Assessment of Remote Sensing and Re-Analysis Estimates of Regional Precipitation over Mato Grosso, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Precipitation Observations
2.3. Precipitation Estimates
2.4. Performance Indicators
3. Results
3.1. Assessment of Temporal Accuracy
3.2. Spatial Variability
3.2.1. GLDAS
3.2.2. MERRA
3.2.3. TRMM
3.2.4. GPM
3.2.5. GPCP
4. Discussion
4.1. Assessment of Temporal Accuracy
4.2. Spatial Variability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IBGE | Cidades@ | Mato Grosso | Panorama. Available online: https://cidades.ibge.gov.br/brasil/mt/panorama (accessed on 2 November 2020).
- Machado, N.G.; Santos, G.T.; Biudes, M.S.; Silva, J.L.; Bacarji, A.G.; Costa, M.E.L.; de Bílio, R.S. Sustainable development index of municipalities in Mato Grosso. Rev. Bras. Gestão Desenvolv. Reg. 2020, 16, 222–234. [Google Scholar]
- Gusso, A.; Ducati, J.R.; Bortolotto, V.C. Analysis of Soybean Cropland Expansion in the Southern Brazilian Amazon and Its Relation to Economic Drivers. Acta Amaz. 2017, 47, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Lathuillière, M.J.; Johnson, M.S.; Donner, S.D. Water Use by Terrestrial Ecosystems: Temporal Variability in Rainforest and Agricultural Contributions to Evapotranspiration in Mato Grosso, Brazil. Environ. Res. Lett. 2012, 7, 024024. [Google Scholar] [CrossRef]
- Anderson, M.C.; Zolin, C.A.; Hain, C.R.; Semmens, K.; Yilmaz, M.T.; Gao, F. Comparison of Satellite-Derived LAI and Precipitation Anomalies over Brazil with a Thermal Infrared-Based Evaporative Stress Index for 2003–2013. J. Hydrol. 2015, 526, 287–302. [Google Scholar]
- Da Amorim, J.S.; Viola, M.R.; Junqueira, R.; de Oliveira, V.A.; de Mello, C.R. Evaluation of Satellite Precipitation Products for Hydrological Modeling in the Brazilian Cerrado Biome. Water 2020, 12, 2571. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Nearing, M.A.; Moran, M.S.; Goodrich, D.C.; Wendland, E.; Gupta, H.V. Trends in Water Balance Components across the Brazilian Cerrado. Water Resour. Res. 2014, 50, 7100–7114. [Google Scholar] [CrossRef] [Green Version]
- Arvor, D.; Dubreuil, V.; Ronchail, J.; Simões, M.; Funatsu, B.M. Spatial Patterns of Rainfall Regimes Related to Levels of Double Cropping Agriculture Systems in Mato Grosso (Brazil). Int. J. Climatol. 2014, 34, 2622–2633. [Google Scholar]
- Santos, A.B.; Heil Costa, M.; Chartuni Mantovani, E.; Boninsenha, I.; Castro, M. A Remote Sensing Diagnosis of Water Use and Water Stress in a Region with Intense Irrigation Growth in Brazil. Remote Sens. 2020, 12, 3725. [Google Scholar] [CrossRef]
- Arvor, D.; Meirelles, M.; Dubreuil, V.; Begue, A.; Shimabukuro, Y.E. Analyzing the Agricultural Transition in Mato Grosso, Brazil, Using Satellite-Derived Indices. Appl. Geogr. 2012, 32, 702–713. [Google Scholar]
- Machado, N.G.; Biudes, M.S.; Querino, C.A.S.; de Morais Danelichen, V.H.; Velasque, M.C.S. Seasonal and Interannual Pattern of Meteorological Variables in Cuiabá, Mato Grosso State, Brazil. Braz. J. Geophys. 2015, 33, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Biudes, M.S.; Vourlitis, G.L.; Machado, N.G.; de Arruda, P.H.Z.; Neves, G.A.R.; de Almeida Lobo, F.; Neale, C.M.U.; de Souza Nogueira, J. Patterns of Energy Exchange for Tropical Ecosystems across a Climate Gradient in Mato Grosso, Brazil. Agric. For. Meteorol. 2015, 202, 112–124. [Google Scholar] [CrossRef]
- Machado, N.G.; Ventura, T.M.; de Morais Danelichen, V.H.; Querino, C.A.S.; Biudes, M.S. Estimation of Rainfall of Neural Network over a Neotropical Region. Rev. Bras. Climatol. 2015, 17. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, C.R.; Wood, E.F.; Vinukollu, R.K. A Global Intercomparison of Modeled and Observed Land–Atmosphere Coupling. J. Hydrometeorol. 2012, 13, 749–784. [Google Scholar] [CrossRef]
- Khodadoust Siuki, S.; Saghafian, B.; Moazami, S. Comprehensive Evaluation of 3-Hourly TRMM and Half-Hourly GPM-IMERG Satellite Precipitation Products. Int. J. Remote Sens. 2017, 38, 558–571. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorologia—INMET. Available online: http://portal.inmet.gov.br/ (accessed on 2 November 2020).
- Rodell, M.; Houser, P.R.; Jambor, U.E.A.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 Atmospheric General Circulation Model: Evolution from MERRA to MERRA2. Geosci. Model Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef] [Green Version]
- Reichle, R.H.; Liu, Q.; Koster, R.D.; Draper, C.S.; Mahanama, S.P.; Partyka, G.S. Land Surface Precipitation in MERRA-2. J. Clim. 2017, 30, 1643–1664. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.J.; Ropelewski, C.F. Validation of Satellite Rainfall Products over East Africa’s Complex Topography. Int. J. Remote Sens. 2007, 28, 1503–1526. [Google Scholar] [CrossRef]
- Liu, Z.; Ostrenga, D.; Teng, W.; Kempler, S. Tropical Rainfall Measuring Mission (TRMM) Precipitation Data and Services for Research and Applications. Bull. Am. Meteorol. Soc. 2012, 93, 1317–1325. [Google Scholar]
- GES DISC Dataset: GPM IMERG Final Precipitation L3 1 Day 0.1 Degree x 0.1 Degree V06 (GPM_3IMERGDF 06). Available online: https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary (accessed on 2 November 2020).
- GES DISC Dataset: GPCP Precipitation Level 3 Monthly 0.5-Degree V3.0 Beta (GPCPMON 3.0). Available online: https://disc.gsfc.nasa.gov/datasets/GPCPMON_3.0/summary (accessed on 2 November 2020).
- Adler, R.F.; Wang, J.-J.; Gu, G.; Huffman, G.J. A Ten-Year Tropical Rainfall Climatology Based on a Composite of TRMM Products. J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’donnell, J.; Rowe, C.M. Statistics for the Evaluation and Comparison of Models. J. Geophys. Res. Ocean. 1985, 90, 8995–9005. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011; Volume 100. [Google Scholar]
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Qi, W.; Liu, J.; Chen, D. Evaluations and Improvements of GLDAS2. 0 and GLDAS2. 1 Forcing Data’s Applicability for Basin Scale Hydrological Simulations in the Tibetan Plateau. J. Geophys. Res. Atmos. 2018, 123, 13128–13148. [Google Scholar] [CrossRef]
- Danelichen, V.H.M.; Machado, N.G.; Biudes, M.S.; Souza, M.C. TRMM Satellite Performance in Estimated Rainfall over the Midwest Region of Brazil. Rev. Bras. Climatol. 2013, 12. [Google Scholar] [CrossRef] [Green Version]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.-L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Li, L.; Hao, Z.; Wang, J.; Shao, Q. Suitability of TRMM Satellite Rainfall in Driving a Distributed Hydrological Model in the Source Region of Yellow River. J. Hydrol. 2014, 509, 320–332. [Google Scholar] [CrossRef]
- Dos Santos, L.O.F.; Querino, C.A.S.; da Querino, J.K.A.S.; Pedreira Junior, A.L.; de Moura, A.R.M.; Machado, N.G.; Biudes, M.S. Validation of Rainfall Data Estimated by GPM Satellite on Southern Amazon Region. Rev. Ambiente Água 2019, 14. [Google Scholar] [CrossRef]
- Franchito, S.H.; Rao, V.B.; Vasques, A.C.; Santo, C.M.; Conforte, J.C. Validation of TRMM Precipitation Radar Monthly Rainfall Estimates over Brazil. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Darand, M.; Khandu, K. Statistical Evaluation of Gridded Precipitation Datasets Using Rain Gauge Observations over Iran. J. Arid Environ. 2020, 178, 104172. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Bosilovich, M.G.; Chen, J.; Robertson, F.R.; Adler, R.F. Evaluation of Global Precipitation in Reanalyses. J. Appl. Meteorol. Climatol. 2008, 47, 2279–2299. [Google Scholar] [CrossRef]
- Pfeifroth, U.; Mueller, R.; Ahrens, B. Evaluation of Satellite-Based and Reanalysis Precipitation Data in the Tropical Pacific. J. Appl. Meteor. Climatol. 2013, 52, 634–644. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Robertson, F.R.; Takacs, L.; Molod, A.; Mocko, D. Atmospheric Water Balance and Variability in the MERRA-2 Reanalysis. J. Clim. 2017, 30, 1177–1196. [Google Scholar] [CrossRef]
- De Quadro, M.F.L.; da Dias, M.A.F.S.; Herdies, D.L.; de Gonçalves, L.G.G. Climatological Analysis of the Precipitation and Umidity Transport on the SACZ Region Using the New Generation of Reanalysis. Rev. Bras. Meteorol. 2012, 27, 152–162. [Google Scholar] [CrossRef] [Green Version]
Station | Elevation | Data Availability (Year) | Precipitation Estimates | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(m) | 2000 | 2013 | 2015 | 2018 | GLDAS | MERRA | TRMM | GPCP | GPM | ||
GBC | 415 | ||||||||||
CCR | 118 | ||||||||||
SJRC | 350 | ||||||||||
RDP | 284 | ||||||||||
MTP | 285 | ||||||||||
DMT | 286 | ||||||||||
CBA | 145 | ||||||||||
PRR | 140 | ||||||||||
PXR | 450 | ||||||||||
NVX | 316 | ||||||||||
CNR | 430 |
Products | Version | Spatial Resolution | Temporal Resolution |
---|---|---|---|
GLDAS | GLDAS_NOAH025 v2.1 | 0.25° (25 km) | Daily/Monthly/Annual |
MERRA | M2T1NXFLX v5.12.4 | 0.5° × 0.625° (50 × 65 km) | Daily/Monthly/Annual |
TRMM | TRMM_3B42 v7 | 0.25° (25 km) | Daily/Monthly/Annual |
GPM | GPM_3IMERGDF v06 | 0.1° (10 km) | Daily/Monthly/Annual |
GPCP | GPCPMON v3.0 | 0.5° (50 km) | Monthly/Annual |
Contingency Table | Measured | ||
---|---|---|---|
Rainfall | No Rainfall | ||
Estimated | Rainfall | a | b |
No Rainfall | c | d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junior, A.L.P.; Biudes, M.S.; Machado, N.G.; Vourlitis, G.L.; Geli, H.M.E.; Santos, L.O.F.d.; Querino, C.A.S.; Ivo, I.O.; Neto, N.L. Assessment of Remote Sensing and Re-Analysis Estimates of Regional Precipitation over Mato Grosso, Brazil. Water 2021, 13, 333. https://doi.org/10.3390/w13030333
Junior ALP, Biudes MS, Machado NG, Vourlitis GL, Geli HME, Santos LOFd, Querino CAS, Ivo IO, Neto NL. Assessment of Remote Sensing and Re-Analysis Estimates of Regional Precipitation over Mato Grosso, Brazil. Water. 2021; 13(3):333. https://doi.org/10.3390/w13030333
Chicago/Turabian StyleJunior, Altemar L. Pedreira, Marcelo S. Biudes, Nadja G. Machado, George L. Vourlitis, Hatim M. E. Geli, Luiz Octávio F. dos Santos, Carlos A. S. Querino, Israel O. Ivo, and Névio Lotufo Neto. 2021. "Assessment of Remote Sensing and Re-Analysis Estimates of Regional Precipitation over Mato Grosso, Brazil" Water 13, no. 3: 333. https://doi.org/10.3390/w13030333
APA StyleJunior, A. L. P., Biudes, M. S., Machado, N. G., Vourlitis, G. L., Geli, H. M. E., Santos, L. O. F. d., Querino, C. A. S., Ivo, I. O., & Neto, N. L. (2021). Assessment of Remote Sensing and Re-Analysis Estimates of Regional Precipitation over Mato Grosso, Brazil. Water, 13(3), 333. https://doi.org/10.3390/w13030333