Estimating the Pan Evaporation in Northwest China by Coupling CatBoost with Bat Algorithm
Abstract
:1. Introduction
2. Material and Methods
2.1. Random Forest (RF)
2.2. Gradient Boosting with Categorical Features Support (CB)
2.3. Bat Algorithm Coupling with CatBoost (Bat-CB)
- Generating a population of bats for simulations, and assigning each bat the initial velocity vi, frequency fi, and position xi.
- From the first iteration to the maximum iteration, the three characters at time t are updated by (Equations (2)–(4)).
- 1
- Generating a random number (rand) as the criteria for whether the current solution needs improvement. If the random is higher than At, bats will update their best positions through the random walk:
- 2
- Generating another random number. If rand <Ai and f(xi) < f(x*), then yield the solution at the last step and updating the emission rates of each bat ri and loudness of each bat At by:
2.4. Study Area
2.5. Dataset
2.6. Statistical Analysis
- (i)
- Root mean square error (RMSE)
- (ii)
- Mean absolute error (MAE)
- (iii)
- Nash–Sutcliffe Efficiency (NSE)
- (iv)
- Mean absolute percentage error (MAPE)
3. Results and Discussion
3.1. Statistical Performance of the Three Machine Learning Models
3.2. Seasonal Effects on the Performance of Machine Learning Models
3.3. Spatial Effects on the Performance of Machine Learning Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kisi, O.; Genc, O.; Dinc, S.; Zounemat-Kermani, M. Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree. Comput. Electron. Agric. 2016, 122, 112–117. [Google Scholar] [CrossRef]
- Shabani, S.; Samadianfard, S.; Sattari, M.T.; Mosavi, A.; Shamshirband, S.; Kmet, T.; Varkonyi-Koczy, A.R. Modeling Pan Evaporation Using Gaussian Process Regression K-Nearest Neighbors Random Forest and Support Vector Machines; Comparative Analysis. Atmosphere 2020, 11, 66. [Google Scholar] [CrossRef] [Green Version]
- Rahimikhoob, A.; Asadi, M.; Mashal, M. A Comparison Between Conventional and M5 Model Tree Methods for Converting Pan Evaporation to Reference Evapotranspiration for Semi-Arid Region. Water Resour. Manag. 2013, 27, 4815–4826. [Google Scholar] [CrossRef]
- Shiri, J.; Marti, P.; Karimi, S.; Landeras, G. Data splitting strategies for improving data driven models for reference evapotranspiration estimation among similar stations. Comput. Electron. Agric. 2019, 162, 70–81. [Google Scholar] [CrossRef]
- Chang, L.-C.; Sun, W.-Z.; Chung, C. Dynamic factor analysis and artificial neural network for estimating pan evaporation at multiple stations in northern Taiwan. Hydrol. Sci. J. 2013, 58, 813–825. [Google Scholar] [CrossRef] [Green Version]
- Goyal, M.K.; Bharti, B.; Quilty, J.; Adamowski, J.; Pandey, A. Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Syst. Appl. 2014, 41, 5267–5276. [Google Scholar] [CrossRef]
- Ghaemi, A.; Rezaie-Balf, M.; Adamowski, J.; Kisi, O.; Quilty, J. On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction. Agric. For. Meteorol. 2019, 278. [Google Scholar] [CrossRef]
- Wang, H.; Yan, H.; Zeng, W.; Lei, G.; Ao, C.; Zha, Y. A novel nonlinear Arps decline model with salp swarm algorithm for predicting pan evaporation in the arid and semi-arid regions of China. J. Hydrol. 2020, 582, 124545. [Google Scholar] [CrossRef]
- Babakos, K.; Papamichail, D.M.; Tziachris, P.; Pisinaras, V.; Demertzi, K.; Castaldelli, G. Assessing the Robustness of Pan Evaporation Models for Estimating Reference Crop Evapotranspiration during Recalibration at Local Conditions. Hydrology 2020, 7, 62. [Google Scholar] [CrossRef]
- Kim, S.; Shiri, J.; Kisi, O. Pan Evaporation Modeling Using Neural Computing Approach for Different Climatic Zones. Water Resour. Manag. 2012, 26, 3231–3249. [Google Scholar] [CrossRef]
- Kisi, O. Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J. Hydrol. 2015, 528, 312–320. [Google Scholar] [CrossRef]
- Wang, L.; Niu, Z.; Kisi, O.; Li, C.; Yu, D. Pan evaporation modeling using four different heuristic approaches. Comput. Electron. Agric. 2017, 140, 203–213. [Google Scholar] [CrossRef]
- Mehr, A.D. An improved gene expression programming model for streamflow forecasting in intermittent streams. J. Hydrol. 2018, 563, 669–678. [Google Scholar] [CrossRef]
- Sharma, N.; Zakaullah, M.d.; Tiwari, H.; Kumar, D. Runoff and sediment yield modeling using ANN and support vector machines: A case study from Nepal watershed. Model. Earth Syst. Environ. 2015, 1, 23. [Google Scholar] [CrossRef] [Green Version]
- Malekzadeh, M.; Kardar, S.; Shabanlou, S. Simulation of groundwater level using MODFLOW, extreme learning machine and Wavelet-Extreme Learning Machine models. Groundw. Sustain. Dev. 2019, 9, 100279. [Google Scholar] [CrossRef]
- Wei, Z.; Meng, Y.; Zhang, W.; Peng, J.; Meng, L. Downscaling SMAP soil moisture estimation with gradient boosting decision tree regression over the Tibetan Plateau. Remote. Sens. Environ. 2019, 225, 30–44. [Google Scholar] [CrossRef]
- Wu, L.; Huang, G.; Fan, J.; Zhang, F.; Wang, X.; Zeng, W. Potential of kernel-based nonlinear extension of Arps decline model and gradient boosting with categorical features support for predicting daily global solar radiation in humid regions. Energy Convers. Manag. 2019, 183, 280–295. [Google Scholar] [CrossRef]
- Wu, L.; Huang, G.; Fan, J.; Ma, X.; Zhou, H.; Zeng, W. Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Comput. Electron. Agric. 2020, 168, 105115. [Google Scholar] [CrossRef]
- Karimi, S.; Shiri, J.; Marti, P. Supplanting missing climatic inputs in classical and random forest models for estimating reference evapotranspiration in humid coastal areas of Iran. Comput. Electron. Agric. 2020, 176, 105633. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Zheng, J. CatBoost: A new approach for estimating daily reference crop evapotranspiration in arid and semi-arid regions of Northern China. J. Hydrol. 2020, 588, 125087. [Google Scholar] [CrossRef]
- Shan, X.; Cui, N.; Cai, H.; Hu, X.; Zhao, L. Estimation of summer maize evapotranspiration using MARS model in the semi-arid region of northwest China. Comput. Electron. Agric. 2020, 174, 105495. [Google Scholar] [CrossRef]
- Keskin, M.E.; Terzi, O. Artificial Neural Network Models of Daily Pan Evaporation. J. Hydrol. Eng. 2006, 11, 65–70. [Google Scholar] [CrossRef]
- Lu, X.; Ju, Y.; Wu, L.; Fan, J.; Zhang, F.; Li, Z. Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models. J. Hydrol. 2018, 566, 668–684. [Google Scholar] [CrossRef]
- Kisi, O.; Heddam, S. Evaporation modelling by heuristic regression approaches using only temperature data. Hydrol. Sci. J. 2019, 64, 653–672. [Google Scholar] [CrossRef]
- Seifi, A.; Soroush, F. Pan evaporation estimation and derivation of explicit optimized equations by novel hybrid meta-heuristic ANN based methods in different climates of Iran. Comput. Electron. Agric. 2020, 173, 105418. [Google Scholar] [CrossRef]
- Mishra, S.; Shaw, K.; Mishra, D. A New Meta-heuristic Bat Inspired Classification Approach for Microarray Data. Procedia Technol. 2012, 4, 802–806. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-S.; Ding, W.-J.; Yang, X.-S. Bat algorithm based on simulated annealing and Gaussian perturbations. Neural Comput. Appl. 2013, 25, 459–468. [Google Scholar] [CrossRef]
- Hasançebi, O.; Teke, T.; Pekcan, O. A bat-inspired algorithm for structural optimization. Comput. Struct. 2013, 128, 77–90. [Google Scholar] [CrossRef]
- Farzin, S.; Singh, V.P.; Karami, H.; Farahani, N.; Ehteram, M.; Kisi, O.; Allawi, M.F.; Mohd, N.S.; El-Shafie, A. Flood Routing in River Reaches Using a Three-Parameter Muskingum Model Coupled with an Improved Bat Algorithm. Water 2018, 10, 1130. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Wu, J.; Zhai, B.; Pan, Y.; Huang, G.; Wu, L.; Zeng, W. Coupling a Bat Algorithm with XGBoost to Estimate Reference Evapotranspiration in the Arid and Semiarid Regions of China. Adv. Meteorol. 2019, 2019, 1–16. [Google Scholar] [CrossRef]
- Ali, M.; Deo, R.C.; Downs, N.J.; Maraseni, T. Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecasting. Atmos. Res. 2018, 213, 450–464. [Google Scholar] [CrossRef]
- Dong, J.; Wu, L.; Liu, X.; Li, Z.; Gao, Y.; Zhang, Y.; Yang, Q. Estimation of daily dew point temperature by using bat algorithm optimization based extreme learning machine. Appl. Therm. Eng. 2020, 165, 114569. [Google Scholar] [CrossRef]
- Kang, P.; Lin, Z.; Teng, S.; Zhang, G.; Guo, L.; Zhang, W. Catboost-Based Framework with Additional User Information for Social Media Popularity Prediction; ACM: New York, NY, USA, 2019; pp. 2677–2681. [Google Scholar]
- Fan, J.; Wang, X.; Wu, L.; Zhou, H.; Zhang, F.; Yu, X.; Lu, X.; Xiang, Y. Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Convers. Manag. 2018, 164, 102–111. [Google Scholar] [CrossRef]
- Huang, G.; Wu, L.; Ma, X.; Zhang, W.; Fan, J.; Yu, X.; Zeng, W.; Zhou, H. Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. J. Hydrol. 2019, 574, 1029–1041. [Google Scholar] [CrossRef]
- Iwendi, C.; Khan, S.; Anajemba, J.H.; Bashir, A.K.; Noor, F. Realizing an Efficient IoMT-Assisted Patient Diet Recommendation System Through Machine Learning Model. IEEE Access 2020, 8, 28462–28474. [Google Scholar] [CrossRef]
- Iwendi, C.; Khan, S.; Anajemba, J.H.; Mittal, M.; Alenezi, M.; Alazab, M. The Use of Ensemble Models for Multiple Class and Binary Class Classification for Improving Intrusion Detection Systems. Sensors 2020, 20, 2559. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Boulesteix, A.-L.; Janitza, S.; Kruppa, J.; König, I.R. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. WIREs Data Mining Knowl. Discov. 2012, 2, 493–507. [Google Scholar] [CrossRef] [Green Version]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. Catboost: Unbiased boosting with categorical features. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; Curran Associates Inc.: Red Hook, NY, USA, 2018; pp. 6639–6649. [Google Scholar]
- Fan, J.; Wu, L.; Zhang, F.; Cai, H.; Zeng, W.; Wang, X.; Zou, H. Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China. Renew. Sustain. Energy Rev. 2019, 100, 186–212. [Google Scholar] [CrossRef]
- Piri, J.; Mohammadi, K.; Shamshirband, S.; Akib, S. Assessing the suitability of hybridizing the Cuckoo optimization algorithm with ANN and ANFIS techniques to predict daily evaporation. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Feng, Y.; Jia, Y.; Zhang, Q.; Gong, D.; Cui, N. National-scale assessment of pan evaporation models across different climatic zones of China. J. Hydrol. 2018, 564, 314–328. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Kisi, O. Monthly pan-evaporation estimation in Indian central Himalayas using different heuristic approaches and climate based models. Comput. Electron. Agric. 2017, 143, 302–313. [Google Scholar] [CrossRef]
- Deo, R.C.; Kisi, O.; Singh, V.P. Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model. Atmos. Res. 2017, 184, 149–175. [Google Scholar] [CrossRef] [Green Version]
- Dawson, C.; Abrahart, R.; See, L. HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 2007, 22, 1034–1052. [Google Scholar] [CrossRef] [Green Version]
- Sebbar, A.; Heddam, S.; Djemili, L. Predicting Daily Pan Evaporation (Epan) from Dam Reservoirs in the Mediterranean Regions of Algeria: OPELM vs. OSELM. Environ. Process. 2019, 6, 309–319. [Google Scholar] [CrossRef]
Number | Site ID | Latitude °N | Longitude °E | Tave °C | Tmax °C | Tmin °C | RH % | U m d−1 | Rs MJ m−2 d−1 | E mm d−1 |
---|---|---|---|---|---|---|---|---|---|---|
51053 | 1 | 48.03 | 86.24 | −1.87 | 3.14 | −5.99 | 65.09 | 3.14 | 10.44 | 2.51 |
51068 | 2 | 47.07 | 87.28 | −3.19 | 2.94 | −8.40 | 67.68 | 2.22 | 10.75 | 2.20 |
51076 | 3 | 47.44 | 88.05 | −2.69 | 3.64 | −7.81 | 63.78 | 1.67 | 10.97 | 2.07 |
51087 | 4 | 46.68 | 89.31 | −3.80 | 3.42 | −9.33 | 64.53 | 1.54 | 10.83 | 2.26 |
51133 | 5 | 46.44 | 83.00 | 0.76 | 6.94 | −4.08 | 62.52 | 1.79 | 10.16 | 2.19 |
51156 | 6 | 46.48 | 85.44 | −2.26 | 3.70 | -6.80 | 58.48 | 2.48 | 11.09 | 2.26 |
51232 | 7 | 45.11 | 82.34 | 0.02 | 4.12 | −3.33 | 66.48 | 4.13 | 9.39 | 3.16 |
51238 | 8 | 44.54 | 82.04 | 6.03 | 12.33 | 0.74 | 64.99 | 1.54 | 13.75 | 3.59 |
51241 | 9 | 45.56 | 83.36 | −0.05 | 5.64 | −4.30 | 61.41 | 2.18 | 11.15 | 2.33 |
51243 | 10 | 45.37 | 84.51 | −0.84 | 3.44 | −4.28 | 61.98 | 1.87 | 9.61 | 2.46 |
51334 | 11 | 44.35 | 82.52 | −0.46 | 4.69 | −4.79 | 68.68 | 1.58 | 9.52 | 1.99 |
51367 | 12 | 44.09 | 86.50 | 6.75 | 12.63 | 1.62 | 60.50 | 1.97 | 14.26 | 4.64 |
51470 | 13 | 43.53 | 88.07 | 1.90 | 7.89 | −2.50 | 61.41 | 3.01 | 13.59 | 3.35 |
51477 | 14 | 43.21 | 88.19 | −0.94 | 5.70 | −6.33 | 57.23 | 3.97 | 11.57 | 2.70 |
51526 | 15 | 42.14 | 88.13 | 1.24 | 9.35 | −6.30 | 50.06 | 2.20 | 11.62 | 3.31 |
51542 | 16 | 43.02 | 84.09 | −10.94 | −3.36 | −16.97 | 71.36 | 2.57 | 12.02 | 1.61 |
51567 | 17 | 42.05 | 86.34 | 0.25 | 7.21 | −5.57 | 62.70 | 1.64 | 11.50 | 2.19 |
51573 | 18 | 42.56 | 89.13 | 5.19 | 10.35 | 0.96 | 42.24 | 1.37 | 9.77 | 2.96 |
51628 | 19 | 41.09 | 80.17 | 2.95 | 9.31 | −2.17 | 58.07 | 1.56 | 11.61 | 2.23 |
51656 | 20 | 41.45 | 85.88 | 3.20 | 9.09 | −2.12 | 53.22 | 1.98 | 11.69 | 2.99 |
51704 | 21 | 39.43 | 76.10 | 5.95 | 9.81 | 0.05 | 51.34 | 1.06 | 10.26 | 2.62 |
51709 | 22 | 39.28 | 75.52 | 4.55 | 10.10 | −0.47 | 53.59 | 1.80 | 11.60 | 3.11 |
51720 | 23 | 40.30 | 79.03 | 2.58 | 10.00 | −3.55 | 57.13 | 1.19 | 11.44 | 2.06 |
51730 | 24 | 40.33 | 81.16 | 1.93 | 10.18 | −4.72 | 58.85 | 1.27 | 12.07 | 2.08 |
51765 | 25 | 40.38 | 87.42 | 2.77 | 11.28 | −4.42 | 48.57 | 1.57 | 12.17 | 2.86 |
51810 | 26 | 38.55 | 77.38 | 11.34 | 18.92 | 4.62 | 52.20 | 1.26 | 15.60 | 4.96 |
51811 | 27 | 38.26 | 77.16 | 4.31 | 11.04 | −1.21 | 52.22 | 1.20 | 11.94 | 2.53 |
51818 | 28 | 37.37 | 78.17 | 4.71 | 11.49 | −1.19 | 45.21 | 1.42 | 12.57 | 3.01 |
51828 | 29 | 37.08 | 79.56 | 5.94 | 11.57 | 1.32 | 40.60 | 1.77 | 12.39 | 3.55 |
51839 | 30 | 37.04 | 82.43 | 4.38 | 12.02 | −2.15 | 42.53 | 1.45 | 13.18 | 3.35 |
51855 | 31 | 38.09 | 85.33 | 2.61 | 10.34 | −4.04 | 45.73 | 1.87 | 12.50 | 3.51 |
51931 | 32 | 36.51 | 81.39 | 4.62 | 11.96 | −1.43 | 43.73 | 1.23 | 13.60 | 2.88 |
52101 | 33 | 43.36 | 93.03 | −3.24 | 4.11 | −9.03 | 55.18 | 2.34 | 12.81 | 2.36 |
52112 | 34 | 43.46 | 94.86 | 1.46 | 8.18 | −4.13 | 41.54 | 2.89 | 12.61 | 4.05 |
52118 | 35 | 43.16 | 94.42 | 3.55 | 10.42 | −2.48 | 43.78 | 3.08 | 16.44 | 5.05 |
52203 | 36 | 42.49 | 93.31 | 2.15 | 10.27 | −4.11 | 47.29 | 1.36 | 13.09 | 2.64 |
52313 | 37 | 41.32 | 94.40 | −0.88 | 7.33 | −7.56 | 44.09 | 3.95 | 13.24 | 3.85 |
52323 | 38 | 41.48 | 97.02 | −1.56 | 6.76 | −8.50 | 42.78 | 4.41 | 14.50 | 4.76 |
52533 | 39 | 39.46 | 98.29 | 1.92 | 9.35 | −4.09 | 46.52 | 2.27 | 14.06 | 3.70 |
52546 | 40 | 39.22 | 99.50 | 2.45 | 10.76 | −4.10 | 49.84 | 2.00 | 14.02 | 2.97 |
52652 | 41 | 38.86 | 100.20 | 2.04 | 10.52 | −4.71 | 47.98 | 2.40 | 14.59 | 3.95 |
52674 | 42 | 38.14 | 101.57 | 0.53 | 8.01 | −5.25 | 47.38 | 2.88 | 14.60 | 3.95 |
52679 | 43 | 37.55 | 102.42 | 3.43 | 10.57 | −2.66 | 46.05 | 1.74 | 14.02 | 3.65 |
52681 | 44 | 38.38 | 103.05 | 3.19 | 10.58 | −3.12 | 41.76 | 2.50 | 14.51 | 4.54 |
52797 | 45 | 37.11 | 104.03 | 3.96 | 10.78 | −1.29 | 45.07 | 1.90 | 13.33 | 3.81 |
Models | Value | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | NSE | MAPE | RMSE | MAE | NSE | MAPE | ||
mm d−1 | mm d−1 | — | — | mm d−1 | mm d−1 | — | — | ||
RF | Mean | 0.248 | 0.155 | 0.989 | 0.059 | 1.855 | 1.151 | 0.453 | 0.333 |
Max | 0.528 | 0.353 | 0.995 | 0.081 | 3.604 | 2.479 | 0.894 | 0.686 | |
Min | 0.127 | 0.077 | 0.981 | 0.042 | 1.005 | 0.644 | −1.242 | 0.176 | |
Median | 0.23 | 0.146 | 0.99 | 0.058 | 1.787 | 1.12 | 0.601 | 0.301 | |
SD | 0.078 | 0.055 | 0.003 | 0.009 | 0.553 | 0.362 | 0.46 | 0.117 | |
CB | Mean | 0.632 | 0.403 | 0.934 | 0.15 | 1.438 | 0.911 | 0.713 | 0.259 |
Max | 1.322 | 0.851 | 0.95 | 0.181 | 2.754 | 1.77 | 0.869 | 0.421 | |
Min | 0.3 | 0.18 | 0.894 | 0.131 | 0.897 | 0.531 | 0.147 | 0.161 | |
Median | 0.572 | 0.366 | 0.936 | 0.149 | 1.262 | 0.848 | 0.763 | 0.247 | |
SD | 0.231 | 0.159 | 0.011 | 0.012 | 0.421 | 0.263 | 0.164 | 0.063 | |
Bat-CB | Mean | 0.603 | 0.36 | 0.945 | 0.132 | 1.25 | 0.792 | 0.794 | 0.225 |
Max | 1.125 | 0.846 | 0.952 | 0.167 | 2.227 | 1.328 | 0.894 | 0.328 | |
Min | 0.288 | 0.166 | 0.908 | 0.115 | 0.859 | 0.54 | 0.625 | 0.162 | |
Median | 0.513 | 0.322 | 0.941 | 0.122 | 1.143 | 0.727 | 0.805 | 0.217 | |
SD | 0.204 | 0.159 | 0.01 | 0.011 | 0.316 | 0.178 | 0.074 | 0.04 |
Models | Indicators | Unit | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |||
RF | MAE | mm·d−1 | 0.18 | 0.30 | 0.65 | 1.99 | 2.79 | 2.85 | 2.83 | 2.74 | 2.45 | 1.13 | 0.40 | 0.23 |
MAPE | — | 0.31 | 0.21 | 0.16 | 0.37 | 0.48 | 0.47 | 0.43 | 0.48 | 0.54 | 0.34 | 0.24 | 0.33 | |
RMSE | mm·d−1 | 0.24 | 0.43 | 0.90 | 2.27 | 3.16 | 3.20 | 3.20 | 3.11 | 2.75 | 1.36 | 0.55 | 0.32 | |
NSE | — | 0.44 | 0.66 | 0.73 | −1.90 | −3.07 | −3.75 | −3.67 | −4.09 | −5.47 | −2.27 | 0.69 | 0.43 | |
CB | MAE | mm·d−1 | 0.18 | 0.33 | 0.79 | 1.52 | 1.85 | 1.93 | 2.09 | 1.88 | 1.59 | 0.91 | 0.39 | 0.22 |
MAPE | — | 0.34 | 0.21 | 0.19 | 0.27 | 0.32 | 0.31 | 0.29 | 0.31 | 0.34 | 0.26 | 0.23 | 0.33 | |
RMSE | mm·d−1 | 0.24 | 0.47 | 1.06 | 1.84 | 2.22 | 2.27 | 2.47 | 2.24 | 1.89 | 1.15 | 0.54 | 0.31 | |
NSE | — | 0.40 | 0.66 | 0.66 | −0.32 | −0.87 | −1.10 | −1.22 | −1.20 | −1.68 | −0.67 | 0.72 | 0.49 | |
Bat-CB | MAE | mm·d−1 | 0.19 | 0.34 | 0.84 | 1.55 | 1.50 | 1.32 | 1.48 | 1.32 | 1.30 | 0.88 | 0.38 | 0.21 |
MAPE | — | 0.35 | 0.22 | 0.20 | 0.27 | 0.25 | 0.21 | 0.21 | 0.22 | 0.27 | 0.25 | 0.23 | 0.33 | |
RMSE | mm·d−1 | 0.25 | 0.49 | 1.12 | 1.89 | 1.90 | 1.68 | 1.85 | 1.73 | 1.58 | 1.13 | 0.54 | 0.31 | |
NSE | — | 0.34 | 0.64 | 0.61 | 0.00 | 0.00 | 0.09 | −0.09 | −0.06 | −0.47 | −0.16 | 0.72 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Zeng, W.; Wu, L.; Lei, G.; Chen, H.; Srivastava, A.K.; Gaiser, T. Estimating the Pan Evaporation in Northwest China by Coupling CatBoost with Bat Algorithm. Water 2021, 13, 256. https://doi.org/10.3390/w13030256
Dong L, Zeng W, Wu L, Lei G, Chen H, Srivastava AK, Gaiser T. Estimating the Pan Evaporation in Northwest China by Coupling CatBoost with Bat Algorithm. Water. 2021; 13(3):256. https://doi.org/10.3390/w13030256
Chicago/Turabian StyleDong, Liming, Wenzhi Zeng, Lifeng Wu, Guoqing Lei, Haorui Chen, Amit Kumar Srivastava, and Thomas Gaiser. 2021. "Estimating the Pan Evaporation in Northwest China by Coupling CatBoost with Bat Algorithm" Water 13, no. 3: 256. https://doi.org/10.3390/w13030256
APA StyleDong, L., Zeng, W., Wu, L., Lei, G., Chen, H., Srivastava, A. K., & Gaiser, T. (2021). Estimating the Pan Evaporation in Northwest China by Coupling CatBoost with Bat Algorithm. Water, 13(3), 256. https://doi.org/10.3390/w13030256