Scour Hole Development in Natural Cohesive Bed Sediment around Cylinder-Shaped Piers Subjected to Varying Sequential Flow Events
Abstract
:1. Introduction
2. Review: Riverbed Scour Depth Equations for Bridge Piers in Cohesive Soils
3. Experimental Set-Up and Procedures
3.1. Flume Construction
3.2. Properties of Natural Cohesive Sediment
3.3. Sediment Bed Preparation
3.4. Experimental Procedures
4. Results and Discussion
4.1. Evolution of Scour Depth around Cylinder
4.2. Influence of Multi-Flow on Scour Propagation
4.3. Influence of Stress History on Scour Propagation
4.4. Comparison between Different Scour Depth Equations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shirole, A.; Holt, R. Planning for a comprehensive bridge safety assurance program. Transp. Res. Rec. 1991, 1290, 39–50. [Google Scholar]
- Wardhana, K.; Hadipriono, F.C. Analysis of recent bridge failures in the United States. J. Perform. Constr. Facil. 2003, 17, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Cook, W.; Barr, P.J.; Halling, M.W. Bridge failure rate. J. Perform. Constr. Facil. 2015, 29, 04014080. [Google Scholar] [CrossRef]
- FHWA (Federal Highway Administration). National Bridge Inventory. 2012. Available online: https://www.fhwa.dot.gov/bridge/nbi.cfm (accessed on 6 June 2021).
- Briaud, J.L.; Ting, F.C.K.; Chen, H.C.; Gudavalli, R.; Perugu, S.; Wei, G. SRICOS: Prediction of scour rate in cohesive soils at bridge piers. J. Geotech. Geoenviron. Eng. 1999, 125, 237–246. [Google Scholar] [CrossRef]
- Molinas, A.; Hosny, M.M. Experimental study on scour around circular piers in cohesive soil. In Publication No. FHWA-RD-99-186, Federal Highway Administration; U.S. Department of Transportation: McLean, VA, USA, 1999. [Google Scholar]
- Ting, F.C.K.; Briaud, J.L.; Chen, H.C.; Gudavalli, R.; Perugu, S.; Wei, G. Flume tests for scour in clay at circular piers. J. Hydraul. Eng. 2001, 127, 969–978. [Google Scholar] [CrossRef]
- Ansari, S.A.; Kothyari, U.C.; Ranga Raju, K.G. Influence of cohesion on scour around bridge piers. J. Hydraul. Res. 2002, 40, 717–729. [Google Scholar] [CrossRef]
- Debnath, K.; Chaudhuri, S. Laboratory experiments on local scour around cylinder for clay and clay–sand mixed bed. Eng. Geol. 2010, 111, 51–61. [Google Scholar] [CrossRef]
- Debnath, K.; Chaudhuri, S. Bridge pier scour in clay–sand mixed sediments at near-threshold velocity for sand. J. Hydraul. Eng. 2010, 136, 597–609. [Google Scholar] [CrossRef]
- Debnath, K.; Chaudhuri, S. Local scour around noncircular piers in clay-sand cohesive sediment beds. Eng. Geol. 2012, 151, 1–14. [Google Scholar] [CrossRef]
- Kothyari, U.C.; Kumar, A.; Jain, R.K. Influence of cohesion on river bed scour in wake region of piers. J. Hydraul. Eng. 2014, 14, 1–13. [Google Scholar] [CrossRef]
- Hamidifar, H.; Omid, M.H. Local scour of cohesive beds downstream of a rigid apron. Can. J. Civ. Eng. 2017, 44, 935–944. [Google Scholar] [CrossRef]
- Grabowski, R.C.; Droppo, I.G.; Wharton, G. Erodibility of cohesive sediment: The importance of sediment properties. Earth Sci. Rev. 2011, 105, 101–120. [Google Scholar] [CrossRef]
- Papanicolaou, A.N.; Wilson, C.G.; Tsakiris, A.G.; Sutarto, T.E.; Bertrand, F.; Rinaldi, M.; Dey, S.; Langendoen, E. Understanding mass fluvial erosion along a bank profile: Using PEEP technology for Quantifying Retreat Lengths and Identifying Event Timing. Earth Surf. Process Landf. 2017, 42, 1717–1732. [Google Scholar] [CrossRef]
- Briaud, J.L.; Chen, H.C.; Kwak, K.W.; Han, S.W.; Ting, F.C.K. Multiflood and multilayer method for scour rate prediction at bridge piers. J. Geotech. Geoenviron. Eng. 2001, 127, 114–125. [Google Scholar] [CrossRef]
- Mahalder, B.; Schwartz, J.S.; Palomino, A.M.; Zirkle, J. Relationships between physical-geochemical soil properties and erodibility of streambanks among different physiographic provinces of Tennessee, USA. Earth Surf. Process Landf. 2018, 43, 401–416. [Google Scholar] [CrossRef]
- Hosny, M.M. Experimental Study of Local Scour around Circular Bridge Piers in Cohesive Soils. Ph.D. Dissertation, Civil Engineering Department, Colorado State University, Fort Collins, CO, USA, 1995. [Google Scholar]
- Melville, B.M.; Cheiw, Y.M. Time scale for local scour at bridge piers. J. Hydraul. Eng. 1999, 125, 59. [Google Scholar] [CrossRef]
- Kwak, K. Prediction of Scour Depth Versus Time for Bridge Piers in Cohesive Soils in the Case of Multi-Flood and Layered Soil Systems. Ph.D. Dissertation, Department of Civil Engineering, Texas A&M University, College Station, TX, USA, 2000. [Google Scholar]
- Devi, Y.S.; Barbhuiya, A.K. Bridge pier scour in cohesive soil: A review. Sadhana 2017, 42, 1803–1819. [Google Scholar] [CrossRef]
- Gudavalli, R.S. Prediction Model for Scour Rate around Bridge Piers in Cohesive Soil on the Basis of Flume Tests. Ph.D. Dissertation, Civil Engineering Department, Texas A&M University, College Station, TX, USA, 1997. [Google Scholar]
- Black, K.S.; Tolhurst, T.J.; Paterson, D.M.; Hagerthey, S.E. Working with natural cohesive sediments. J. Hydraul. Eng. ASCE 2002, 128, 2–8. [Google Scholar] [CrossRef]
- Chang, W.Y.; Lai, J.S.; Yen, C.L. Evolution of Scour Depth at Circular Bridge Piers. J. Hydraul. Eng. 2004, 130, 905–913. [Google Scholar] [CrossRef]
- Pizarro, A.; Tubaldi, E. Quantification of Modelling Uncertainties in Bridge Scour Risk Assessment under Multiple Flood Events. Geosciences 2019, 9, 445. [Google Scholar] [CrossRef] [Green Version]
- Simarro, G.; Fael, C.M.S.; Cardoso, A.H. Estimating Equilibrium Scour Depth at Cylindrical Piers in Experimental Studies. J. Hydraul. Eng. 2011, 137, 1089–1093. [Google Scholar] [CrossRef]
- Liang, B.; Du, S.; Pan, X.; Zhang, L. Local scour for vertical piles in steady currents: Review of mechanisms, influencing factors and empirical equations. J. Mar. Sci. Eng. 2020, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Wolman, M.G. Factors influencing erosion of a cohesive river bank. Am. J. Sci. 1959, 257, 204–216. [Google Scholar] [CrossRef]
- Costa, J.E.; O’Connor, J.E. Geomorphically effective floods. In Natural and Anthropogenic Influences in Fluvial Geomorphology; Geophysical Mono-graph 89: The Wolman Volume; Costa, J.E., Miller, A.J., Potter, K.W., Wilcock, P.R., Eds.; American Geophysical Union: Washington, DC, USA, 1995; pp. 45–56. [Google Scholar]
- Julian, J.P.; Torres, R. Hydraulic erosion of cohesive riverbanks. Geomorphology 2006, 76, 193–206. [Google Scholar] [CrossRef]
- Keaton, J.R.; Mishra, S.K.; Clopper, P.E. Scour at bridge foundations on rock. In National Cooperative Highway Research Program (NCHRP); Report 717; Transportation Research Board of National Academics: Washington, DC, USA, 2012. [Google Scholar]
- Briaud, J.L.; Chen, H.C.; Nurtjahyo, P. SRICOS-EFA method for complex piers in fine-grained soils. J. Geotech. Geoenvir. Eng. 2004, 130, 1180–1191. [Google Scholar] [CrossRef]
- Briaud, J.L.; Chen, H.C.; Chang, K.A.; Oh, S.J.; Chen, S.; Wang, J.; Li, Y.; Kwak, K.; Nartjaho, P.; Gudaralli, R.; et al. The SRICOS-EFA Method. Summary Report; Texas A&M University: College Station, TX, USA, 2011. [Google Scholar]
- US DOT FHWA. Evaluating Scour at Bridges, 5th, ed.; Hydraulic Engineering Circular No. 18, Publication No. FHWA-HIF-12-003; National Highway Institute: Arlington, VA, USA, 2012.
- Nezu, I.; Nakagawa, H. Turbulence in Open-Channel Flows; Balkema: Rotterdam, The Netherlands, 1993. [Google Scholar]
- Melville, B.W.; Raudkivi, A.J. Flow Characteristics in Local Scour at Bridge Piers. J. Hydraul. Res. 1977, 15, 373–380. [Google Scholar] [CrossRef]
- Ballio, F.; Bettoni, C.; Franzetti, S. A survey of time-averaged characteristics of laminar and turbulent horseshoe vortices. J. Fluid Eng. 1998, 120, 233–242. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Debnath, K. Observations on initiation of pier scour and equilibrium scour hole in cohesive sediments. J. Hydraul. Eng. 2013, 19, 27–37. [Google Scholar] [CrossRef]
- Li, J.; Qi, M.; Fuhrman, D.R.; Chen, Q. Influence of turbulent horseshoe vortex and associated bed shear stress on sediment transport in front of a cylinder. Exp. Therm. Fluid Sci. 2018, 97, 444–457. [Google Scholar] [CrossRef]
- Schlömer, O.; Herget, J.; Euler, T. Boundary condition control of fluvial obstacle mark formation—framework from a geoscientific perspective. Earth Surf. Process. Landf. 2020, 45, 189–206. [Google Scholar] [CrossRef]
- Mahalder, B.; Schwartz, J.S.; Palomino, A.M.; Zirkle, J. Estimating erodibility parameters for streambanks with cohesive soils using the mini jet test device: A comparison of field and computational methods. Water 2018, 10, 304. [Google Scholar] [CrossRef] [Green Version]
Properties | |
---|---|
Median grain size (µm) | 12.00 |
Liquid limit, LL | 29.00 |
Plastic limit, PL | 18.95 |
Plasticity index, PI | 10.05 |
In-situ moisture content (%) | 23.82 |
In-situ cohesion (kPa) | 67.56 |
Sand % | 3.00 |
Silt % | 72.00 |
Clay % | 25.00 |
Clay activity | 0.41 |
Specific surface area (m2/g) | 46.49 |
Sodium adsorption ration (SAR) | 5.34 |
Potassium intensity factor (KIF) | 0.07 |
Field bulk density, BD (g/cm3) | 2.04 |
Specific gravity | 2.658 |
Geometric standard deviation (σg) | 9.83 |
Experimental Set | Run No | Flow Condition | Flow Velocity (cm/s) | Duration (Hours) | BD (g/cm3) | WC |
---|---|---|---|---|---|---|
1 | 1 | Low | 81.25 | 36 | 2.04 | 25.31 |
2 | High | 102.20 | 36 | 2.03 | 25.31 | |
2 | 3 | Low | 79.98 | 12 | 1.84 | 30.16 |
4 | Medium | 89.41 | 12 | 1.84 | 30.16 | |
5 | High | 100.34 | 12 | 1.84 | 30.16 | |
3 | 6 | Low | 80.40 | 12 | 1.71 | 37.86 |
7 | Medium | 91.25 | 12 | 1.71 | 37.86 | |
8 | High | 100.60 | 12 | 1.71 | 37.86 | |
4 | 9 | High | 102.40 | 12 | 1.86 | 31.25 |
10 | Medium | 90.26 | 12 | 1.86 | 31.25 | |
11 | Low | 80.36 | 12 | 1.86 | 31.25 | |
5 | 12 | High | 101.40 | 12 | 1.69 | 38.12 |
13 | Medium | 89.52 | 12 | 1.69 | 38.12 | |
14 | Low | 80.10 | 12 | 1.69 | 38.12 | |
6 | 15 | Low | 81.25 | 36 | 1.81 | 31.24 |
7 | 16 | Low | 80.68 | 36 | 1.56 | 37.45 |
8 | 17 | High | 99.89 | 36 | 1.83 | 30.65 |
9 | 18 | High | 100.26 | 36 | 1.52 | 37.90 |
Run No | Location of Max Scour Depth | Observed Scour Depth around the Sides of Pier (cm) | Lateral Extent of Scour Hole around the Pier, XL (cm) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
After Each Flow | End of Test | 0° | 45° | 90° | 135° | 180° | 225° | 270° | 315° | 0° | 45° | 90° | 135° | 180° | 225° | 270° | 315° | |
1 | 90° | 90° | 0.50 | 1.40 | 2.20 | 2.00 | 1.20 | 0.60 | 0.60 | 0.30 | 4.57 | 7.62 | 11.43 | 5.08 | 10.16 | 3.81 | 4.10 | 4.57 |
2 | 90° | 270° | 0.50 | 2.90 | 3.10 | 3.00 | 1.10 | 1.50 | 1.00 | 1.60 | 3.60 | 7.25 | 9.80 | 10.26 | 17.00 | 12.25 | 5.60 | 6.25 |
3 | 90° | 90° | 0.20 | 0.60 | 0.70 | 0.40 | 0.40 | 0.60 | 0.60 | 0.40 | 2.60 | 2.51 | 2.60 | 3.50 | 6.60 | 3.60 | 2.40 | 3.20 |
4 | 270° | 1.00 | 1.30 | 0.90 | 1.10 | 0.30 | 0.80 | 1.40 | 1.00 | 2.70 | 3.20 | 3.00 | 3.50 | 7.12 | 4.00 | 3.60 | 3.50 | |
5 | 90° | 0.50 | 1.50 | 2.50 | 1.30 | 0.80 | 0.80 | 2.20 | 1.40 | 3.50 | 5.00 | 4.00 | 4.00 | 8.15 | 7.25 | 4.20 | 4.00 | |
6 | 45° | 45° | 1.70 | 3.10 | 1.90 | 0.20 | 0.50 | 0.50 | 1.70 | 1.20 | 3.00 | 4.50 | 3.00 | 4.50 | 4.00 | 8.00 | 6.00 | 3.00 |
7 | 270° | 0.40 | 0.70 | 0.90 | 1.30 | 0.50 | 1.00 | 1.50 | 0.90 | 3.00 | 4.50 | 6.00 | 8.00 | 14.00 | 9.00 | 7.00 | 5.50 | |
8 | 45° | 0.70 | 2.90 | 1.50 | 1.20 | 0.30 | 1.50 | 1.00 | 1.00 | 4.50 | 5.00 | 6.50 | 11.00 | 17.00 | 13.00 | 8.00 | 8.00 | |
9 | 270° | 270° | 1.30 | 1.50 | 2.00 | 1.80 | 1.50 | 1.50 | 3.00 | 2.00 | 1.50 | 2.00 | 3.00 | 9.00 | 12.00 | 4.00 | 3.00 | 2.00 |
10 | 90° | 0.20 | 1.00 | 1.00 | 1.10 | 0.90 | 1.60 | 0.60 | 1.00 | 4.00 | 2.50 | 5.00 | 14.00 | 23.00 | 8.00 | 6.00 | 4.00 | |
11 | 270° | 0.30 | 1.20 | 0.80 | 0.80 | 1.00 | 1.40 | 1.50 | 0.90 | 4.50 | 4.60 | 6.50 | 14.00 | 23.00 | 8.50 | 6.50 | 4.60 | |
12 | 270° | 90° | 2.10 | 3.50 | 4.00 | 0.70 | 1.20 | 2.00 | 4.30 | 4.20 | 4.00 | 2.00 | 2.60 | 6.00 | 9.00 | 8.00 | 6.00 | 5.00 |
13 | 90° | 0.20 | 0.70 | 1.10 | 1.00 | 0.30 | 1.00 | 1.00 | 1.00 | 5.00 | 2.00 | 3.50 | 11.00 | 11.00 | 9.00 | 7.00 | 6.00 | |
14 | 90° | 1.00 | 0.50 | 2.20 | 1.50 | 0.70 | 1.00 | 0.70 | 0.50 | 5.00 | 3.00 | 6.00 | 12.00 | 12.00 | 12.00 | 8.00 | 6.00 | |
15 | 90° and 270° | 1.10 | 2.10 | 3.20 | 1.20 | 1.50 | 2.10 | 3.20 | 2.20 | 3.50 | 6.20 | 8.00 | 10.80 | 11.30 | 8.60 | 6.20 | 5.00 | |
16 | 90° | 2.60 | 5.80 | 6.40 | 3.90 | 2.70 | 5.30 | 4.80 | 4.80 | 6.00 | 10.00 | 8.50 | 14.00 | 9.00 | 4.50 | 5.00 | 4.00 | |
17 | 90° and 270° | 2.00 | 3.70 | 5.30 | 4.10 | 2.60 | 3.00 | 5.30 | 3.40 | 6.00 | 5.50 | 11.50 | 18.50 | 13.00 | 12.00 | 8.00 | 5.00 | |
18 | 90° | 4.50 | 6.80 | 9.00 | 8.00 | 1.40 | 5.20 | 6.60 | 4.80 | 6.50 | 9.00 | 14.00 | 11.00 | 7.00 | 5.00 | 5.50 | 5.00 |
Run No | τc (Pa) | τs (kPa) | Water Temp (°C) | Pier Reynolds No. (Rp) | Froude No. (Fr) | Observed Max Scour from This Experiment after Each Flow (cm) | Total Maximum Scour after Each Experiment Set (cm) | Estimated Scour Depth (cm) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molinas and Hosny [6] | Briaud et al. [16] | Briaud et al. [33] | Debnath and Chaudhuri, [9] | HEC-18 [34] | ||||||||||
After Each Flow | Max Scour | After Each Flow | Max Scour | |||||||||||
1 | 6.65 | 1.36 | 16.50 | 75429 | 0.743 | 2.20 | 2.20 | 64.16 | 9.65 | 23.97 | 9.77 | 21.19 | 13.08 | 20.61 |
2 | 6.52 | 1.40 | 17.80 | 98087 | 0.934 | 3.10 | 3.10 | 103.38 | 11.01 | 28.32 | 11.23 | 29.85 | 9.82 | 22.75 |
3 | 3.85 | 0.93 | 15.60 | 72521 | 0.731 | 1.00 | 4.10 | 62.09 | 2.15 | 23.38 | 2.17 | 22.93 | 17.31 | 20.47 |
4 | 3.85 | 0.93 | 12.60 | 74759 | 0.817 | 1.30 | 78.28 | 3.13 | 23.84 | 3.17 | 26.82 | 15.21 | 21.48 | |
5 | 3.85 | 0.93 | 14.40 | 88127 | 0.917 | 2.50 | 99.51 | 4.89 | 26.46 | 5.04 | 31.34 | 13.31 | 22.57 | |
6 | 2.35 | 0.62 | 16.50 | 74640 | 0.735 | 3.10 | 6.70 | 62.76 | 2.18 | 23.81 | 2.20 | 25.81 | 29.51 | 20.52 |
7 | 2.35 | 0.62 | 12.10 | 75245 | 0.834 | 1.50 | 81.67 | 3.13 | 23.93 | 3.22 | 30.29 | 30.04 | 21.67 | |
8 | 2.35 | 0.62 | 10.90 | 80183 | 0.920 | 2.90 | 100.05 | 4.84 | 24.92 | 5.10 | 34.15 | 30.45 | 22.59 | |
9 | 3.86 | 0.96 | 9.60 | 78614 | 0.936 | 3.00 | 4.40 | 103.81 | 4.83 | 24.61 | 5.06 | 32.17 | 12.72 | 22.77 |
10 | 3.86 | 0.96 | 10.20 | 70509 | 0.825 | 2.00 | 79.84 | 3.11 | 22.97 | 3.18 | 27.16 | 14.73 | 21.57 | |
11 | 3.86 | 0.96 | 12.10 | 66265 | 0.735 | 1.40 | 62.70 | 2.16 | 22.08 | 2.17 | 23.07 | 16.85 | 20.51 | |
12 | 2.10 | 0.65 | 14.40 | 89058 | 0.927 | 4.70 | 7.30 | 101.71 | 4.90 | 26.64 | 5.12 | 34.99 | 29.58 | 22.67 |
13 | 2.10 | 0.65 | 11.60 | 72785 | 0.818 | 1.30 | 78.48 | 3.12 | 23.43 | 3.22 | 30.09 | 30.11 | 21.49 | |
14 | 2.10 | 0.65 | 13.40 | 68468 | 0.732 | 2.50 | 62.28 | 2.17 | 22.54 | 2.20 | 26.20 | 30.53 | 20.49 | |
15 | 3.67 | 0.96 | 10.20 | 63470 | 0.743 | 2.50 | 2.50 | 64.15 | 5.39 | 21.48 | 5.53 | 23.75 | 16.63 | 20.61 |
16 | 2.05 | 0.48 | 13.40 | 68964 | 0.738 | 3.20 | 3.20 | 63.22 | 5.46 | 22.65 | 5.66 | 26.54 | 30.33 | 20.55 |
17 | 3.83 | 1.10 | 12.60 | 83522 | 0.913 | 5.30 | 5.30 | 98.58 | 9.92 | 25.58 | 10.66 | 31.19 | 11.91 | 22.53 |
18 | 2.28 | 0.48 | 10.60 | 79228 | 0.917 | 9.00 | 9.00 | 99.34 | 10.42 | 24.73 | 11.79 | 34.15 | 30.46 | 22.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahalder, B.; Schwartz, J.S.; Palomino, A.M.; Zirkle, J. Scour Hole Development in Natural Cohesive Bed Sediment around Cylinder-Shaped Piers Subjected to Varying Sequential Flow Events. Water 2021, 13, 3289. https://doi.org/10.3390/w13223289
Mahalder B, Schwartz JS, Palomino AM, Zirkle J. Scour Hole Development in Natural Cohesive Bed Sediment around Cylinder-Shaped Piers Subjected to Varying Sequential Flow Events. Water. 2021; 13(22):3289. https://doi.org/10.3390/w13223289
Chicago/Turabian StyleMahalder, Badal, John S. Schwartz, Angelica M. Palomino, and Jon Zirkle. 2021. "Scour Hole Development in Natural Cohesive Bed Sediment around Cylinder-Shaped Piers Subjected to Varying Sequential Flow Events" Water 13, no. 22: 3289. https://doi.org/10.3390/w13223289
APA StyleMahalder, B., Schwartz, J. S., Palomino, A. M., & Zirkle, J. (2021). Scour Hole Development in Natural Cohesive Bed Sediment around Cylinder-Shaped Piers Subjected to Varying Sequential Flow Events. Water, 13(22), 3289. https://doi.org/10.3390/w13223289