Eng. 2020, 8, 104488. [Google Scholar] [CrossRef]
- European Parliament. Regulation 2019/1009/EC of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003; European Parliament: Brussels, Belgium, 2019; Available online: http://data.europa.eu/eli/reg/2019/1009/oj (accessed on 8 October 2021).
- Thant Zin, M.M.; Kim, D.-J. Simultaneous recovery of phosphorus and nitrogen from sewage sludge ash and food wastewater as struvite by Mg-biochar. J. Hazard. Mater. 2021, 403, 123704. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, B.; Li, J.; Zhang, P.; Yu, W.; Zhao, N.; Guo, G.; Young, B. Influence of process parameters on the heavy metal (Zn2+, Cu2+ and Cr3+) content of struvite obtained from synthetic swine wastewater. Environ. Pollution. 2019, 245, 658–665. [Google Scholar] [CrossRef]
- Sýkorová, E.; Wanner, J.; Beneš, O. Analysis of phosphorus recovery by struvite precipitation from sludge water in selected wastewater treatment plants. Chemické Listy 2014, 108, 610–614. [Google Scholar]
- Muhmood, A.; Lu, J.; Dong, R.; Wu, S. Formation of struvite from agricultural wastewaters and its reuse on farmlands: Status and hindrances to closing the nutrient loop. J. Environ. Manag. 2019, 230, 1–13. [Google Scholar] [CrossRef] [PubMed]
- ČSN 75 7143. Water Quality for Irrigation; Czech Standards Institute: Prague, Czech Republic, 1992.
- ČSN EN ISO 7027-1. Water Quality—Determination of Turbidity—Part 1: Quantitative Methods; Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2017.
- ČSN EN ISO 11905-1. Water Quality—Determination of Nitrogen—Part 1: Method Using Oxidative Digestion with Peroxodisulfate; Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2017.
- ČSN EN ISO 6878. Water Quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method; Czech Standards Institute: Prague, Czech Republic, 2005.
- ČSN EN ISO 15587-2. Water Quality—Digestion for the Determination of Selected Elements in Water—Part2: Nitric Acid Digestion; Czech Standards Institute: Prague, Czech Republic, 2004.
- ČSN ISO 6060. Water Quality—Determination of the Chemical Oxygen Demand; Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2009.
- ČSN 75 7346 Water Quality—Determination of Dissolved Solids; Czech Standards Institute: Prague, Czech Republic, 2002.
- Richard, W.B. Membrane Technology and Research, 3rd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2012; p. 588. ISBN 978-1-118-35969-3. [Google Scholar]
- Meira, R.C.S.; Paz, S.A.P.; Corrêa, J.A.M. XRD-Rietveld analysis as a tool for monitoring struvite analog precipitation from wastewater: P, Mg, N and K recovery for fertilizer production. J. Mater. Res. Technol. 2020, 9, 15202–15213. [Google Scholar] [CrossRef]
- Heraldy, E.; Rahmawati, F.; Putra, H.; Putra, D.P. Application of quantitative XRD on the precipitation of struvite from Brine Water. IOP Conf. Ser. Mater. Sci. Eng. 2017, 172, 012015. [Google Scholar] [CrossRef] [Green Version]
- Stanclik, A.; Hutnik, N.; Matynia, A.; Gluzinska, J.; Piotrowski, K. Recovery of phosphate (V) ions from liquid waste solutions containing organic impurities. Chemic Sci.-Tech.-Market 2011, 65, 675–686. [Google Scholar]
- Guadie, A.; Yesigat, A.; Gatew, S.; Worku, A.; Liu, W.; Ajibade, F.O.; Wang, A. Evaluating the health risks of heavy metals from vegetables grown on soil irrigated with untreated and treated wastewater in Arba Minch, Ethiopia. Sci. Total. Environ. 2020, 761, 143302. [Google Scholar] [CrossRef] [PubMed]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated wastewater reuse for irrigation: Pros and cons. Sci. Total. Environ. 2021, 760, 144026. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Sample 1 (March 2020) | Sample 2 (April 2020) | Sample 3 (May 2020) |
---|---|---|---|---|
pH | (-) | 8.12 | 8.23 | 8.01 |
Conductivity | (mS/cm) | 8.02 | 7.94 | 8.10 |
Temperature | (°C) | 20.60 | 20 | 20.10 |
Turbidity | (NTU) | 255 | 260 | 250 |
Ntotal | (mg/L) | 1540 | 1380 | 1700 |
NH4+ | (mg/L) | 1112 | 1118 | 1106 |
PO43- | (mg/L) | 420 | 423 | 417 |
Mg2+ | (mg/L) | 21 | 19 | 25 |
CODCr | (mg/L) | 319 | 323 | 315 |
DS105 | (mg/L) | 2595 | 2417 | 2803 |
Parameter | Value |
---|---|
Effective area of ED module | 1344 cm2 |
Effective area of one membrane | 64 cm2 |
Number of membrane pairs in ED module | 10 pcs |
Anion-exchange membrane RALEX® AM(H)-PES | 10 pcs |
Cation-exchange membrane RALEX® CM(H)-PES | 11 pcs |
PP spacer (thickness) | 20 pcs (0.8 mm) |
Electrodes (anode, cathode) Ti+Pt | 2 pcs |
Hydraulic connection inner/outer | Ø 6/8 mm |
ED module dimension (l × w × h) | 128 mm × 90 mm × 250 mm |
ED module weight | 1.5 kg |
Operating voltage (on membrane pair) | 1–1.2 V |
Max. voltage | 30 V |
Max. electrical current | 3 A |
Operating flow rate of diluate, concentrate | 45–65 L/h |
Operating flow rate of electrode solution | 50–60 L/h |
Operating temperature | 20–30 °C |
Sample 1 | Conductivity (mS/cm) | Sample 2 | Conductivity (mS/cm) | Sample 3 | Conductivity (mS/cm) |
---|---|---|---|---|---|
Input DL | 8.02 | Input DL | 7.94 | Input DL | 8.10 |
Concentrate | 15.23 | Concentrate | 15.08 | Concentrate | 15.60 |
Diluate | 0.33 | Diluate | 0.30 | Diluate | 0.38 |
Molar Ratio | PO43−: Mg2+ 1:1 | PO43−: Mg2+ 1:1.3 | ||
---|---|---|---|---|
Phase (%) | Struvite | Hazenite | Struvite | Hazenite |
Sample 1 | 95 | 5 | 97 | 3 |
Sample 2 | 93 | 7 | 97 | 3 |
Sample 3 | 94 | 6 | 98 | 2 |
Sample 1 | pH (-) | t (°C) | Cd (mg/L) | Co (mg/L) | Crtotal(mg/L) | Cu (mg/L) | Ni (mg/L) | Pb (mg/L) | Zn (mg/L) | Fe (mg/L) |
Input DL | 8.12 | 20.60 | <0.01 | <0.01 | <0.01 | 0.042 | 0.029 | 0.003 | 0.109 | 1.570 |
Concentrate | 7.98 | 20.00 | <0.01 | <0.01 | <0.01 | 0.032 | 0.029 | 0.008 | 0.198 | 2.160 |
Diluate | 5.46 | 20.00 | <0.01 | <0.01 | <0.01 | 0.027 | 0.022 | 0.002 | 0.109 | 1.460 |
Sample 2 | pH (-) | t (°C) | Cd (mg/L) | Co (mg/L) | Crtotal(mg/L) | Cu (mg/L) | Ni (mg/L) | Pb (mg/L) | Zn (mg/L) | Fe (mg/L) |
Input DL | 8.23 | 20.00 | <0.01 | <0.01 | <0.01 | 0.039 | 0.034 | 0.003 | 0.112 | 1.548 |
Concentrate | 8.01 | 20.00 | <0.01 | <0.01 | <0.01 | 0.033 | 0.031 | 0.008 | 0.195 | 2.165 |
Diluate | 5.84 | 20.00 | <0.01 | <0.01 | <0.01 | 0.025 | 0.025 | 0.002 | 0.111 | 1.488 |
Sample 3 | pH (-) | t (°C) | Cd (mg/L) | Co (mg/L) | Crtotal (mg/L) | Cu (mg/L) | Ni (mg/L) | Pb (mg/L) | Zn (mg/L) | Fe (mg/L) |
Input DL | 8.01 | 20.10 | <0.01 | <0.01 | <0.01 | 0.045 | 0.024 | 0.003 | 0.106 | 1.556 |
Concentrate | 7.95 | 20.10 | <0.01 | <0.01 | <0.01 | 0.031 | 0.027 | 0.008 | 0.201 | 2.155 |
Diluate | 5.08 | 20.10 | <0.01 | <0.01 | <0.01 | 0.029 | 0.019 | 0.002 | 0.107 | 1.432 |
Input DL | Concentrate | Diluate | Filtrate After Precipitation Molar Ratio 1:1 | Filtrate After Precipitation Molar Ratio 1:1.3 | |
---|---|---|---|---|---|
(mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | |
Sample 1 | 420 | 720 | 30 | 3.12 | 6.08 |
Sample 2 | 423 | 725 | 31 | 3.54 | 6.71 |
Sample 3 | 417 | 710 | 25 | 2.75 | 6.25 |
Parameter | Unit | Diluate 1 | Diluate 2 | Diluate 3 | Standard ČSN 75 7143 | ||
---|---|---|---|---|---|---|---|
Category I * | Category II ** | Category III *** | |||||
pH | (-) | 5.46 | 5.84 | 5.08 | 5 to 8.5 | 4.5 to 9 | <4.5 to >9 |
t | (°C) | 20.00 | 20.00 | 20.10 | 35 | 40 | >40 |
DS105 | (mg/L) | 176.00 | 182.25 | 150.84 | 800 | 1,200 | >1,200 |
Cd | (mg/L) | <0.01 | <0.01 | <0.01 | 0.01 | 0.02 | >0.02 |
Co | (mg/L) | <0.01 | <0.01 | <0.01 | 0.5 | 1 | >1 |
Crtotal | (mg/L) | <0.01 | <0.01 | <0.01 | 0.2 | 0.5 | >0.5 |
Cu | (mg/L) | 0.027 | 0.025 | 0.029 | 0.5 | 2 | >2 |
Ni | (mg/L) | 0.022 | 0.025 | 0.019 | 0.1 | 0.2 | >0.2 |
Pb | (mg/L) | 0.002 | 0.002 | 0.002 | 0.05 | 0.1 | >0.1 |
Zn | (mg/L) | 0.109 | 0.111 | 0.107 | 1 | 2 | >2 |
Fe | (mg/L) | 1.460 | 1.488 | 1.432 | 10 | 100 | >100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malíková, P.; Calábková, K.; Heviánková, S.; Halfar, J.; Kotalová, I.; Valová, B. Simultaneous Recovery of Struvite and Irrigation Water for Agricultural Purposes Obtained from Dewatering Liquor through Electrodialysis. Water 2021, 13, 3280. https://doi.org/10.3390/w13223280
Malíková P, Calábková K, Heviánková S, Halfar J, Kotalová I, Valová B. Simultaneous Recovery of Struvite and Irrigation Water for Agricultural Purposes Obtained from Dewatering Liquor through Electrodialysis. Water. 2021; 13(22):3280. https://doi.org/10.3390/w13223280
Chicago/Turabian StyleMalíková, Petra, Katrin Calábková, Silvie Heviánková, Jan Halfar, Iva Kotalová, and Barbora Valová. 2021. "Simultaneous Recovery of Struvite and Irrigation Water for Agricultural Purposes Obtained from Dewatering Liquor through Electrodialysis" Water 13, no. 22: 3280. https://doi.org/10.3390/w13223280
APA StyleMalíková, P., Calábková, K., Heviánková, S., Halfar, J., Kotalová, I., & Valová, B. (2021). Simultaneous Recovery of Struvite and Irrigation Water for Agricultural Purposes Obtained from Dewatering Liquor through Electrodialysis. Water, 13(22), 3280. https://doi.org/10.3390/w13223280