Antibiotic Resistance among Escherichia coli Isolates from Hospital Wastewater Compared to Community Wastewater
Abstract
:1. Introduction
2. Materials and Methods
- Highest-priority critically important antimicrobials: cefotaxime (CTX 30 µg), ceftazidime (CAZ 30 µg), ciprofloxacine (CIP 5 µg);
- High-priority critically important antimicrobials: ampicillin (AMP 10 µg), meropenem (MRP 10 µg), aztreonam (AT 30 µg), fosfomycine (FO 200 µg), gentamicine (GEN 10 µg);
- Highly important antimicrobials: sulfamethoxazole-trimethoprim (SXT 25 µg);
- Important antimicrobials: nitrofurantoine (NIT 100 µg) (Liofilchem®, Roseto degli Abruzzi, Teramo, Italy).
- Susceptible, standard dosing regimen (S)—refers to microorganisms against which there is a high probability of therapeutic success when the antimicrobial agent is used in standard (usual) doses;
- Susceptible, increased exposure (the old intermediate “I” category)—refers to microorganisms against which there is a high probability of therapeutic success when exposure to the agent is increased by adjusting the dosing regimen or by its concentration at the site of infection;
- Resistant (R)—refers to microorganisms against which there is a high probability of therapeutic failure even when there is increased exposure [25].
3. Results
3.1. Antibiotic Susceptibility of E. coli Isolates from Hospital Wastewater and Community Wastewater
3.2. The Proportion of Multidrug-Resistant E. coli Recovered from Hospital Wastewater and Community Wastewater
3.3. Presumed ESBL- and Carbapenemase-Producing E. coli Recovered from HW and CW
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sobsey, M.; Abebe, L.; Andremont, A.; Ashbolt, N.; de Roda Husman, A.M.; Gin, K.; Hunter, P.; Meschke, J.; Vilchez, S. Briefing note—Antimicrobial Resistance: An Emerging Water, Sanitation and Hygiene Issue; WHO: Geneva, Switzerland, 2014. [Google Scholar] [CrossRef]
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Kolár, M.; Urbánek, K.; Látal, T. Antibiotic selective pressure and development of bacterial resistance. Int. J. Antimicrob. Agents 2001, 17, 357–363. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leclercq, R.; Oberle, K.; Galopin, S.; Cattoir, V.; Budzinski, H.; Petit, F. Changes in enterococcal populations and related antibiotic resistance along a medical center–wastewater treatment plant–river continuum. Appl. Environ. Microbiol. 2013, 79, 2428–2434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okoh, A.I.; Igbinosa, E.O. Antibiotic susceptibility profiles of some Vibrio strains isolated from wastewater final effluents in a rural community of the Eastern Cape Province of South Africa. BMC Microbiol. 2010, 10, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Blaak, H.; van Hoek, A.H.; Veenman, C.; van Leeuwen, A.E.D.; Lynch, G.; van Overbeek, W.M.; de Roda Husman, A.M. Extended spectrum β-lactamase- and constitutively AmpC-producing Enterobacteriaceae on fresh produce and in the agricultural environment. Int. J. Food Microbiol. 2014, 168–169, 8–16. [Google Scholar] [CrossRef]
- Imre, K.; Morar, A.; Ilie, M.S.; Plutzer, J.; Imre, M.; Tîrziu, E.; Herbei, M.V.; Dărăbuș, G. Survey of the Occurrence and Human Infective Potential of Giardia duodenalis and Cryptosporidium spp. in Wastewater and Different Surface Water Sources of Western Romania. Vector Borne Zoonotic Dis. 2017, 17, 685–691. [Google Scholar] [CrossRef]
- Flach, C.F.; Genheden, M.; Fick, J.; Larsson, J.D.G. A comprehensive screening of Escherichia coli isolates from Scandinavia’s largest sewage treatment plant indicates no selection for antibiotic resistance. Environ. Sci. Technol. 2018, 52, 11419–11428. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Qiu, S.; Wang, Y.; Qi, L.; Hao, R.; Liu, X.; Shi, Y.; Hu, X.; An, D.; Li, Z.; et al. Higher isolation of NDM-1 producing Acinetobacter baumannii from the sewage of the hospitals in Beijing. PLoS ONE 2013, 8, e64857. [Google Scholar] [CrossRef]
- Korzeniewska, E.; Korzeniewska, A.; Harnisz, M. Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicol. Environ. Saf. 2013, 91, 96–102. [Google Scholar] [CrossRef]
- Paulshus, E.; Kühn, I.; Möllby, R.; Colque, P.; O’Sullivan, K.; Midtvedt, T.; Lingaas, E.; Holmstad, R.; Sørum, H. Diversity and antibiotic resistance among Escherichia coli populations in hospital and community wastewater compared to wastewater at the receiving urban treatment plant. Water Res. 2019, 161, 232–241. [Google Scholar] [CrossRef]
- Kühn, I.; Iversen, A.; Burman, L.G.; Olsson-Liljequist, B.; Franklin, A.; Finn, M.; Aarestrup, F.; Seyfarth, A.M.; Blanch, A.R.; Vilanova, X.; et al. Comparison of enterococcal populations in animals, humans, and the environment—A European study. Int. J. Food Microbiol. 2003, 88, 133–145. [Google Scholar] [CrossRef]
- Linton, K.B.; Richmond, M.H.; Bevan, R.; Gillespie, W.A. Antibiotic resistance and R factors in coliform bacilli isolated from hospital and domestic sewage. J. Med. Microbiol. 1974, 7, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K.; Henninger, A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin. Microbiol. Infect. 2003, 9, 1203–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munir, M.; Wong, K.; Xagoraraki, I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res. 2011, 45, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Reinthaler, F.F.; Galler, H.; Feierl, G.; Haas, D.; Leitner, E.; Mascher, F.; Melkes, A.; Posch, J.; Pertschy, B.; Winter, I.; et al. Resistance patterns of Escherichia coli isolated from sewage sludge in comparison with those isolated from human patients in 2000 and 2009. J. Water Health 2013, 11, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iversen, A.; Kühn, I.; Rahman, M.; Franklin, A.; Burman, L.G.; Olsson-Liljequist, B.; Torell, E.; Mollby, R. Evidence for transmission between humans and the environment of a nosocomial strain of Enterococcus faecium. Environ. Microbiol. 2004, 6, 55–59. [Google Scholar] [CrossRef]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norstrom, M.; Pons, M.N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Antimicrobial Susceptibility Testing–EUCAST Disk Diffusion Method. Version 7.0. 2019. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2019_manuals/Manual_v_7.0_EUCAST_Disk_Test_2019.pdf (accessed on 2 May 2019).
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 9.0. 2019. Available online: https://eucast.org/clinical_breakpoints/ (accessed on 2 May 2019).
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Reading Guide–EUCAST Disk Diffusion Method for Antimicrobial Susceptibility Testing. Version 6.0. 2019. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2017_manuals/Manual_v_6.0_EUCAST_Disk_Test_final.pdf (accessed on 2 May 2019).
- The European Committee on Antimicrobial Susceptibility Testing. Redefining Susceptibility Testing Categories S, I and R. 2019. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/EUCAST_Presentations/2018/EUCAST_-_Intermediate_category_-_information_for_all.pdf (accessed on 2 May 2019).
- The European Committee on Antimicrobial Susceptibility Testing. EUCAST Guidelines for Detection of Resistance Mechanism and Specific Resistance of Clinical and/or Epidemiological Importance. Version 2.0. 2017. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf (accessed on 2 May 2019).
- Kwak, Y.K.; Colque, P.; Byfors, S.; Giske, C.G.; Mollby, R.; Kühn, I. Surveillance antimicrobial resistance among Escherichia coli in wastewater in Stockholm during 1 year: Does it reflect the resistance trends in the society? Int. J. Antimicrob. Agents 2015, 45, 25–32. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- European Centre for Disease Prevention and Control. ECDC Country Visit to Romania to Discuss Antimicrobial Resistance Issues; ECDC: Stockholm, Sweden, 2018. [Google Scholar]
- The European Medicines Agency. Answer to the Request from the European Commission for Updating the Scientific Advice on the Impact on Public Health and Animal Health of the Use of Antibiotics in Animals-Categorisation of Antimicrobials (Draft) EMA/CVMP/CHMP. 2019. Available online: https://www.ema.europa.eu/en/documents/other/answer-request-european-commission-updating-scientific-advice-impact-public-health-animal-health-use_en.pdf (accessed on 1 October 2019).
- Garcia, S.; Wade, B.; Bauer, C.; Craig, C.; Nakaoka, K.; Lorowitz, W. The effect of wastewater treatment on antibiotic resistance in Escherichia coli and Enterococcus sp. Water Environ. Res. 2007, 79, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- Persoons, D.; Dewulf, J.; Smet, A.; Herman, L.; Heyndrickx, M.; Martel, A.; Catry, B.; Butaye, P.; Haesebrouck, F. Antimicrobial use in Belgian broiler production. Prev. Vet. Med. 2012, 105, 320–325. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Model List of Essential Medicines, 21st ed.; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- The European Medicines Agency. Concluzii Științifice și Motive Pentru Modificarea Condițiilor Autorizației/Autorizațiilor de Punere pe Piață-Nitrofurantoină, Nifurtoinol. 2018. Available online: https://www.ema.europa.eu/en/documents/psusa/nitrofurantoin-nifurtoinol-cmdh-scientificconclusions-grounds-variation-amendments-product/00002174/201802_ro.pdf (accessed on 1 October 2019).
- Hanon, J.-B.; Jaspers, S.; Butaye, P.; Wattiau, P.; Méroc, E.; Aerts, M.; Imberechts, H.; Vermeersch, K.; Van der Stede, Y. A trend analysis of antimicrobial resistance in commensal Escherichia coli from several livestock species in Belgium (2011–2014). Prev. Vet. Med. 2015, 122, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Souli, M.; Galani, I.; Antoniadou, A.; Papadomichelakis, E.; Poulakou, G.; Panagea, T.; Vourli, S.; Zerva, L.; Armaganidis, A.; Kanellakopoulou, K.; et al. An outbreak of infection due to β-lactamase Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae in a Greek University Hospital: Molecular characterization, epidemiology, and outcomes. Clin. Infect. Dis. 2010, 50, 364–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doumith, M.; Ellington, M.J.; Livermore, D.M.; Woodford, N. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J. Antimicrob. Chemother. 2009, 63, 659–667. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A.; Medeiros, A.A. A functional classification scheme for β -lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 1995, 39, 211–1233. [Google Scholar] [CrossRef] [Green Version]
- Sabaté, M.; Prats, G.; Moreno, E.; Ballesté, E.; Blanch, A.R.; Andreu, A. Virulence and antimicrobial resistance profiles among Escherichia coli strains isolated from human and animal wastewater. Res. Microbiol. 2008, 159, 288–293. [Google Scholar] [CrossRef]
Antibiogram Results | HW | CW | 5 Statistical Analysis | ||||
---|---|---|---|---|---|---|---|
47 Strains | 34 Strains | ||||||
n | % | n | % | Difference (HW-CW) % | p | ||
Ampicillin | 1 R | 33 | 70.21 | 25 | 73.53 | −3.32 | 0.92 |
Meropenem | R | 2 | 4.26 | 1 | 2.94 | 1.32 | 1 |
2 I | 8 | 17.02 | 1 | 2.94 | 14.08 | 0.07 | |
Cefotaxime | R | 16 | 34.04 | 7 | 20.59 | 13.45 | 0.22 |
I | 15 | 31.91 | 17 | 50 | −18.09 | 0.15 | |
Ceftazidime | R | 31 | 65.96 | 16 | 47.06 | 18.9 | 0.14 |
I | 7 | 14.89 | 17 | 50 | −35.11 | * 0.001 | |
Aztreonam | R | 24 | 51.06 | 11 | 32.35 | 18.71 | 0.14 |
I | 16 | 34.04 | 13 | 38.24 | −4.2 | 0.88 | |
Ciprofloxacin | R | 15 | 31.91 | 14 | 41.18 | −9.27 | 0.53 |
I | 10 | 21.28 | 4 | 11.76 | 9.52 | 0.41 | |
Fosfomycin | R | 26 | 55.31 | 25 | 73.53 | −18.22 | 0.14 |
Nitrofurantoin | R | 15 | 31.91 | 11 | 32.35 | −0.44 | 0.84 |
Gentamicin | R | 6 | 12.77 | 0 | 0 | 12.77 | * 0.03 |
I | 12 | 25.53 | 4 | 11.76 | 13.77 | 0.21 | |
Sulfamethoxazole-trimethoprim | R | 26 | 55.32 | 18 | 52.94 | 2.38 | 1 |
I | 5 | 10.64 | 6 | 17.65 | −7.01 | 0.51 | |
3 MRP < 28 mm | 32 | 68.09 | 26 | 76.47 | −8.38 | 0.56 | |
4 MRP < 16 mm + IIIrd gen. ceph | 2 | 4.26 | 1 | 2.94 | 1.32 | 1 | |
Resistance to CTX or CAZ | 25 | 53.19 | 19 | 55.88 | −2.69 | 1 | |
Resistance to both CTX and CAZ | 10 | 21.28 | 2 | 5.88 | 15.4 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaşpar, C.-M.; Cziszter, L.T.; Lăzărescu, C.F.; Ţibru, I.; Pentea, M.; Butnariu, M. Antibiotic Resistance among Escherichia coli Isolates from Hospital Wastewater Compared to Community Wastewater. Water 2021, 13, 3449. https://doi.org/10.3390/w13233449
Gaşpar C-M, Cziszter LT, Lăzărescu CF, Ţibru I, Pentea M, Butnariu M. Antibiotic Resistance among Escherichia coli Isolates from Hospital Wastewater Compared to Community Wastewater. Water. 2021; 13(23):3449. https://doi.org/10.3390/w13233449
Chicago/Turabian StyleGaşpar, Cristina-Mirabela, Ludovic Toma Cziszter, Cristian Florin Lăzărescu, Ioan Ţibru, Marius Pentea, and Monica Butnariu. 2021. "Antibiotic Resistance among Escherichia coli Isolates from Hospital Wastewater Compared to Community Wastewater" Water 13, no. 23: 3449. https://doi.org/10.3390/w13233449
APA StyleGaşpar, C. -M., Cziszter, L. T., Lăzărescu, C. F., Ţibru, I., Pentea, M., & Butnariu, M. (2021). Antibiotic Resistance among Escherichia coli Isolates from Hospital Wastewater Compared to Community Wastewater. Water, 13(23), 3449. https://doi.org/10.3390/w13233449