The Combined Impact of Hydropower Plants and Climate Change on River Runoff and Fish Habitats in Lowland Watersheds
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
- an analysis of hydrological and hydromorphological data was collected during the field surveys;
- development of conditional habitat suitability criteria according to the data of field surveys and fish monitoring;
- evaluation of reference and altered (under influence of HPP) conditions according to historical observations and method of analogy;
- simulation of the projections of pilot rivers using created HBV hydrological models that required the observed hydrometeorological data for calibration and validation, and output of ensemble of regional climate models according to different RCP climate scenarios for the discharge projections.
3.1. Meso-Habitat Modelling
3.2. Evaluation of Hydrological Characteristics
3.3. Field Surveys of Hydromorphology
3.4. Projection of River Runoff
3.5. Fish Habitat Models and Impact Assessment
4. Results
4.1. Hydrological and Hydromorphological Changes
4.2. Projections of Rivers Discharge and Hydrological Scenarios
4.3. Fish Habitat Changes under the Influence of HPP and Climate Change
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | Water Depth (m) | Water Velocity (m/s) | Substrate (Any of Listed Types) | Cover (Any of Listed Types) |
---|---|---|---|---|
Bleak | >0.45 (>40%) >0.6 * (>50%) | <0.6 (>30%) <0.45 * (>50%) | not applicable | not applicable |
Stone loach | <0.75 (>30%) 0.15–0.6 * (>50%) | <0.9 (>30%) 0.15–0.75 * (>40%) | mesolithal, microlithal, acal (>50%; >70%*) | not applicable |
Bullhead | 0.15–0.75 (>30%) 0.3–0.75 * (>30%) | 0.15–1.05 (>30%) 0.30–0.9 * (>40%) | mesolithal*, microlithal*, acal (>50%; >60%*) | boulders, woody debris |
Gudgeon | 0.3–0.9 (>30%) 0.3–0.75 * (>50%) | <0.75 (>30%) <0.6 * (>30%) | mesolithal, microlithal, acal, psammal (>70%) | not applicable |
Minnow | 0.15–0.75 (>30%) 0.3–0.75 * (>50%) | 0.15–0.75 (>30%) 0.15–0.6 * (>40%) | mesolithal, microlithal, acal, psammal (>70%) | submerged vegetation |
juvenile Salmon | 0.3–1.05 (>30%) 0.3–0.75 * (>30%) | 0.3–1.05 (30%) 0.3–0.9 * (>40%) | mesolithal, microlithal, acal (>50%; >70%*) | submerged vegetation |
juvenile Trout | 0.15–0.75 (>30%) 0.15–0.6 * (>30%) | 0.15–0.9 (>30%) 0.30–0.75 * (>40%) | mesolithal, microlithal, acal (>50%; >70%*) | boulders, woody debris |
Chub | >0.3 (>30%) >0.45 * (>40%) | <0.75 (>30%) 0.15–0.45 * (>40%) | mesolithal, microlithal, acal, psammal (>50%) | submerged or emerged vegetation, woody debris |
References
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Bongaarts, J. IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Popul. Dev. Rev. 2019, 45, 680–681. [Google Scholar] [CrossRef] [Green Version]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Woodward, G.; Perkins, D.; Brown, L. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2093–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, C.; Laizé, C.L.R.; Acreman, M.C.; Flörke, M. How will climate change modify river flow regimes in Europe? Hydrol. Earth Syst. Sci. 2013, 17, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Arnell, N.W.; Gosling, S. The impacts of climate change on river flow regimes at the global scale. J. Hydrol. 2013, 486, 351–364. [Google Scholar] [CrossRef]
- Roudier, P.; Andersson, J.C.M.; Donnelly, C.; Feyen, L.; Greuell, W.; Ludwig, F. Projections of future floods and hydrological droughts in Europe under a +2 °C global warming. Clim. Chang. 2015, 135, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Asadieh, B.; Krakauer, N.Y. Global change in streamflow extremes under climate change over the 21st century. Hydrol. Earth Syst. Sci. 2017, 21, 5863–5874. [Google Scholar] [CrossRef] [Green Version]
- Döll, P.; Zhang, J. Impact of climate change on freshwater ecosystems: A global-scale analysis of ecologically relevant river flow alterations. Hydrol. Earth Syst. Sci. 2010, 14, 783–799. [Google Scholar] [CrossRef] [Green Version]
- Döll, P.; Fiedler, K.; Zhang, J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci. 2009, 13, 2413–2432. [Google Scholar] [CrossRef] [Green Version]
- Cui, T.; Tian, F.; Yang, T.; Wen, J.; Khan, M.Y.A. Development of a comprehensive framework for assessing the impacts of climate change and dam construction on flow regimes. J. Hydrol. 2020, 590, 125358. [Google Scholar] [CrossRef]
- Arcadis. Hydropower Generation in the Context of the EU WFD; EC DG Environment: Brussels, Belgium, 2011; p. 168. Available online: https://op.europa.eu/en/publication-detail/-/publication/67f12506-5494-4b7e-8742-11b70c6cd280 (accessed on 5 December 2021).
- European Environment Agency. European Waters: Assessment of Status and Pressures 2018; Publications Office of the European Union: Luxembourg, 2018. [CrossRef]
- Zeiringer, B.; Seliger, C.; Greimel, F.; Schmutz, S. River Hydrology, Flow Alteration, and Environmental Flow. Riverine Ecosyst. Manag. 2018, 8, 67–89. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Lumsdon, A.E.; MacDonald, G.K.; Zarfl, C.; Liermann, C.R. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 2015, 10, 015001. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The Natural Flow Regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Olden, J.D.; Poff, N.L. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Res. Appl. 2003, 19, 101–121. [Google Scholar] [CrossRef]
- Richter, B.; Baumgartner, J.; Wigington, R.; Braun, D. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.L.; Sale, M.J.; Mulholland, P.J.; LeRoy Poff, N. Impacts of climate change on aquatic ecosystem functioning and health. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 1373–1386. [Google Scholar] [CrossRef]
- Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems. River Res. Appl. 2005, 21, 849–864. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.W.; Döll, P.; Kabat, P.; Jim´enez, B.; Miller, K.A.; Oki, T.; Sen, Z.; Shiklomanov, I.A. Freshwater resources and their management. In Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 173–210. [Google Scholar]
- Poff, N.L.; Zimmerman, J.K.H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 2010, 55, 194–205. [Google Scholar] [CrossRef]
- Ely, P.; Fantin-Cruz, I.; Tritico, H.M.; Girard, P.; Kaplan, D. Dam-Induced Hydrologic Alterations in the Rivers Feeding the Pantanal. Front. Environ. Sci. 2020, 8, 579031. [Google Scholar] [CrossRef]
- Goldenberg-Vilar, A.; Delgado, C.; Peñas, F.J.; Barquín, J. The effect of altered flow regimes on aquatic primary producer communities: Diatoms and macrophytes. Ecohydrology 2021, e2353. [Google Scholar] [CrossRef]
- Hülber, K.; Kuttner, M.; Moser, D.; Rabitsch, W.; Schindler, S.; Wessely, J.; Gattringer, A.; Essl, F.; Dullinger, S. Habitat availability disproportionally amplifies climate change risks for lowland compared to alpine species. Glob. Ecol. Conserv. 2020, 23, e01113. [Google Scholar] [CrossRef]
- Royan, A.; Prudhomme, C.; Hannah, D.M.; Reynolds, S.J.; Noble, D.G.; Sadler, J.P. Climate-induced changes in river flow regimes will alter future bird distributions. Ecosphere 2015, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.P.; Freeman, M.C.; Pringle, C.M. Ecological consequences of hydropower development in Central America: Impacts of small dams and water diversion on neotropical stream fish assemblages. River Res. Appl. 2006, 22, 397–411. [Google Scholar] [CrossRef]
- Morrongiello, J.R.; Beatty, S.J.; Bennett, J.C.; Crook, D.A.; Ikedife, D.N.E.N.; Kennard, M.J.; Kerezsy, A.; Lintermans, M.; McNeil, D.G.; Pusey, B.J.; et al. Climate change and its implications for Australia’s freshwater fish. Mar. Freshw. Res. 2011, 62, 1082–1098. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, S.; Yanagawa, A.; Iwasaki, Y.; Sui, P.; Koirala, S.; Hirano, K.; Khajuria, A.; Mahendran, R.; Hirabayashi, Y.; Yoshimura, C.; et al. Illustrating a new global-scale approach to estimating potential reduction in fish species richness due to flow alteration. Hydrol. Earth Syst. Sci. 2014, 18, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Poesch, M.S.; Chavarie, L.; Chu, C.; Pandit, S.N.; Tonn, W. Climate Change Impacts on Freshwater Fishes: A Canadian Perspective. Fisheries 2016, 41, 385–391. [Google Scholar] [CrossRef]
- Segurado, P.; Branco, P.; Jauch, E.; Neves, R.; Ferreira, T. Sensitivity of river fishes to climate change: The role of hydrological stressors on habitat range shifts. Sci. Total Environ. 2016, 562, 435–445. [Google Scholar] [CrossRef]
- Rytwinski, T.; Taylor, J.J.; Bennett, J.R.; Smokorowski, K.E.; Cooke, S.J. What are the impacts of flow regime changes on fish productivity in temperate regions? A systematic map protocol. Environ. Évid. 2017, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Fabris, L.; Lazzaro, G.; Buddendorf, W.B.; Botter, G.; Soulsby, C. A general analytical approach for assessing the effects of hydroclimatic variability on fish habitat. J. Hydrol. 2018, 566, 520–530. [Google Scholar] [CrossRef]
- Morales-Marín, L.; Rokaya, P.; Sanyal, P.; Sereda, J.; Lindenschmidt, K. Changes in streamflow and water temperature affect fish habitat in the Athabasca River basin in the context of climate change. Ecol. Model. 2019, 407, 108718. [Google Scholar] [CrossRef]
- Moreydo, V.; Millionshchikova, T.; Chalov, S. Modelling future hydroclimatic effects on the Coregonus migratorius spawning migration in the Selenga River and Lake Baikal. Proc. Int. Assoc. Hydrol. Sci. 2019, 381, 113–119. [Google Scholar] [CrossRef]
- Hughes, S.J.; Santos, J.M.; Ferreira, M.T.; Caraça, R.; Mendes, A.M. Ecological assessment of an intermittent Mediterranean river using community structure and function: Evaluating the role of different organism groups. Freshw. Biol. 2009, 54, 2383–2400. [Google Scholar] [CrossRef] [Green Version]
- Marzin, A.; Archaimbault, V.; Belliard, J.; Chauvin, C.; Delmas, F.; Pont, D. Ecological assessment of running waters: Do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures? Ecol. Indic. 2012, 23, 56–65. [Google Scholar] [CrossRef]
- Šarauskienė, D.; Adžgauskas, G.; Kriaučiūnienė, J.; Jakimavičius, D. Analysis of Hydrologic Regime Changes Caused by Small Hydropower Plants in Lowland Rivers. Water 2021, 13, 1961. [Google Scholar] [CrossRef]
- Virbickas, T.; Vezza, P.; Kriaučiūnienė, J.; Akstinas, V.; Šarauskienė, D.; Steponėnas, A. Impacts of low-head hydropower plants on cyprinid-dominated fish assemblages in Lithuanian rivers. Sci. Rep. 2020, 10, 21687. [Google Scholar] [CrossRef] [PubMed]
- Kriauciuniene, J.; Meilutyte-Barauskiene, D.; Rimkus, E.; Kazys, J.; Vincevicius, A. Climate change impact on hydrological processes in Lithuanian Nemunas river basin. Baltica 2008, 21, 51–61. [Google Scholar]
- Jakimavičius, D.; Adžgauskas, G.; Šarauskienė, D.; Kriaučiūnienė, J. Climate Change Impact on Hydropower Resources in Gauged and Ungauged Lithuanian River Catchments. Water 2020, 12, 3265. [Google Scholar] [CrossRef]
- Šarauskienė, D.; Akstinas, V.; Kriaučiūnienė, J.; Jakimavičius, D.; Bukantis, A.; Kažys, J.; Povilaitis, A.; Ložys, L.; Kesminas, V.; Virbickas, T.; et al. Projection of Lithuanian river runoff, temperature and their extremes under climate change. Hydrol. Res. 2017, 49, 344–362. [Google Scholar] [CrossRef]
- Kriaučiūnienė, J.; Virbickas, T.; Šarauskienė, D.; Jakimavičius, D.; Kažys, J.; Bukantis, A.; Kesminas, V.; Povilaitis, A.; Dainys, J.; Akstinas, V.; et al. Fish assemblages under climate change in Lithuanian rivers. Sci. Total Environ. 2019, 661, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Virbickas, J. Lithuanian Fish; Trys žvaigždutės: Vilnius, Lithuania, 2000; p. 192. (In Lithuanian) [Google Scholar]
- Parasiewicz, P.; Rogers, J.N.; Vezza, P.; Gortázar, J.; Seager, T.; Pegg, M.; Wiśniewolski, W.; Comoglio, C. Applications of the MesoHABSIM Simulation Model. Ecohydraulics Integr. Approach 2013, 109–124. [Google Scholar] [CrossRef]
- Belletti, B.; Rinaldi, M.; Bussettini, M.; Comiti, F.; Gurnell, A.M.; Mao, L.; Nardi, L.; Vezza, P. Characterising physical habitats and fluvial hydromorphology: A new system for the survey and classification of river geomorphic units. Geomorphology 2017, 283, 143–157. [Google Scholar] [CrossRef]
- Parasiewicz, P. The MesoHABSIM model revisited. River Res. Appl. 2007, 23, 893–903. [Google Scholar] [CrossRef]
- Adamczyk, M.; Parasiewicz, P.; Vezza, P.; Prus, P.; de Cesare, G. Empirical Validation of MesoHABSIM Models Developed with Different Habitat Suitability Criteria for Bullhead Cottus Gobio L. as an Indicator Species. Water 2019, 11, 726. [Google Scholar] [CrossRef] [Green Version]
- Zanin, A.; Vezza, P.; Comoglio, C. Strumenti GIS per la descrizione, valutazione e modellazione dell’ habitat fluviale. In XXXV Convegno Nazionale di Idraulica e Costruzioni; Idrauliche: Bologna, Italy, 2016; pp. 739–742. [Google Scholar]
- United Nations Educational, Scientific and Cultural Organization (UNESCO). Methods of hydrological computations for water projects. In A Contribution to the International Hydrological Programme; Report Prepared by the Working Group—Project 3.1; Eichert, B.S., Kindler, J., Schultz, G.A., Sokolov, A.A., Eds.; United Nations: Paris, France, 1982; p. 124. [Google Scholar]
- Swedish Meteorological and Hydrological Institute (SMHI). Integrated Hydrological Modelling System, Manual, Version 5.8; Swedish Meteorological and Hydrological Institute: Norrköping, Sweden, 2005; p. 115.
- Akstinas, V.; Jakimavičius, D.; Meilutytė-Lukauskienė, D.; Kriaučiūnienė, J.; Šarauskienė, D. Uncertainty of annual runoff projections in Lithuanian rivers under a future climate. Hydrol. Res. 2019, 51, 257–271. [Google Scholar] [CrossRef]
- Jakimavičius, D.; Kriaučiūnienė, J.; Šarauskienė, D. Impact of climate change on the Curonian Lagoon water balance components, salinity and water temperature in the 21st century. Oceanologia 2018, 60, 378–389. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—a comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Sunyer, M.A.; Hundecha, Y.; Lawrence, D.; Madsen, H.; Willems, P.; Martinkova, M.; Vormoor, K.; Bürger, G.; Hanel, M.; Kriaučiūnienė, J.; et al. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 1827–1847. [Google Scholar] [CrossRef] [Green Version]
- Vezza, P.; Goltara, A.; Spairani, M.; Zolezzi, G.; Siviglia, A.; Carolli, M.; Bruno, M.C.; Boz, B.; Stellin, D.; Comoglio, C.; et al. Habitat Indices for Rivers: Quantifying the Impact of Hydro-Morphological Alterations on the Fish Community. Eng. Geol. Soc. Territ. 2014, 3, 357–360. [Google Scholar] [CrossRef]
- Parasiewicz, P.; Ryan, K.; Vezza, P.; Comoglio, C.; Ballestero, T.; Rogers, J.N. Use of quantitative habitat models for establishing performance metrics in river restoration planning. Ecohydrology 2013, 6, 668–678. [Google Scholar] [CrossRef]
- Rinaldi, M.; Gurnell, A.M.; Belletti, B.; Berga Cano, M.I.; Bizzi, S.; Bussettini, M.; Gonzalez del Tanago, M.; Grabowski, R.; Habersack, H.; Klösch, M.; et al. Final Report on Methods, Models, Tools to Assess the Hydromorphology of Rivers, Deliverable 6.2, Part 1, of REFORM (REstoring Rivers FOR Effective Catchment Management), a Collaborative Project (Large-Scale Integrating Project) Funded by the European Commission within the 7th Framework Programme under Grant Agreement; 282656; 2015; p. 112. Available online: https://www.reformrivers.eu/system/files/6.2%20Methods%20to%20assess%20hydromorphology%20of%20rivers%20part%20I.pdf (accessed on 5 December 2021).
- Kubečka, J.; Matěna, J.; Hartvich, P. Adverse ecological effects of small hydropower stations in the Czech Republic: Bypass plants. Regul. Rivers Res. Manag. 1997, 13, 101–113. [Google Scholar] [CrossRef]
- Ovidio, M.; Capra, H.; Philippart, J.-C. Regulated discharge produces substantial demographic changes on four typical fish species of a small salmonid stream. Hydrobiologia 2008, 609, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Brooker, R.W.; Travis, J.; Clark, E.J.; Dytham, C. Modelling species’ range shifts in a changing climate: The impacts of biotic interactions, dispersal distance and the rate of climate change. J. Theor. Biol. 2007, 245, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.C.; Tewksbury, J.J.; Sheldon, K.S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Boil. Sci. 2012, 279, 2072–2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearsons, T.N.; Li, H.W.; Lamberti, G.A. Influence of Habitat Complexity on Resistance to Flooding and Resilience of Stream Fish Assemblages. Trans. Am. Fish. Soc. 1992, 121, 427–436. [Google Scholar] [CrossRef]
- Jones, N.E.; Petreman, I.C. Relating extremes of flow and air temperature to stream fish communities. Ecohydrology 2012, 6, 826–835. [Google Scholar] [CrossRef]
- Grenouillet, G.; Schmidt-Kloiber, A. Fish Indicator Database. Euro-Limpacs Project, Workpackage 7—Indicators of Ecosystem Health, Task 4. Available online: https://www.freshwaterecology.info (accessed on 5 December 2021).
- Froese, R.; Pauly, D. FishBase. World Wide Web Electronic Publication. Available online: www.fishbase.org (accessed on 5 December 2021).
- Nunn, A.D.; Harvey, J.P.; Britton, J.R.; Frear, P.A.; Cowx, I.G. Fish, climate and the Gulf Stream: The influence of abiotic factors on the recruitment success of cyprinid fishes in lowland rivers. Freshw. Biol. 2007, 52, 1576–1586. [Google Scholar] [CrossRef]
Case Study Characteristic | Verknė | Širvinta | Šešupė | Bartuva |
---|---|---|---|---|
River length, km | 77.1 | 128.6 | 297.6 | 101.3 |
Catchment area, km2 | 728 | 918 | 6105 | 2020 |
Water gauging station (WGS) | Verbyliškės | Liukonys | Kudirkos Naumiestis | Skuodas |
WGS distance from the river mouth, km | 13.7 | 22.9 | 113.4 | 48.7 |
Catchment area at WGS, km2 | 694 | 835 | 3179 | 617 |
Selected hydropower plant (HPP) | Jundeliškės | Širvinta | Antanavas | Skuodas |
Year of HPP construction | 2000 | 2002 | 1957 | 2000 |
Area of HPP reservoir, ha | 14.8 | 48.5 | 107.7 | 85.9 |
HPP height of pressure, m | 6.6 | 4.5 | 5.6 | 8 |
Capacity of HPP, kW | 375 | 180 | 400 | 220 |
Number of turbines (type) | 3 (Francis) | 2 (Kaplan) | 2 (Kaplan) | 2 (Kaplan) |
Environmental flow, m3/s | 1.47 | 0.390 | 1.62 | 0.220 |
Distance of selected river reach (downstream HPP) from the mouth, km | 4.6 | 78.4 | 174.4 | 49.4 |
Catchment area at selected river reaches downstream of HPP, km2 | 718 | 503 | 1924 | 260 |
River | Calibration | Validation | ||||
---|---|---|---|---|---|---|
r | NSE | RE, % | r | NSE | RE, % | |
Verknė | 0.70 | 0.49 | −8.0 | 0.77 | 0.59 | 7.7 |
Širvinta | 0.79 | 0.63 | −10.4 | 0.78 | 0.61 | 13.3 |
Šešupė | 0.83 | 0.70 | −9.8 | 0.66 | 0.57 | 12.6 |
Bartuva | 0.77 | 0.60 | −7.3 | 0.75 | 0.54 | 8.7 |
River | Verknė | Širvinta | Šešupė | Bartuva | ||||
---|---|---|---|---|---|---|---|---|
Value | Hist | Actual | Hist | Actual | Hist | Actual | Hist | Actual |
Qextreme_low | - | - | - | 0.195 22/07/20 | - | 0.370 17/08/20 | - | - |
Q30_min | 1.38 | 1.48 18/08/20 | 0.405 | 0.495 02/07/20 | 0.769 | - | 0.120 | 0.081 29/08/17 |
Q30_ave | 2.27 | 1.98 09/07/20 | 0.917 | 0.950 22/10/20 | 2.53 | 2.50 23/07/20 | 0.320 | 0.480 02/08/17 |
Q30_max | 3.72 | 3.31 20/11/20 | 1.95 | 2.33 28/04/21 | 6.36 | 4.51 09/06/21 | 0.790 | 1.12 12/09/17 |
Qannual_mean | 5.29 | 4.89 15/04/21 | 3.53 | 3.45 24/11/20 | 10.6 | 9.22 15/04/21 | 3.18 | 4.88 23/10/17 |
Number of Days | Δ, Days | |||||||
---|---|---|---|---|---|---|---|---|
1986–2005 | 2021–2040 | 2081–2100 | ||||||
River | Q Situation | Observed | RCP2.6 | RCP4.5 | RCP8.5 | RCP2.6 | RCP4.5 | RCP8.5 |
Verknė | Q30_min | 13 | 2 | −1 | 9 | 7 | 11 | 16 |
Q30_ave | 76 | 5 | −14 | 6 | 1 | 7 | 25 | |
Q30_max | 123 | 0 | 11 | −7 | 0 | −3 | −13 | |
Qannual_mean | 84 | −2 | 8 | −8 | −8 | −10 | −14 | |
Qremaining | 69 | −5 | −4 | 0 | 0 | −5 | −14 | |
Širvinta | Q30_min | 19 | 3 | −3 | 0 | 6 | 8 | 15 |
Q30_ave | 89 | −4 | −11 | −4 | −4 | −9 | −11 | |
Q30_max | 110 | 1 | 5 | 1 | −7 | 4 | 0 | |
Qannual_mean | 68 | 0 | 5 | −1 | −1 | −2 | −6 | |
Qremaining | 79 | 0 | 4 | 4 | 6 | −1 | 2 | |
Šešupė | Q30_min | 21 | 8 | 4 | 9 | 8 | 20 | 32 |
Q30_ave | 96 | 6 | 1 | 8 | 8 | 1 | 10 | |
Q30_max | 106 | −2 | 1 | −1 | −4 | −4 | −21 | |
Qannual_mean | 63 | 4 | 4 | −1 | 1 | −5 | −9 | |
Qremaining | 79 | −16 | −10 | −15 | −13 | −12 | −12 | |
Bartuva | Q30_min | 11 | 2 | −2 | 2 | 5 | 8 | 19 |
Q30_ave | 52 | 10 | 8 | 0 | 12 | 13 | 16 | |
Q30_max | 152 | −4 | 9 | 10 | −3 | 3 | −21 | |
Qannual_mean | 66 | −5 | −15 | −10 | −11 | −18 | −23 | |
Qremaining | 84 | −3 | 0 | −2 | −3 | −6 | 9 |
River | Metric | Bleak | Chub | Dace | Gudgeon | Minnow | Roach | Schneider | Stone loach | Bullhead | Salmon (juv.) | Trout (juv.) | Vimba |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Verknė | S% | 29.0 | 45.3 | 17.9 | 44.9 | 39.3 | 35.2 | 16.3 | 35.6 | 18.2 | 33.3 | 19.6 | 25.9 |
SQ97% | 21.5 | 41.7 | 11.6 | 45.1 | 42.5 | 29.6 | 9.4 | 48.5 | 11.6 | 17.0 | 13.0 | 7.1 | |
ISH | 0.91 | 0.95 | 0.91 | 1.00 | 1.00 | 0.94 | 0.94 | 1.00 | 0.96 | 0.90 | 0.92 | 0.88 | |
SDA | 53 | 27 | 82 | 30 | 38 | 50 | 95 | 0 | 43 | 107 | 107 | 83 | |
ITH | 0.82 | 0.90 | 0.73 | 0.89 | 0.87 | 0.83 | 0.70 | 1.00 | 0.85 | 0.67 | 0.67 | 0.73 | |
Širvinta | S% | 26.6 | 38.7 | 19.9 | 48.2 | 35.0 | 27.8 | 17.0 | 16.1 | 8.3 | 9.3 | 14.8 | |
SQ97% | 21.0 | 26.2 | 17.6 | 50.4 | 29.7 | 20.7 | 5.9 | 19.1 | 8.6 | 5.2 | 14.4 | ||
ISH | 0.96 | 0.94 | 0.97 | 1.00 | 0.94 | 0.91 | 0.87 | 1.00 | 1.00 | 0.93 | 0.99 | ||
SDA | 126 | 156 | 58 | 55 | 142 | 138 | 126 | 0 | 0 | 61 | 63 | ||
ITH | 0.62 | 0.55 | 0.80 | 0.81 | 0.58 | 0.59 | 0.62 | 1.00 | 1.00 | 0.79 | 0.79 | ||
Šešupė | S% | 48.2 | 40.0 | 15.6 | 29.0 | 8.5 | 24.7 | 15.2 | 5.7 | ||||
SQ97% | 23.8 | 20.7 | 12.4 | 29.4 | 3.9 | 12.6 | 2.8 | 6.0 | |||||
ISH | 0.91 | 0.93 | 0.96 | 1.00 | 0.89 | 0.92 | 0.90 | 1.00 | |||||
SDA | 104 | 108 | 20 | 14 | 105 | 119 | 119 | 0 | |||||
ITH | 0.67 | 0.66 | 0.93 | 0.95 | 0.67 | 0.64 | 0.64 | 1.00 | |||||
Bartuva | S% | 27.3 | 36.2 | 16.3 | 36.4 | 22.0 | 26.0 | 14.8 | 8.6 | ||||
SQ97% | 8.9 | 15.8 | 5.3 | 19.6 | 6.0 | 8.3 | 3.9 | 4.1 | |||||
ISH | 0.91 | 0.92 | 0.90 | 0.94 | 0.91 | 0.91 | 0.90 | 0.93 | |||||
SDA | 135 | 135 | 64 | 117 | 123 | 85 | 135 | 36 | |||||
ITH | 0.60 | 0.60 | 0.79 | 0.64 | 0.63 | 0.73 | 0.60 | 0.87 |
River | RCP | Bleak | Chub | Dace | Gudgeon | Minnow | Roach | Schneider | Stone loach | Bullhead | Salmon (juv.) | Trout (juv.) | Vimba | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ISH | ITH | ISH | ITH | ISH | ITH | ISH | ITH | ISH | ITH | ISH | ITH | ISH | ITH | ISH | ITH | ISH | ITH | ISH | ITH | ISH | ITH | ISH | ITH | ||
Verknė | N2.6 | 1 | 1 | 1 | 1 | 1 | 0.9 | 1 | 0.97 | 1 | 1 | 1 | 1 | 1 | 0.9 | 1 | 1 | 1 | 0.76 | 1 | 0.76 | 1 | 1 | 1 | 0.96 |
N4.5 | 1 | 1 | 1 | 0.99 | 1 | 0.97 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.97 | 1 | 1 | 0.99 | 1 | 1 | 1 | 0.99 | 1 | 0.99 | 0.96 | |
N8.5 | 0.97 | 0.51 | 0.97 | 0.56 | 0.96 | 0.6 | 0.97 | 0.71 | 0.98 | 0.83 | 0.97 | 0.51 | 0.98 | 0.6 | 0.98 | 0.81 | 0.99 | 0.51 | 0.97 | 0.51 | 0.99 | 0.83 | 0.97 | 0.52 | |
F2.6 | 0.97 | 0.53 | 0.97 | 0.56 | 0.97 | 0.6 | 0.97 | 0.71 | 0.98 | 0.85 | 0.97 | 0.52 | 0.98 | 0.6 | 0.98 | 0.81 | 1 | 0.51 | 0.98 | 0.51 | 0.99 | 0.86 | 0.98 | 0.52 | |
F4.5 | 0.95 | 0.36 | 0.96 | 0.48 | 0.94 | 0.48 | 0.96 | 0.66 | 0.97 | 0.79 | 0.95 | 0.36 | 0.96 | 0.48 | 0.98 | 0.48 | 0.98 | 0.29 | 0.95 | 0.29 | 0.97 | 0.8 | 0.95 | 0.33 | |
F8.5 | 0.93 | 0.28 | 0.95 | 0.46 | 0.93 | 0.48 | 0.95 | 0.65 | 0.97 | 0.76 | 0.95 | 0.28 | 0.95 | 0.48 | 0.98 | 0.27 | 0.97 | 0.1 | 0.93 | 0.27 | 0.96 | 0.8 | 0.93 | 0.27 | |
Širvinta | N2.6 | 0.96 | 0.35 | 0.96 | 0.35 | 0.98 | 0.1 | 0.96 | 0.94 | 0.94 | 0.41 | 0.97 | 0.22 | 0.96 | 0.35 | 0.98 | 0.84 | 0.98 | 0.92 | 0.97 | 0.18 | 0.97 | 0.35 | ||
N4.5 | 0.98 | 0.88 | 0.98 | 0.88 | 0.99 | 0.93 | 0.99 | 0.95 | 0.98 | 0.97 | 0.99 | 0.89 | 0.97 | 0.88 | 1 | 0.95 | 1 | 0.96 | 0.98 | 0.86 | 0.99 | 0.88 | |||
N8.5 | 0.99 | 0.89 | 0.99 | 0.89 | 1 | 0.94 | 0.99 | 0.98 | 0.99 | 0.97 | 1 | 0.9 | 0.99 | 0.89 | 1 | 0.96 | 1 | 0.98 | 0.99 | 0.87 | 1 | 0.89 | |||
F2.6 | 0.97 | 0.83 | 0.97 | 0.83 | 0.99 | 0.2 | 0.97 | 0.97 | 0.95 | 0.65 | 0.98 | 0.64 | 0.96 | 0.83 | 0.99 | 0.94 | 0.99 | 0.98 | 0.98 | 0.25 | 0.98 | 0.83 | |||
F4.5 | 0.96 | 0.22 | 0.96 | 0.22 | 0.98 | 0.08 | 0.95 | 0.79 | 0.93 | 0.3 | 0.97 | 0.14 | 0.96 | 0.22 | 0.97 | 0.74 | 0.98 | 0.85 | 0.97 | 0.18 | 0.97 | 0.22 | |||
F8.5 | 0.96 | 0.18 | 0.96 | 0.18 | 0.98 | 0.08 | 0.96 | 0.9 | 0.93 | 0.3 | 0.97 | 0.14 | 0.95 | 0.18 | 0.98 | 0.81 | 0.98 | 0.88 | 0.97 | 0.18 | 0.97 | 0.18 | |||
Šešupė | N2.6 | 0.91 | 0.34 | 0.93 | 0.34 | 0.93 | 0.34 | 0.93 | 0.9 | 0.89 | 0.32 | 0.91 | 0.34 | 0.94 | 0.34 | 0.94 | 0.91 | ||||||||
N4.5 | 0.92 | 0.37 | 0.94 | 0.34 | 0.94 | 0.37 | 0.92 | 0.89 | 0.89 | 0.33 | 0.92 | 0.37 | 0.97 | 0.37 | 0.91 | 0.92 | |||||||||
N8.5 | 0.92 | 0.32 | 0.94 | 0.31 | 0.93 | 0.32 | 0.91 | 0.88 | 0.89 | 0.28 | 0.91 | 0.32 | 0.98 | 0.32 | 0.9 | 0.91 | |||||||||
F2.6 | 0.91 | 0.33 | 0.93 | 0.31 | 0.93 | 0.33 | 0.92 | 0.89 | 0.89 | 0.31 | 0.91 | 0.33 | 0.95 | 0.33 | 0.92 | 0.91 | |||||||||
F4.5 | 0.86 | 0.04 | 0.88 | 0.04 | 0.86 | 0.04 | 0.83 | 0.72 | 0.83 | 0.04 | 0.86 | 0.04 | 0.93 | 0.04 | 0.78 | 0.72 | |||||||||
F8.5 | 0.87 | 0.13 | 0.88 | 0.11 | 0.88 | 0.13 | 0.88 | 0.75 | 0.85 | 0.11 | 0.86 | 0.13 | 0.89 | 0.13 | 0.88 | 0.92 | |||||||||
Bartuva | N2.6 | 0.99 | 0.88 | 1 | 0.88 | 1 | 0.88 | 0.99 | 0.89 | 0.98 | 0.87 | 0.99 | 0.9 | 0.99 | 0.9 | 1 | 0.87 | ||||||||
N4.5 | 0.97 | 0.68 | 0.96 | 0.68 | 0.97 | 0.68 | 0.95 | 0.79 | 0.98 | 0.78 | 0.97 | 0.68 | 0.98 | 0.8 | 0.95 | 0.79 | |||||||||
N8.5 | 0.99 | 0.88 | 1 | 0.88 | 0.99 | 0.88 | 1 | 0.89 | 0.99 | 0.94 | 0.99 | 0.9 | 0.99 | 0.99 | 1 | 0.91 | |||||||||
F2.6 | 0.99 | 0.88 | 1 | 0.88 | 0.99 | 0.88 | 1 | 0.87 | 0.98 | 0.94 | 0.99 | 0.9 | 0.98 | 0.99 | 1 | 0.9 | |||||||||
F4.5 | 0.97 | 0.85 | 0.98 | 0.85 | 0.98 | 0.85 | 0.98 | 0.87 | 0.97 | 0.85 | 0.98 | 0.93 | 0.97 | 0.64 | 0.98 | 0.71 | |||||||||
F8.5 | 0.98 | 0.85 | 0.98 | 0.85 | 0.97 | 0.85 | 0.99 | 0.89 | 0.98 | 0.87 | 0.97 | 0.93 | 0.96 | 0.71 | 0.99 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akstinas, V.; Virbickas, T.; Kriaučiūnienė, J.; Šarauskienė, D.; Jakimavičius, D.; Rakauskas, V.; Negro, G.; Vezza, P. The Combined Impact of Hydropower Plants and Climate Change on River Runoff and Fish Habitats in Lowland Watersheds. Water 2021, 13, 3508. https://doi.org/10.3390/w13243508
Akstinas V, Virbickas T, Kriaučiūnienė J, Šarauskienė D, Jakimavičius D, Rakauskas V, Negro G, Vezza P. The Combined Impact of Hydropower Plants and Climate Change on River Runoff and Fish Habitats in Lowland Watersheds. Water. 2021; 13(24):3508. https://doi.org/10.3390/w13243508
Chicago/Turabian StyleAkstinas, Vytautas, Tomas Virbickas, Jūratė Kriaučiūnienė, Diana Šarauskienė, Darius Jakimavičius, Vytautas Rakauskas, Giovanni Negro, and Paolo Vezza. 2021. "The Combined Impact of Hydropower Plants and Climate Change on River Runoff and Fish Habitats in Lowland Watersheds" Water 13, no. 24: 3508. https://doi.org/10.3390/w13243508
APA StyleAkstinas, V., Virbickas, T., Kriaučiūnienė, J., Šarauskienė, D., Jakimavičius, D., Rakauskas, V., Negro, G., & Vezza, P. (2021). The Combined Impact of Hydropower Plants and Climate Change on River Runoff and Fish Habitats in Lowland Watersheds. Water, 13(24), 3508. https://doi.org/10.3390/w13243508