Management of Urban Waters with Nature-Based Solutions in Circular Cities—Exemplified through Seven Urban Circularity Challenges
Abstract
:1. Introduction
- From an urban water management perspective, what are the main urban circularity challenges?
- What are (water) interconnections between the different UCC and how can these UCC be addressed by NBS?
- What can be learned from current NBS implementations?
- How can NBS address or contribute to the UCC1 and UCC2?
2. Materials and Methods
- The “UCC mark” (ranging between 1 and 3) equals the highest mark awarded to the NBS among one of the enabling processes within each UCC;
- The enabling process “treatment” within UCC1 equals the highest mark awarded to the NBS among one of the enabling treatment processes within UCC (excluding the ‘reuse of water’ enabling process);
- The “Total Circularity Score” achieved by an NBS was calculated as the sum of all awarded individual marks for both UCC1 and UCC2, but excluding the enabling process “treatment” within UCC1, to avoid double-counting.
3. Results and Discussion
3.1. Urban Circularity Challenges
3.1.1. Urban Circularity Challenges (UCC) with a Focus on Urban Water
3.1.2. Restoring and Maintaining the Water Cycle (UCC1)
3.1.3. Water and Waste Treatment, Recovery and Reuse (UCC2)
3.1.4. Nutrient Recovery and Reuse (UCC3)
3.1.5. Material Recovery and Reuse (UCC4)
3.1.6. Food and Biomass Production (UCC5)
3.1.7. Energy Efficiency and Recovery (UCC6)
3.1.8. Building System Recovery (UCC7)
3.1.9. Crucial Challenges for Water Management
3.2. Achieving Circularity Challenges with NBS
3.2.1. Case-Based Assessment
3.2.2. Enabling Processes
3.2.3. Assessment of Total Circularity Scores
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
NBS 1 | Type | Location | Urban Circularity Challenges 2 | Other Contributions and Ecosystem Services | Ref. |
---|---|---|---|---|---|
Infiltration basin (NBS_tu) | Case-study | Ljubljana (SI) | UCC1 UCC2 | [97] | |
Infiltration trench (NBS_tu) | Case-study | Málaga (ES) | UCC1 UCC2 | Amenity Biodiversity support Construction community space (Playscape) Educational value | [98] |
Filter drain (NBS_tu) | Case-study | Various Austrian cities (AT) | UCC1 UCC2 | Improved microclimate Taking pressure off water collection and treatment systems | [99] |
(Wet) Retention pond (NBS_tu) | Case-study | Ljubljana (SI) | UCC1 UCC2 UCC6 | Biodiversity support Education Recreation | [100] |
(Dry) Retention pond (NBS_tu) | Case-study | Carugo (IT) | UCC1 | Amenity Biodiversity support | [101] |
Bioretention cell Rain garden (NBS_tu) | Case-study | Sassuolo (IT) | UCC1 UCC2 | Amenity Improved microclimate | [101] |
Case-study | Turin (IT) | UCC1 UCC2 | Amenity Education | [102] | |
Bioswale (NBS_tu) | Case-study | Gdynia (PL) | UCC1 UCC2 | Amenity | [103] |
Riparian buffer (NBS_tu) | Case-study | Scandolara (IT) | UCC1 UCC2 | Biodiversity support | [104] |
Case-study | Mściwojów (PL) | UCC1 UCC2 UCC7 | Biodiversity support | [105] | |
Extensive green roof (NBS_tu) | Case-study | Rende (IT) | UCC1 UCC2 UCC6 UCC7 | Amenity Biodiversity support Building thermal performances Education Improved microclimate | [40,106,107] |
Intensive green roof (NBS_tu) | Case-study | Treviso (IT) | UCC1 UCC2 UCC6 | [79] | |
Case-study | Wrocław (PL) | UCC1 UCC2 | Amenity Education Biodiversity support | [108] | |
Treatment wetland (NBS_tu) | Case-study | Gorla Maggiore (IT) | UCC1 UCC2 | Amenity Recreation Biodiversity support | [89,109,110] |
Case-study | Lesvos (GR) | UCC2 UCC3 UCC5 UCC6 | Biodiversity support | [24,95] | |
Case-study | Mściwojów (PL) | UCC1 UCC2 UCC3 UCC7 | Biodiversity support | [105] | |
Case-study | tba | UCC2 UCC3 UCC5 UCC6 | Being gender neutral Biodiversity support Improved microclimate Reducing carbon footprint Reducing noise pollution Storing nutrients from urine in plant biomass Working off-the-grid and being Water & energy autonomous | [111] | |
Case-study | Lloret de Mar (ES) | UCC1 UCC2 UCC3 UCC6 | Amenity Biodiversity support Improved microclimate Education | [94,112] | |
Case-study | Nimr (OM) | UCC2 UCC3 UCC4 UCC5 UCC6 | Biodiversity support Carbon emissions mitigation Improved microclimate | [96] | |
Case-study | Mashhad (IR) | UCC2 UCC4 | Reducing carbon footprint | [113] | |
Waste stabilization pond (NBS_tu) | Case-study | Vélez-Málaga (ES) | UCC2 UCC4 | [114] | |
Composting (NBS_i) | Model | Nimr (OM) | UCC3 UCC4 | ||
Phytoremediation (NBS_i) | Case-study | Iwiny (PL) | UCC2 UCC7 | [115] | |
Model/theory | EU | UCC7 | [116] | ||
Model/theory | EU | UCC2 | [117] | ||
River restoration (NBS_i) | Case-study | Łódź (PL) | UCC1 UCC2 | Biodiversity support | [118] |
Model | Alexandria (EG) | UCC2 | Biodiversity support Public health protection | [119] | |
Floodplain (NBS_i) | Case-study | Poznań (PL) | UCC1 | Recreation Thermal regulation | [120] |
Diverting and deflecting elements (NBS_i) | Case-study | Jimera de Líbar (ES) | UCC1 | [114] | |
Soil reinforcement to improve root cohesion and anchorage (NBS_i) | Case-study | Prov. Málaga (ES) | UCC1 | [114] | |
Green corridors (NBS_su) | Case-study | Nijas (ES) | UCC1 | [114] | |
Street trees (NBS_su) | Case-study | Malaga (ES) | UCC1 | [114] | |
Pocket/garden park (NBS_su) | Case-study | Wrocław (PL) | UCC1 | Biodiversity increase Aesthetic | [121] |
Green transition zones (NBS_su) | Case-study | prov. Málaga (ES) | UCC1 | [114] | |
Rainwater Harvesting (S_u) | Case-study | Hedensted (DK) | UCC1 UCC2 UCC6 | Heat island reduction | [24] |
Case-study | Rende (IT) | UCC1 UCC2 UCC4 | [106] | ||
Lab-scale | Rende (IT) | UCC1 UCC2 UCC4 | [122,123] |
Sub-Category | NBS Unit | Total Circularity Score 1,2 | Urban Circularity Challenge | |||||||||||||||
UCC1: Restoring, Maintaining the Water Cycle | UCC2: Water—Treatment, Recovery, and Reuse | |||||||||||||||||
UCC1 mark 3 | Enabling Process | UCC2 mark 3 | Enabling Process | |||||||||||||||
Conveyance | Infiltration | Detention | Retention | Evapotranspiration | Treatment | Sedimentation | Filtration | Uptake by plants | Bio-degradation | Photo-degradation | Sorption | Other treatment | Reuse of water | |||||
Units for rainwater management | Infiltration basin | 9 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | |||||||
Infiltration trench | 7 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||
Filter strips | 10 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 1 | |||||||||
Filter drain | 8 | 3 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | |||||||||
(Wet) Retention pond | 13 | 3 | 1 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 2 | |||||||
(Dry) Detention pond | 7 | 3 | 3 | 2 | 2 | 2 | 2 | |||||||||||
Bioretention cell (Rain garden) | 16 | 3 | 1 | 3 | 3 | 3 | 3 | 3 | 1 | 3 | 1 | 1 | ||||||
Bioswale | 14 | 3 | 3 | 2 | 3 | 3 | 3 | 1 | 1 | 3 | 1 | |||||||
Dry swale | 6 | 3 | 3 | 2 | 1 | 1 | 1 | |||||||||||
Tree pits | 13 | 3 | 1 | 3 | 3 | 2 | 3 | 1 | 2 | 3 | ||||||||
Vegetated grid pavment | 11 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | |||||||||
Riparian buffer | 19 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 1 | 2 | 3 | 1 | ||||||
Vertical Green Infrastructure & Green Roofs | Soil/ground-based green facade | 6 | 2 | 2 | 1 | 3 | 1 | 3 | ||||||||||
Wall-based green facade | 9 | 2 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 3 | ||||||||
Pot-based green facade | 9 | 2 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 3 | ||||||||
Vegetated pergola | 4 | 1 | 1 | 3 | 3 | |||||||||||||
Extensive green roof | 6 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | ||||||||||
Intensive green roof | 15 | 3 | 3 | 3 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | |||||||
Semi-intensive green roof | 12 | 3 | 2 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | |||||||
Mobile green and vertical mobile garden | 6 | 1 | 1 | 1 | 1 | 3 | 1 | 3 | ||||||||||
Remediation, Treatment & Recovery | Treatment wetland | 21 | 3 | 3 | 2 | 3 | 3 | 3 | 2 | 3 | 2 | 3 | 1 | 2 | ||||
Waste stabilisation pond | 16 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 2 | ||||||||
Composting | 0 | |||||||||||||||||
Bioremediation | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||
Phytoremediation | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||
Anaerobic treatment (for nutrient, VFA & methene recovery) | 3 | 3 | 3 | 3 | 3 | |||||||||||||
Aerobic (post) treatment (for water recovery) | 3 | 3 | 3 | 3 | 3 | |||||||||||||
(River) Restoration | River restoration | 24 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |||
Floodplain | 20 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | ||||
Diverting and deflecting elements | 1 | 1 | 1 | |||||||||||||||
Reconnection of oxbow lake | 24 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||
Coastal erosion control | 2 | 2 | 2 | |||||||||||||||
Soil and Water Bioengineering | Soil improvement and conservation | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
Erosion control | 6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
Soil reinforcement to improve root cohesion and anchorage | 1 | 1 | 1 | |||||||||||||||
Riverbank engineering | 2 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
Greening intervention + (Public) Green Space | Green corridors | 14 | 3 | 3 | 3 | 3 | 1 | 3 | 1 | 1 | 3 | |||||||
Green belt | 14 | 3 | 3 | 3 | 3 | 1 | 3 | 1 | 1 | 3 | ||||||||
Street trees | 12 | 3 | 1 | 3 | 3 | 1 | 3 | 1 | 1 | 3 | ||||||||
Large urban park | 14 | 3 | 3 | 3 | 3 | 1 | 3 | 1 | 1 | 3 | ||||||||
Pocket/garden park | 12 | 3 | 2 | 2 | 3 | 1 | 3 | 1 | 1 | 3 | ||||||||
Urban meadows | 13 | 3 | 3 | 3 | 2 | 1 | 3 | 1 | 1 | 3 | ||||||||
Green transition zones | 9 | 2 | 1 | 1 | 2 | 1 | 3 | 1 | 1 | 3 | ||||||||
NBS units for food & biomass production | Aquaculture | 1 | 1 | 1 | ||||||||||||||
Hydroponic and soilless technologies | 2 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
Organoponic/Bioponic | 3 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||
Aquaponic farming | 6 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | ||||||||||
Photo Bio Reactor | 3 | 2 | 2 | 2 | 2 | 1 | ||||||||||||
Productive garden | 12 | 3 | 3 | 2 | 3 | 1 | 3 | 1 | 3 | |||||||||
Urban forest | 11 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | |||||||||
Urban farms and orchards | 12 | 3 | 3 | 2 | 3 | 1 | 3 | 1 | 3 | |||||||||
Sub-Category | Supporting Unit | Total Circularity Score 1,2 | UCC1 mark3 | Conveyance | Infiltration | Detention | Retention | Evapotranspiration | Treatment | UCC2 mark 3 | Sedimentation | Filtration | Uptake by plants | Bio-degradation | Photo-degradation | Sorption | Other treatment | Reuse of water |
Units for rainwater management | Rain Water Harvesting | 4 | 3 | 3 | 1 | 1 | 1 | |||||||||||
Detention vaults and tanks | 4 | 3 | 3 | 1 | 1 | 1 | ||||||||||||
Remediation, Treatment & Recovery | Phosphate precipitation (for P recovery) | 3 | 3 | 3 | 3 | 3 | ||||||||||||
Ammonia stripping (for N recovery) | 3 | 3 | 3 | 3 | 3 | |||||||||||||
Disinfection (for water recovery) | 6 | 3 | 3 | 3 | 3 | 3 | ||||||||||||
Biochar/Hydrochar production | 3 | 3 | 3 | 3 | 3 | |||||||||||||
Physical unit operations for solid/liquid separation | 6 | 3 | 3 | 3 | 3 | 2 | 1 | |||||||||||
Membrane filtration | 3 | 3 | 3 | 3 | 3 | |||||||||||||
Adsorption | 3 | 3 | 3 | 3 | 3 | |||||||||||||
Advanced Oxidation Processes (AOP) | 3 | 3 | 3 | 3 | 3 |
References
- Nika, C.E.; Gusmaroli, L.; Ghafourian, M.; Atanasova, N.; Buttiglieri, G.; Katsou, E. Nature-based solutions as enablers of circularity in water systems: A review on assessment methodologies, tools and indicators. Water Res. 2020, 183, 115988. [Google Scholar] [CrossRef]
- Barbosa, R.F.S.; Souza, A.G.; Maltez, H.F.; Rosa, D.S. Chromium removal from contaminated wastewaters using biodegradable membranes containing cellulose nanostructures. Chem. Eng. J. 2020, 395, 125055. [Google Scholar] [CrossRef]
- Mansoori, S.; Davarnejad, R.; Matsuura, T.; Ismail, A.F. Membranes based on non-synthetic (natural) polymers for wastewater treatment. Polym. Test. 2020, 84, 106381. [Google Scholar] [CrossRef]
- McMillan, H.; Montanari, A.; Cudennec, C.; Savenije, H.; Kreibich, H.; Krueger, T.; Liu, J.; Mejia, A.; Loon, A.V.; Aksoy, H.; et al. Panta Rhei 2013–2015: Global perspectives on hydrology, society and change. Hydrol. Sci. J. 2016, 61, 1174–1191. [Google Scholar] [CrossRef] [Green Version]
- Mudakkar, S.R.; Zaman, K.; Khan, M.M.; Ahmad, M. Energy for economic growth, industrialization, environment and natural resources: Living with just enough. Renew. Sustain. Energy Rev. 2013, 25, 580–595. [Google Scholar] [CrossRef]
- Olvera, R.C.; Silva, S.L.; Robles-Belmont, E.; Lau, E.Z. Review of nanotechnology value chain for water treatment applications in Mexico. Resour. Effic. Technol. 2017, 3, 1–11. [Google Scholar] [CrossRef]
- Xiaoming, F.; Qinglong, L.; Lichang, Y.; Fu, B.; Yongzhe, C. Linking water research with the sustainability of the human–natural system. Curr. Opin. Environ. Sustain. 2018, 33, 99–103. [Google Scholar] [CrossRef]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. (Eds.) Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change; IPCC Secretariat: Geneva, Switzerland, 2008; p. 210. Available online: https://www.ipcc.ch/publication/climate-change-and-water-2/ (accessed on 10 April 2021).
- Finger, D.; Heinrich, G.; Gobiet, A.; Bauder, A. Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century. Water Resour. Res. 2012, 48, W02521. [Google Scholar] [CrossRef] [Green Version]
- Snep, R.P.; Voeten, J.G.; Mol, G.; Van Hattum, T. Nature Based Solutions for Urban Resilience: A Distinction Between No-Tech, Low-Tech and High-Tech Solutions. Front. Environ. Sci. 2020, 8, 599060. [Google Scholar] [CrossRef]
- Stefanakis, A.I.; Calheiros, C.S.C.; Nikolaou, I. Nature-Based Solutions as a Tool in the New Circular Economic Model for Climate Change Adaptation. Circ. Econ. Sustain. 2021, 1, 303–318. [Google Scholar] [CrossRef]
- Guerra-Rodríguez, S.; Oulego, P.; Rodríguez, E.; Singh, D.N.; Rodríguez-Chueca, J. Towards the implementation of circular economy in the wastewater sector: Challenges and opportunities. Water 2020, 12, 1431. [Google Scholar] [CrossRef]
- Neczaj, E.; Grosser, A. Circular Economy in Wastewater Treatment Plant–Challenges and Barriers. Proceedings 2018, 2, 614. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Xue, X.; González-Mejía, A.; Garland, J.; Cashdollar, J. Sustainable water systems for the city of tomorrow-A conceptual framework. Sustainability 2015, 7, 12071–12105. [Google Scholar] [CrossRef] [Green Version]
- Stefanakis, A.I.; Prigent, S.; Breuer, R. Integrated produced water management in a desert oilfield using wetland technology and innovative reuse practices. In Constructed Wetlands for Industrial Wastewater Treatment; Stefanakis, A.I., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2018; pp. 25–42. [Google Scholar]
- Sgroi, M.; Vagliasindi, F.G.A.; Roccaro, P. Feasibility, sustainability and circular economy concepts in water reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 20–25. [Google Scholar] [CrossRef]
- Langergraber, G.; Pucher, B.; Simperler, L.; Kisser, J.; Katsou, E.; Buehler, D.; Garcia Mateo, M.C.; Atanasova, N. Implementing nature-based solutions for creating a resourceful circular city. Blue-Green Syst. 2020, 2, 173–185. [Google Scholar] [CrossRef]
- WWAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 2018: Nature-Based Solutions; UNESCO: Paris, France, 2018. [Google Scholar]
- Kolokotsa, D.; Santamouris, M.; Zerefos, S.C. Green and cool roofs’ urban heat island mitigation potential in European climates for office buildings under free floating conditions. Sol. Energy 2013, 95, 118–130. [Google Scholar] [CrossRef]
- Langergraber, G.; Castellar, J.A.C.; Pucher, B.; Baganz, G.F.M.; Milosevic, D.; Andreucci, M.-B.; Kearney, K.; Pineda-Martos, R.; Atanasova, N. A Framework for Addressing Circularity Challenges in Cities with Nature-based Solutions. Water 2021, 13, 2355. [Google Scholar] [CrossRef]
- Moosavi, S.; Browne, G.R.; Bush, J. Perceptions of nature-based solutions for Urban Water challenges: Insights from Australian researchers and practitioners. Urban For. Urban Green. 2021, 57, 126937. [Google Scholar] [CrossRef]
- Ghafourian, M.; Stanchev, P.; Mousavi, A.; Katsou, E. Economic assessment of nature-based solutions as enablers of circularity in water systems. Sci. Total Environ. 2021, 792, 148267. [Google Scholar] [CrossRef]
- Hemming, V.; Walshe, T.; Hanea, A.; Fidler, F.; Burgman, M. Eliciting improved quantitative judgements using the IDEA protocol: A case study in natural resource management. PLoS ONE 2018, 13, e0198468. [Google Scholar] [CrossRef]
- Oral, H.V.; Carvalho, P.; Gajewska, M.; Ursino, N.; Masi, F.; van Hullebusch, E.D.; Kazak, J.; Exposito, A.; Cipolletta, G.; Andersen, T.R.; et al. A Review of Nature Based Solutions for Urban Water Management in European Circular Cities: A critical assessment based on case studies and literature. Blue-Green Syst. 2020, 2, 112–136. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Carrión, M.; Baeza-Brotons, F.; Payá, J.; Saval, J.M.; Zornoza, E.; Borrachero, M.V.; Garcés, P. Potential Use of Sewage Sludge Ash (SSA) As a Cement Replacement in Precast Concrete Blocks. Mat. Const. 2014, 64, 313. [Google Scholar] [CrossRef] [Green Version]
- Joensuu, T.; Edelman, H.; Saari, A. Circular economy practices in the built environment. J. Clean. Prod. 2020, 276, 124215. [Google Scholar] [CrossRef]
- Lepeška, T. The Impact of Impervious Surfaces on Ecohydrology and Health in Urban Ecosystems of Banská Bystrica (Slovakia). Soil Water Res. 2016, 11, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Berndtsson, R.; Becker, P.; Persson, A.; Aspegren, H.; Haghighatafshar, S.; Jönsson, K.; Larsson, R.; Mobini, S.; Mottaghi, M.; Nilsson, J.; et al. Drivers of changing urban flood risk: A framework for action. J. Environ. Manag. 2019, 240, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Kozak, D.; Henderson, H.; de Castro Mazarro, A.; Rotbart, D.; Aradas, R. Blue-Green Infrastructure (BGI) in Dense Urban Watersheds. The Case of the Medrano Stream Basin (MSB) in Buenos Aires. Sustainability 2020, 12, 2163. [Google Scholar] [CrossRef] [Green Version]
- Foster, S. Global policy overview of groundwater in Urban development-A tale of 10 cities! Water 2020, 12, 456. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.; Gersonius, B.; Sanchez, A.; Vojinovic, Z.; Kapelan, Z. Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits. Water Resour. Manag. 2018, 32, 2505–2522. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2017, 610, 997–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Environment Agency (EEA). Exploring Nature-Based Solutions—The Role of Green Infrastructure in Mitigating the Impacts of Weather- and Climate Change-Related Natural Hazards; Publications Office of the European Union: Luxembourg, 2015.
- Imran, H.M.; Kala, J.; Ng, A.; Muthukumaran, S. Effectiveness of vegetated patches as Green Infrastructure in mitigating Urban Heat Island effects during a heatwave event in the city of Melbourne. Weather Clim. Extremes 2019, 25, 100217. [Google Scholar] [CrossRef]
- Ferrini, F.; Fini, A.; Mori, J.; Gori, A. Role of Vegetation as a Mitigating Factor in the Urban Context. Sustainability 2020, 12, 4247. [Google Scholar] [CrossRef]
- Ecosystem Services of Urban Agriculture: Perceptions of Project Leaders, Stakeholders and the General Public. Sustainability 2020, 12, 10446. [CrossRef]
- Stovin, V.; Poë, S.; Berretta, C. A modelling study of long term green roof retention performance. J. Environ. Manag. 2013, 131, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Calheiros, C.S.C.; Stefanakis, A.I. Green Roofs Towards Circular and Resilient Cities. Circ. Econ. Sustain. 2021 1, 395–411. [CrossRef]
- Liu, W.; Feng, Q.; Chen, W.; Wei, W.; Deo, R.C. The influence of structural factors on stormwater runoff retention of extensive green roofs: New evidence from scale-based models and real experiments. J. Hydrol. 2019, 569, 230–238. [Google Scholar] [CrossRef]
- Palermo, S.A.; Turco, M.; Principato, F.; Piro, P. Hydrological effectiveness of an extensive green roof in Mediterranean climate. Water 2019, 11, 1378. [Google Scholar] [CrossRef] [Green Version]
- Tahvonen, O. Scalable Green Infrastructure—The Case of Domestic Private Gardens in Vuores, Finland. Sustainability 2018, 10, 4571. [Google Scholar] [CrossRef] [Green Version]
- Masi, F.; Rizzo, A.; Regelsberger, M. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J. Environ. Manag. 2018, 216, 275–284. [Google Scholar] [CrossRef]
- Stefanakis, A.I. The role of constructed wetlands as green infrastructure for sustainable urban water management. Sustainability 2019, 11, 6981. [Google Scholar] [CrossRef] [Green Version]
- Alamdari, N.; Sample, D.J.; Steinberg, P.; Ross, A.C.; Easton, Z.M. Assessing the Effects of Climate Change on Water Quantity and Quality in an Urban Watershed Using a Calibrated Stormwater Model. Water 2017, 9, 464. [Google Scholar] [CrossRef]
- Quinn, R.; Rougé, C.; Stovin, V. Quantifying the performance of dual-use rainwater harvesting systems. Water Res. X 2021, 10, 100081. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, J.; Nasiri, F.; Bell, S.; Rahaman, M.S. Urban water reuse: A triple bottom line assessment framework and review. Sustain. Cities Soc. 2016, 27, 448–456. [Google Scholar] [CrossRef]
- Kisser, J.; Wirth, M.; De Gusseme, B.; Van Eekert, M.; Zeeman, G.; Schoenborn, A.; Beesley, L. A review of nature-based solutions for resource recovery in cities. Blue-Green Syst. 2020, 2, 138–172. [Google Scholar] [CrossRef] [Green Version]
- Finger, D.; Schmid, M.; Wüest, A. Comparing effects of oligotrophication and upstream hydropower dams on plankton and productivity in perialpine lakes. Water Resour. Res. 2007, 43, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, S.; Feldmann, U.; Bach, P.M.; Binz, C.; Farrelly, M.; Frantzeskaki, N.; Udert, K.M. A Research Agenda for the Future of Urban Water Management: Exploring the Potential of Nongrid, Small-Grid, and Hybrid Solutions. Environ. Sci. Technol. 2020, 54, 5312–5322. [Google Scholar] [CrossRef] [PubMed]
- Kehrein, P.; Loosdrecht, M.V.; Osseweijer, P.; Garfí, M.; Dewulf, J.; Posada, J. A critical review of resource recovery from municipal wastewater treatment plants—Market supply potentials, technologies and bottlenecks. Environ. Sci. Water Res. Technol. 2020, 6, 877–910. [Google Scholar] [CrossRef] [Green Version]
- Alayish, O.; Çelik, T. Extending disposal route of dewatered sewage sludge produced from the new wastewater treatment plant in Nicosia toward sustainable building materials. Environ. Earth Sci. 2021, 80, 146. [Google Scholar] [CrossRef]
- International Water Association (IWA). Water Utility Pathways in a Circular Economy. 2016. Available online: https://www.iwa-network.org/wp-content/uploads/2016/07/IWA_Circular_Economy_screen.pdf (accessed on 13 May 2021).
- Skar, S.L.G.; Pineda-Martos, R.; Timpe, A.; Pölling, B.; Bohn, K.; Külvik, M.; Junge, R. Urban agriculture as a keystone contribution towards securing sustainable and healthy development for cities in the future. Blue-Green Syst. 2020, 2, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Fenner, R. Spatial evaluation of multiple benefits to encourage multi-functional design of sustainable drainage in Blue-Green cities. Water 2017, 9, 953. [Google Scholar] [CrossRef] [Green Version]
- Emmanuel, R.; Loconsole, A. Green infrastructure as an adaptation approach to tackling urban overheating in the Glasgow Clyde Valley Region, UK. Landsc. Urban Plan. 2015, 138, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Scott, C.A.; Pierce, S.A.; Pasqualetti, M.J.; Jones, A.L.; Montz, B.E.; Hoover, J.H. Policy and institutional dimensions of the water-energy nexus. Energy Policy 2011, 39, 6622–6630. [Google Scholar] [CrossRef]
- Carvalho, P.N.; Finger, D.C.; Masi, F.; Cipollettta, G.; Oral, H.V.; Tóth, A.; Regelsberger, M.; Exposito, A. Nature-based solutions addressing the water-energy-food nexus: Review of theoretical concepts and case studies. J. Clean. Prod. Under Rev. in press.
- Li, X.; Feng, K.; Siu, Y.L.; Hubacek, K. Energy-water nexus of wind power in China: The balancing act between CO2 emissions and water consumption. Energy Policy 2012, 45, 440–448. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-energy-food nexus: Concepts, questions and methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- Chow, W.L.; Chong, S.; Lim, J.W.; Chan, Y.J.; Chong, M.F.; Tiong, T.J.; Chin, J.K.; Pan, G.-T. Anaerobic Co-Digestion of Wastewater Sludge: A Review of Potential Co-Substrates and Operating Factors for Improved Methane Yield. Processes 2020, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- El Gnaoui, Y.; Sounni, F.; Bakraoui, M.; Karouach, F.; Benlemlih, M.; Barz, M.; El Bari, H. Anaerobic co-digestion assessment of olive mill wastewater and food waste: Effect of mixture ratio on methane production and process stability. J. Environ. Chem. Eng. 2020, 8, 103874. [Google Scholar] [CrossRef]
- Park, K.Y.; Jang, H.M.; Park, M.-R.; Lee, K. Combination of different substrates to improve anaerobic digestion of sewage sludge in a wastewater treatment plant. Int. Biodeter. Biodegrad. 2016, 109, 73–77. [Google Scholar] [CrossRef]
- Fogarassy, C.; Toth, L.; Czikkely, M.; Finger, D.C. Improving the Efficiency of Pyrolysis and Increasing the Quality of Gas Production through Optimization of Prototype Systems. Resources 2019, 8, 182. [Google Scholar] [CrossRef] [Green Version]
- Llano, T.; Arce, C.; Finger, D.C. Optimization of biogas production through anaerobic digestion of municipal solid waste: A case study in the capital area of Reykjavik, Iceland. J. Chem. Technol. Biotechnol. 2021, 96, 1333–1344. [Google Scholar] [CrossRef]
- Radić, M.; Brković Dodig, M.; Auer, T. Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits. Sustainability 2019, 11, 4579. [Google Scholar] [CrossRef] [Green Version]
- Coma, J.; Pérez, G.; Solé, C.; Castell, A.; Cabeza, L.F. Thermal assessment of extensive green roofs as passive tool for energy savings in buildings. Renew. Energy 2016, 85, 1106–1115. [Google Scholar] [CrossRef] [Green Version]
- Maiolo, M.; Pirouz, B.; Bruno, R.; Palermo, S.A.; Arcuri, N.; Piro, P. The role of the extensive green roofs on decreasing building energy consumption in the mediterranean climate. Sustainability 2020, 12, 359. [Google Scholar] [CrossRef] [Green Version]
- Pirouz, B.; Palermo, S.A.; Maiolo, M.; Arcuri, N.; Piro, P. Decreasing water footprint of electricity and heat by extensive green roofs: Case of southern italy. Sustainability 2020, 12, 10178. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Theochari, D.; Nehls, T.; Pinho, P.; Piro, P.; Korolova, A.; Papaefthimioy, S.; Mateo, M.C.G.; Calheiros, C.; Zluwai, I.; et al. Enhancing the circular economy with nature-based solutions in the built urban environment: Green building materials, systems and sites. Blue-Green Syst. 2020, 2, 46–72. [Google Scholar] [CrossRef] [Green Version]
- David, P. Path Dependence, its Critics, and the Quest for ‘Historical Economics’. In The Evolution of Economic Institutions; Edward Elgar Publishing: Northampton, MA, USA, 2007; Available online: https://EconPapers.repec.org/RePEc:elg:eechap:12603_7 (accessed on 10 May 2021).
- Mattila, H. Appropriate Management of On-Site Sanitation; Publication 537; Tampere University of Technology: Tampere, Finland, 2005; ISBN 952-15-1370-5. [Google Scholar]
- World Water Development Report 2018. Available online: https://www.unwater.org/publications/world-water-development-report-2018/ (accessed on 16 June 2021).
- Ursino, N. Dynamic models of socio-ecological systems predict catastrophic shifts following unsustainable development. Sci. Total Environ. 2019, 654, 890–894. [Google Scholar] [CrossRef]
- Schröter, B.; Zingraff-Hamed, A.; Ott, E.; Huang, J.; Hüesker, F.; Nicolas, C.; Schröder, N.J.S. The knowledge transfer potential of online data pools on nature-based solutions. Sci. Total Environ. 2021, 762, 143074. [Google Scholar] [CrossRef]
- Acuña, V.; Castañares, L.; Castellar, J.A.C.; Comas, J.; Corominas, L.; Cross, K.; McDonald, R.; Riu, A. Development and testing of a decision-support system to facilitate the implementation of nature-based solutions for urban water sanitation. Water Res. 2021. in preparation. [Google Scholar]
- Castellar, J.A.C.; Popartan, L.A.; Pueyo-Ros, J.; Atanasova, N.; Langergraber, G.; Säumel, J.; Corominas, L.; Comas, J.; Acuña, V. Nature-based solutions in the urban context: Terminology, classification and scoring for urban challenges and ecosystem services. Sci. Total Environ. 2021, 779, 146237. [Google Scholar] [CrossRef]
- Mikos, M.; Kranjc, A.; Maticic, B.; Müller, J.; Rakovec, J.; Ros, M.; Brilly, M. Hidrološko izrazje/Terminiology in hydrology. Acta Hydrotechnol. 2002, 20, 3–324. Available online: https://actahydrotechnica.fgg.uni-lj.si/en/paper/a32_1 (accessed on 15 May 2021).
- Tchobanoglous, G.; Burton, F.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse, 5th ed.; McGraw-Hill Higher Education: Boston, MA, USA, 2014. [Google Scholar]
- Masi, F.; Rizzo, A.; Bresciani, R. Green architecture and water reuse: Examples from different countries. Sustain. Sanit. Pract. 2015, 23, 4–10. [Google Scholar]
- Halecki, W.; Stachura, T. Evaluation of soil hydrophysical parameters along a semiurban small river: Soil ecosystem services for enhancing water retention in urban and suburban green areas. CATENA 2021, 196, 104910. [Google Scholar] [CrossRef]
- Kolokotsa, D.; Lilli, A.A.; Nikolaidis, N.P. On the impact of nature-based solutions on citizen’s health & well being. Energy Build. 2020, 229, 110542. [Google Scholar]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.E.; et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Urbangreenup. Available online: https://www.urbangreenup.eu/news--events/news/the-urban-greenup-catalogue-of-nature-based-solutions-is-now-public_1.kl (accessed on 16 June 2021).
- Somarakis, G.; Stagakis, S.; Chrysoulakis, N. ThinkNature Nature Based Solutions Handbook; ThinkNature Project Funded by the EU Horizon 2020 Research and Innovation Programme; ThinkNature: Hague, The Netherlands, 2019; Volume 730338, pp. 1–226. Available online: https://doi.org/10.26225/jerv-w202 (accessed on 1 August 2021).
- Urban Nature Labotarıies (UNALAB). Available online: https://unalab.eu/en/documents/unalab-technical-handbook-nature-based-solutions (accessed on 15 June 2021).
- Directorate-General for Research and Innovation (European Commission). Evaluating the Impact of Nature-Based Solutions: A Handbook for Practitioners, 1st ed.; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-22821-9. [Google Scholar] [CrossRef]
- Evaluating the Impact of Nature-Based Solutions: A Handbook for Practitioners. Available online: https://ec.europa.eu/info/news/evaluating-impact-nature-based-solutions-handbook-practitioners-2021-may-06_en (accessed on 21 November 2021).
- Liquete, C.; Udias, A.; Conte, G.; Grizzetti, B.; Masi, F. Integrated valuation of a nature-based solution for water pollution control. Highlighting hidden benefits. Ecosyst. Serv. 2016, 22, 392–401. [Google Scholar] [CrossRef]
- Rizzo, A.; Conte, G.; Masi, F. Adjusted Unit Value Transfer as a Tool for Raising Awareness on Ecosystem Services Provided by Constructed Wetlands for Water Pollution Control: An Italian Case Study. Int. J. Environ. Res. Public Health 2021, 18, 1531. [Google Scholar] [CrossRef]
- Kazak, J.K.; Chruściński, J.; Szewrański, S. The Development of a Novel Decision Support System for the Location of Green Infrastructure for Stormwater Management. Sustainability 2018, 10, 4388. [Google Scholar] [CrossRef] [Green Version]
- Kapos, V.; Wicander, S.; Salvaterra, T.; Dawkins, K.; Hicks, C. The Role of the Natural Environment in Adaptation, Background Paper for the Global Commission on Adaptation; Global Commission on Adaptation: Rotterdam, The Netherlands; Washington, DC, USA, 2019. [Google Scholar]
- De Lamo, X.; Jung, M.; Visconti, P.; Schmidt-Traub, G.; Miles, L.; Kapos, V. Strengthening Synergies: How Action to Achieve Post-2020 Global Biodiversity Conservation Targets Can Contribute to Mitigating Climate Change; UNEP-WCMC: Cambridge, MA, USA, 2020. [Google Scholar]
- Estelrich, M.; Vosse, J.; Comas, J.; Atanasova, N.; Costa, J.C.; Gattringer, H.; Buttiglieri, G. Feasibility of vertical ecosystem for sustainable water treatment and reuse in touristic resorts. J. Environ. Manag. 2021, 294, 112968. [Google Scholar] [CrossRef]
- Masi, F.; Langergraber, G.; Santoni, M.; Istenič, D.; Atanasova, N.; Buttiglieri, G. Possibilities of nature-based and hybrid decentralized solutions for reclaimed water reuse. In Advances in Chemical Pollution, Environmental Management and Protection; Verlicchi, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 145–187. ISBN 978-0-128-20170-1. [Google Scholar]
- Stefanakis, A.I. Constructed Wetlands for Sustainable Wastewater Treatment in Hot and Arid Climates: Opportunities, Challenges and Case Studies in the Middle East. Water 2020, 12, 1665. [Google Scholar] [CrossRef]
- Klemen, K.; Pergar, P.; Fatur, M.; Šekoranja, B.B.; Konda, K. The issues of planning nature-based solutions for the integrated stormwater management in urban areas. Gradb. Vestn. 2020, 3, 73–81. [Google Scholar]
- Green-Blue SUD Project at Luis Buñuel Educational Center. Available online: https://paisajesresilientes.wordpress.com/2019/05/25/verde-azul_proyecto-de-drenaje-urbano-sostenible-dus-en-ceip-luis-bunuel-green-bluish_suds-project-in-school-luis-bunuel/ (accessed on 13 June 2021).
- Allabashi, R.; Haile, T.M.; Fuerhacker, M.; Pitha, U.; Scharf, B.; Stach, W.; Ziegenbalg, F.; Heidinger, S.; Ertl, T. Simultaneous removal of heavy metals from synthetic storm water using sustainable urban drainage systems. Urban Water J. 2019, 16, 444–450. [Google Scholar] [CrossRef]
- Bulc, T.; Istenič, D.; Klemenčič, A.K. Case study 8—Multifunctional water reservoir in Lubliana (Slovenia), Chapter 6.9. In Wetland Technology: Practical Information on Design and Application of Treatment Wetlands; Langergraber, G., Dotro, G., Nivala, J., Rizzo, A., Stein, O., Eds.; IWA Publishing: London, UK, 2019; pp. 5–9. ISBN 978-1-789-06016-4. [Google Scholar]
- IRIDRA Webpage. Available online: http://www.iridra.com (accessed on 13 June 2021).
- Interreg CWC Project. Available online: https://www.interreg-central.eu/Content.Node/CWC.html (accessed on 13 June 2021).
- Rain Garden Project. Available online: https://www.gdynia.pl/co-nowego,2774/powstanie-ogrod-deszczowy-na-meksyku,518698 (accessed on 13 June 2021).
- Gumiero, B.; Boz, B. How to stop nitrogen leaking from a Cross complaint buffer strip? Ecolog. Eng. 2017, 103, 446–454. [Google Scholar] [CrossRef]
- Dąbrowska, J.; Kaczmarek, H.; Markowska, J.; Tyszkowski, S.; Kempa, O.; Gałęza, M.; Kucharczak-Moryl, E.; Moryl, A. Shore zone in protection of water quality in agricultural landscape—the Mściwojów Reservoir, southwestern Poland. Environ. Monit. Assess. 2016, 188, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, G.; Šimůnek, J.; Piro, P. A Comprehensive Analysis of the Variably Saturated Hydraulic Behavior of a Green Roof in a Mediterranean Climate. Vadose Zone J. 2016, 15, vzj2016.04.0032. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, G.; Porti, M.; Piro, P. Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate. Appl. Energy 2018, 221, 204–219. [Google Scholar] [CrossRef]
- The Green Gardens of Wroclavia as a Model for Other European Cities. Available online: https://www.wroclaw.pl/przedsiebiorczy-wroclaw/zielone-ogrody-wroclavii (accessed on 13 June 2021).
- Masi, F.; Bresciani, R.; Rizzo, A.; Conte, G. Constructed wetlands for combined sewer overflow treatment: Ecosystem services at Gorla Maggiore, Italy. Ecolog. Eng. 2017, 98, 427–438. [Google Scholar] [CrossRef]
- Rizzo, A.; Bresciani, R.; Masi, F.; Boano, F.; Revelli, R.; Ridolfi, L. Flood reduction as an ecosystem service of constructed wetlands for combined sewer overflow. J. Hydrol. 2018, 560, 150–159. [Google Scholar] [CrossRef]
- Loopi Project. Available online: https://www.alchemia-nova.net/projects/loopi/ (accessed on 19 May 2021).
- Zraunig, A.; Estelrich, M.; Gattringer, H.; Kisser, J.; Langergraber, G.; Radtke, M.; Rodriguez-Roda, I.; Buttiglieri, G. Long term decentralized greywater treatment for water reuse purposes in a tourist facility by Vertical Ecosystem. Ecolog. Eng. 2019, 138, 138–147. [Google Scholar] [CrossRef]
- Gholipour, A.; Zahabi, H.; Stefanakis, A.I. A novel pilot and full-scale constructed wetland study for glass industry wastewater treatment. Chemosphere 2020, 247, 125966. [Google Scholar] [CrossRef]
- International Union for the Nature Conservation. Catalogue Developed by the Cluster of Nature Based Solutions of Malaga (SbN Cluster); UNIA Summer Course; International Union for the Nature Conservation: Málaga, Spain, 2021; ISBN 978-84-09-28296-8. [Google Scholar]
- Kuc, P.; Kordas, L.; Lejcuś, K. Phytostabilisation of tailing ponds with use of water absorbing geocomposites and organic and mineral additives. Environ. Protect. Eng. 2019, 45, 71–81. [Google Scholar] [CrossRef]
- Kidd, P.S.; Bani, A.; Benizri, E.; Gonnelli, C.; Hazotte, C.; Kisser, J.; Konstantinou, M.; Kuppens, T.; Kyrkas, D.; Laubie, B.; et al. Developing sustainable agromining systems in agricultural ultramafic soils for nickel recovery. Front. Environ. Sci. 2018, 6, 44. [Google Scholar] [CrossRef]
- Rosenkranz, T.; Kisser, J.; Wenzel, W.W.; Puschenreiter, M. Waste or substrate for metal hyperaccumulating plants—the potential of phytomining on waste incineration bottom ash. Sci. Total Environ. 2017, 575, 910–918. [Google Scholar] [CrossRef]
- Bedla, D.; Halecki, W. The value of river valleys for restoring landscape features and the continuity of urban ecosystem functions–A review. Ecol. Indic. 2021, 129, 107871. [Google Scholar] [CrossRef]
- Gaballah, M.S.; Ismail, K.; Aboagye, D.; Ismail, M.M.; Sobhi, M.; Stefanakis, A.I. Effect of design and operational parameters on nutrients and heavy metals removal in pilot Floating Treatment Wetlands with Eichhornia Crassipes treating polluted lake water. Environ. Sci. Pollut. Res. 2021, 28, 25664–25678. [Google Scholar] [CrossRef] [PubMed]
- Development of Flood Plain of Warta River. Available online: https://connectingnature.eu/oppla-case-study/19386 (accessed on 15 June 2021).
- Pocket Parks. Available online: https://www.wroclaw.pl/growgreen/en/pocket-parks (accessed on 15 June 2021).
- Turco, M.; Kodešová, R.; Brunetti, G.; Nikodem, A.; Fér, M.; Piro, P. Unsaturated hydraulic behaviour of a permeable pavement: Laboratory investigation and numerical analysis by using the HYDRUS-2D model. J. Hydrol. 2017, 554. [Google Scholar] [CrossRef]
- Turco, M.; Brunetti, G.; Palermo, S.A.; Capano, G.; Grossi, G.; Maiolo, M.; Piro, P. On the environmental benefits of a permeable pavement: Metals potential removal efficiency and Life Cycle Assessment. Urban Water J. 2020, 17, 619–627. [Google Scholar] [CrossRef]
Numerical Mark | Mark Description |
---|---|
3 | Addressing the circularity challenge |
2 | Contributing to the circularity challenge |
1 | Potential to contribute, depending on specific design |
Enabling Process | Process Description * | NBS Unit Example |
---|---|---|
Conveyance | Transport of water. | Filter strip, bioswale, dry swale |
Infiltration | Flow of water through the ground surface into soil or a porous medium. | Infiltration trench, infiltration basin, vegetated grid pavement |
Detention | Temporary storage of precipitation which is en route to, or in, the stream/channel system, during or shortly after rainfall. | Intensive green roof, rainwater harvesting, (dry) detention pond, floodplain |
Retention | Permanent storage of precipitation which is en route to, or in, the stream/sewer system. | (Wet) retention pond |
Evapotranspiration | Water transferred from the soil to the atmosphere by evaporation and plant transpiration. | Bioretention cell (rain garden), urban forest, tree pits, extensive green roof |
Treatment | Changing harmful or undesirable physical and chemical properties of water by removing harmful and undesirable substances and living organisms. | Treatment wetland, waste stabilisation pond |
Enabling Process | Process Description * | NBS Unit Example |
---|---|---|
Sedimentation | Process of settling and depositing suspended matter in water by gravity. | Infiltration basin, Waste stabilisation pond |
Filtration | Process of passing a liquid through a filtering medium for the removal of suspended or colloidal matter. | Filter strip, riparian buffer, treatment wetland |
Uptake by plants | Transfer of substances from the environment to plant tissue/structure. | Bioretention cell (Rain garden), phytoremediation |
Biodegradation | Biochemical transformation of substances using microorganisms, mostly bacteria, to stable end products. | Treatment wetland, waste stabilisation pond |
Photo-degradation | Process of degradation of substances exposed to sunlight ultraviolet radiation. | (Wet) Retention pond/Waste stabilisation pond |
Sorption | Includes the processes of adsorption and absorption by which some substances become attached to another (soil, sludge or plants). | Intensive green roof, anaerobic treatment |
Other treatments | Phosphorus precipitation; ammonia stripping; chemical disinfection; pyrolysis; advanced oxidation. | Supportive units |
Reuse of water | To use water again especially in a different way or after recovery/treatment. | Productive garden, street trees |
Sub-Category | NBS Unit | Total Circularity Score 1,2 | Urban Circularity Challenge | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UCC1: Restoring and Maintaining the Water Cycle | UCC2: Water—Treatment, Recovery, and Reuse | ||||||||||||||||
UCC1 Mark 3 | Enabling Process | UCC2 Mark 3 | Enabling Process | ||||||||||||||
Conve- yance | Infiltration | Detention | Retention | Evapotrans. | Treatment | Sedimentation | Filtration | Uptake by Plants | Bio- Degradation | Photo- Degradation | Sorption | Reuse of Water | |||||
Units for rainwater management | Infiltration trench | 7 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
Bioretention cell (Rain garden) | 16 | 3 | 1 | 3 | 3 | 3 | 3 | 3 | 1 | 3 | 1 | 1 | |||||
Dry swale | 6 | 3 | 3 | 2 | 1 | 1 | 1 | ||||||||||
Riparian buffer | 19 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 1 | 2 | 3 | 1 | |||||
Vertical Green Infrastructure & Green Roofs | Extensive green roof | 6 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | ||||||||
Intensive green roof | 15 | 3 | 3 | 3 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | ||||||
Remediation, Treatment & Recovery | Treatment wetland | 21 | 3 | 3 | 2 | 3 | 3 | 3 | 2 | 3 | 2 | 3 | 1 | 2 | |||
Anaerobic treatment (for nutrient, VFA & methane recovery) | 3 | 3 | 3 | 3 | 3 | ||||||||||||
River Restoration | River restoration | 24 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||
Coastal erosion control | 2 | 2 | 2 | ||||||||||||||
Greening intervention + (Public) Green Space | Large urban park | 14 | 3 | 3 | 3 | 3 | 1 | 3 | 1 | 1 | 3 | ||||||
NBS units for food & biomass production | Productive garden | 12 | 3 | 3 | 2 | 3 | 1 | 3 | 1 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oral, H.V.; Radinja, M.; Rizzo, A.; Kearney, K.; Andersen, T.R.; Krzeminski, P.; Buttiglieri, G.; Ayral-Cinar, D.; Comas, J.; Gajewska, M.; et al. Management of Urban Waters with Nature-Based Solutions in Circular Cities—Exemplified through Seven Urban Circularity Challenges. Water 2021, 13, 3334. https://doi.org/10.3390/w13233334
Oral HV, Radinja M, Rizzo A, Kearney K, Andersen TR, Krzeminski P, Buttiglieri G, Ayral-Cinar D, Comas J, Gajewska M, et al. Management of Urban Waters with Nature-Based Solutions in Circular Cities—Exemplified through Seven Urban Circularity Challenges. Water. 2021; 13(23):3334. https://doi.org/10.3390/w13233334
Chicago/Turabian StyleOral, Hasan Volkan, Matej Radinja, Anacleto Rizzo, Katharina Kearney, Theis Raaschou Andersen, Pawel Krzeminski, Gianluigi Buttiglieri, Derya Ayral-Cinar, Joaquim Comas, Magdalena Gajewska, and et al. 2021. "Management of Urban Waters with Nature-Based Solutions in Circular Cities—Exemplified through Seven Urban Circularity Challenges" Water 13, no. 23: 3334. https://doi.org/10.3390/w13233334