Study on Parameters of Two Widely Used Cohesive Soils Erosion Models
Abstract
:1. Introduction
2. Methods
3. Erosion Function Apparatus Tests Database
4. Results and Discussion
4.1. The Data Range of the Experimental Erodibility Parameters Values
4.2. Relation between z0 and τc and between b0 and b1
4.3. Multiple Nonlinear Regression Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Partheniades, E. Erosion and deposition of cohesive soils. J. Hydraul. Div. ASCE 1965, 91, 105–139. [Google Scholar] [CrossRef]
- Hanson, G.J. Surface erodibility of earthen channels at high stresses part I-open channel testing. Trans. ASAE 1990, 33, 127–131. [Google Scholar] [CrossRef]
- Hanson, G.J. Surface erodibility of earthen channels at high stresses part II-developing an in situ testing device. Trans. ASAE 1990, 33, 132–137. [Google Scholar] [CrossRef]
- Hanson, G.J.; Cook, K.R. Apparatus, test procedures, and analytical methods to measure soil erodibility in situ. Appl. Eng. Agric. 2004, 20, 455–462. [Google Scholar] [CrossRef]
- Gailani, J.; Ziegler, C.K.; Lick, W. Transport of suspended solids in the Lower Fox River. J. Great Lakes Res. 1991, 17, 479–494. [Google Scholar] [CrossRef]
- Lin, Q.; Wu, W. A one-dimensional model of mixed cohesive and non-cohesive sediment transport in open channels. J. Hydraul. Res. 2013, 51, 506–517. [Google Scholar] [CrossRef]
- Wicks, J.M.; Bathurst, J.C. SHESED: A physically based, distributed erosion and sediment yield component for the SHE hydrological modelling system. J. Hydrol. 1996, 175, 213–238. [Google Scholar] [CrossRef]
- Henderson, M.B.; Wynn, T.M.; Vaughn, D.H. Changes in streambank erodibility and critical shear stress due to subaerial processes. In Proceedings of the 2006 ASABE Annual Meeting American Society of Agricultural and Biological Engineers, Portland, OR, USA, 9–12 July 2006. [Google Scholar]
- Wynn, T.M.; Henderson, M.B.; Vaughn, D.H. Changes in streambank erodibility and critical shear stress due to subaerial processes along a headwater stream, southwestern Virginia, USA. Geomorphology 2007, 97, 260–273. [Google Scholar] [CrossRef]
- Wilson, B.N. Development of a fundamentally based detachment model. Trans. ASAE 1993, 36, 1105–1114. [Google Scholar] [CrossRef]
- Wilson, B.N. Evaluation of a fundamentally based detachment model. Trans. ASAE 1993, 36, 1115–1122. [Google Scholar] [CrossRef]
- Al-Madhhachi, A.T.; Hanson, G.J.; Fox, G.A.; Tyagi, A.K.; Bulut, R. Deriving parameters of a fundamental detachment model for cohesive soils from flume and jet erosion tests. Trans. ASABE 2013, 56, 489–504. [Google Scholar] [CrossRef]
- Hasan, M.B.; Al-Madhhachi, A.T. The influence of crude oil on mechanistic detachment rate parameters. Geosciences 2018, 8, 332. [Google Scholar] [CrossRef] [Green Version]
- Abbood, A.A.; Al-Madhhachi, A.T. Quantifying mechanistic detachment parameters due to humic acids in biological soil crusts. Land 2021, 10, 1180. [Google Scholar] [CrossRef]
- Al-Madhhachi, A.T.; Mutter, G.M.; Hasan, M.B. Predicting mechanistic detachment model due to Lead-Contaminated soil treated with Iraqi Stabilizers. KSCE J. Civ. Eng. 2019, 23, 2898–2907. [Google Scholar] [CrossRef]
- Criswell, D.T.; Al-Madhhachi, A.T.; Fox, G.A.; Miller, R.B. Deriving erodibility parameters of a mechanistic detachment model for gravels. Trans. ASABE 2016, 59, 145–151. [Google Scholar]
- Al-Madhhachi, A.T.; Fox, G.A.; Hanson, G.J. Quantifying the erodibility of streambanks and hillslopes due to surface and subsurface forces. Trans. ASABE 2014, 57, 1057–1069. [Google Scholar]
- Al-Madhhachi, A.T.; Fox, G.A.; Hanson, G.J.; Tyagi, A.K.; Bulut, R. Mechanistic detachment rate model to predict soil erodibility due to fluvial and seepage forces. J. Hydraul. Eng. 2014, 5, 04014010. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Wang, Q.; Ma, G. Experimental investigation on the erosion threshold and rate of gravel and silt clay mixtures. Trans. ASABE 2019, 62, 867–875. [Google Scholar] [CrossRef]
- Hanson, G.J.; Cook, K.R. Development of excess shear stress parameters for circular jet testing. In Proceedings of the American Society of Agricultural Engineers Meetings Papers, Minneapolis, MN, USA, 10–14 August 1997. [Google Scholar]
- Hanson, G.J.; Robinson, K.M.; Cook, K.R. Scour below an overfall: Part II. Prediction. Trans. ASAE 2002, 45, 957–964. [Google Scholar] [CrossRef]
- Daly, E.R.; Fox, G.A.; Al-Madhhachi, A.T.; Miller, R.B. A scour depth approach for deriving erodibility parameters from jet erosion tests. Trans. ASABE 2013, 56, 1343–1351. [Google Scholar]
- Al-Madhhachi, A.T. Variability in soil erodibility parameters of Tigris Riverbanks using linear and non-linear models. Al-Nahrain J. Eng. Sci. 2017, 20, 959–969. [Google Scholar]
- Hanson, G.J.; Simon, A. Erodibility of cohesive streambeds in the loess area of the Midwestern USA. Hydrol. Process. 2001, 15, 23–38. [Google Scholar] [CrossRef]
- Simon, A.; Bankhead, N.L.; Thomas, R.E. Development and application of a deterministic Bank-Stability and Toe-Erosion Model (BSTEM) for stream restoration. In Stream Restoration in Dynamic Systems: Scientific Approaches, Analyses, and Tools; American Geophysical Union: Washington, DC, USA, 2011; pp. 453–474. [Google Scholar]
- Laflen, J.M.; Elliot, W.J.; Simanton, J.R.; Holzey, C.S.; Kohl, K.D. WEPP Soil erodibility experiments for rangeland and cropland soils. J. Soil Water Conserv. 1991, 46, 39–44. [Google Scholar]
- Mamo, M.; Bubenzer, G.D. Detachment rate, soil erodibility and soil strength as influenced by living plant roots part II: Field study. Trans. ASAE 2001, 44, 1175–1181. [Google Scholar] [CrossRef]
- Bernhardt, M.L. 2008 Midwest Levee Failure: Erosion Studies. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2011. [Google Scholar]
- Kimiaghalam, N.; Clark, S.P.; Ahmari, H. An experimental study on the effects of physical, mechanical, and electrochemical properties of natural cohesive soils on critical shear stress and erosion rate. Int. J. Sediment Res. 2016, 31, 1–15. [Google Scholar] [CrossRef]
- Briaud, J.L. Erodibility of fine grained soils and new soil test. In Erosion of Soils and Scour of Foundations; Geo-Frontiers Congress: Austin, TX, USA, 2005; pp. 1–10. [Google Scholar]
- Wang, Q.S.; Su, R.L.; Gao, X.J. Study on the starting test of remolded clay soils and soils with different sand and gravel contents. J. Hydraul. Eng. 2018, 49, 975–985. [Google Scholar]
- Pennell, K.D.; Hornsby, A.G.; Jessup, R.E.; Rao, P.S.C. Evaluation of five simulation models for predicting aldicarb and bromide behavior under field conditions. Water Resour. Res. 1990, 26, 2679–2693. [Google Scholar] [CrossRef]
- Hession, W.C.; Shanholtz, V.O.; Mostaghimi, S.; Dillaha, T.A. Uncalibrated performance of the finite element storm hydrograph model. Trans. ASAE 1994, 37, 777–783. [Google Scholar] [CrossRef]
- Briaud, J.L.; Chen, H.C. Erosion function apparatus for scour rate prediction. J. Geotech. Geoenviron. Eng. 2001, 127, 105–113. [Google Scholar] [CrossRef]
- Team, I.L.I. Investigation of the Performance of the New Orleans Flood Protection Systems in Hurricane Katrina on August 29, 2005. 2006. Available online: https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1032&context=cenv_fac (accessed on 12 December 2021).
- Shafii, I. Relationship between Erodibility and Properties of Soils. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2018. [Google Scholar]
- Briaud, J.L. Case histories in soil and rock erosion: Woodrow wilson bridge, Brazos River Meander, Normandy Cliffs, and New Orleans Levees. J. Geotech. Geoenviron. Eng. 2008, 134, 1425–1447. [Google Scholar] [CrossRef]
- Briaud, J.-L.; Ting, F.C.K.; Chen, H.C.; Gudavalli, R.; Perugu, S.; Wei, G. SRICOS: Prediction of Scour Rate in Cohesive Soils at Bridge Piers. J. Geotech. Geoenviron. Eng. 1999, 125, 237–246. [Google Scholar] [CrossRef]
- Kwak, K. Prediction of Scour Depth versus Time for Bridge Piers in Cohesive Soils in the Case of Multi-Flood and Layered Soil Systems. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2000. [Google Scholar]
- Park, N. A Prediction of Meander Migration Based on Large-Scale Flume Tests in Clay. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2007. [Google Scholar]
- Govin-dasamy, A.V. Simplified Method for Estimating Future Scour Depth at Existingbridges. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2009. [Google Scholar]
- Straub, T.D.; Over, T.M.; Domanski, M.M. Ultimate Pier and Contraction Scour Prediction in Cohesive Soils at Selected Bridges in Illinois; National Technical Information Service: Springfield, VA, USA, 2013.
- Briaud, J.L.; Govindasamy, A.V.; Shafii, I. Erosion charts for selected geomaterials. J. Geotech. Geoenviron. Eng. 2017, 143, 04017072. [Google Scholar] [CrossRef]
- Van Klaveren, R.W.; McCool, D.K. Erodbility and critical shear of a previously frozen soil. Trans. ASAE 1998, 41, 1315–1321. [Google Scholar] [CrossRef]
- Knapen, A.K.; Poesen, J.; Govers, G.; Gyssels, G.; Nachtergaele, J. Resistance of soils to concentrated flow erosion: A review. Earth-Sci. Rev. 2007, 80, 75–109. [Google Scholar] [CrossRef]
- Einstein, H.A.; El-Samni, E.A. Hydrodynamic forces acting on a rough wall. Rev. Mod. Phys. 1949, 21, 520–524. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.T. Incipient motion and sediment transport. J. Hydraul. Div. 1973, 99, 1679–1704. [Google Scholar] [CrossRef]
- Kothyari, U.C.; Jain, R.K. Influence of cohesion on the incipient motion condition of sediment mixtures. Water Resour. 2008, 44, W04410. [Google Scholar] [CrossRef]
- Briaud, J.L. Geotechnical Engineering: Unsaturated and Saturated Soils; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
USCS Classification | Number of Samples |
---|---|
Low-plasticity clay (CL) | 99 |
High-plasticity clay (CH) | 56 |
CH with sand | 2 |
CL with sand | 20 |
Parameter | b0 | b1 | Z0 | ||
---|---|---|---|---|---|
PI | −0.392 ** | 0.004 | −0.231 | 0.056 | −0.371 ** |
−0.172 | −0.107 | −0.316 ** | −0.069 | −0.085 | |
WC | 0.141 | 0.393 ** | 0.304 ** | 0.333 ** | 0.593 ** |
Pf | −0.032 | 0.130 | −0.081 | 0.043 | 0.077 |
D50 | 0.439 ** | −0.114 | 0.391 ** | −0.116 | 0.076 |
Dependent Variable | Model Expression | Number of Data | R2 | Fvalue/ Fstatistic |
---|---|---|---|---|
b0 (g m−1 s−1 N−0.5) | b0 = 3.66 × WC1.65 × PI−0.53 × D500.72 | 54 | 0.63 | 10.82 |
Z0 (mm h−1) | z0 = 0.123 × WC2.37 × PI−0.86 × D500.39 | 54 | 0.63 | 9.23 |
.094 × WC1.26 × PI−0.19 × D500.25 | 54 | 0.67 | 92.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhou, P.; Fan, J.; Qiu, S. Study on Parameters of Two Widely Used Cohesive Soils Erosion Models. Water 2021, 13, 3621. https://doi.org/10.3390/w13243621
Wang Q, Zhou P, Fan J, Qiu S. Study on Parameters of Two Widely Used Cohesive Soils Erosion Models. Water. 2021; 13(24):3621. https://doi.org/10.3390/w13243621
Chicago/Turabian StyleWang, Qiusheng, Pengzhan Zhou, Junjie Fan, and Songnan Qiu. 2021. "Study on Parameters of Two Widely Used Cohesive Soils Erosion Models" Water 13, no. 24: 3621. https://doi.org/10.3390/w13243621
APA StyleWang, Q., Zhou, P., Fan, J., & Qiu, S. (2021). Study on Parameters of Two Widely Used Cohesive Soils Erosion Models. Water, 13(24), 3621. https://doi.org/10.3390/w13243621