Quantitative Characteristics of the Current Multi-Source Precipitation Products over Zhejiang Province, in Summer, 2019
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. CMPA
2.3. Satellite-Based and Model-Based Precipitation Products
Dataset | Full Name of the Dataset | Resolution | Period | Reference |
---|---|---|---|---|
PERSIANN-CCS | Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System | 0.04°, 0.5 hourly | 2006–present | Hong et al. [27] |
ERA5-Land | European Centre for Medium-Range Weather Forecasts Reanalysis5-Land | 0.10°, 1 hourly | 1979–present | Hoffmann et al. [28] |
FY4A QPE | Fengyun 4A QuantitativePrecipitation Estimation | 0.04°, 0.5 hourly | 2018–present | Shen et al. [25] |
GSMap_Gauge | Global Satellite Mapping ofPrecipitation-Gauge | 0.10°, 1 hourly | 2000–present | Mega et al. [29] |
IMERG-Final | Integrated Multi-Satellite Retrievals for Global Precipitation Measurement-Final | 0.10°, 1 hourly | 2000–present | Huffman et al. [18] |
3. Methods
4. Results
4.1. Spatial Distributions of the Precipitation over Zhejiang Province in Summer
4.2. Spatial Patterns of Evaluations on the Precipitation Products and CMPA Data at an Hourly Scale
4.3. Temporal Patterns of Evaluations on the Precipitation Products and CMPA Data at Hourly Scale
5. Discussion
5.1. Error Source Analysis of the Precipitation Product
5.2. Calibration Procedure in IMERG-Final and GSMap_Gauge
5.3. Overall Comparisions on the Performances of the Five Precipitation Products in Summer 2018 and 2019
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Z.; Ghent, D.; Han, X.; He, K.; Li, H.Y.; Han, X.Z.; Huang, Q.T.; Peng, J. Long-term Precipitation Estimates Generated by a Downscaling-calibration Procedure Over the Tibetan Plateau From 1983 to 2015. Earth Space Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Xu, Y.; Peng, J.; Chen, Q.; Wan, D.; He, K.; Shi, Z.; Li, H. Spatial and temporal precipitation patterns characterized by TRMM TMPA over the Qinghai-Tibetan plateau and surroundings. Int. J. Remote Sens. 2018, 39, 3891–3907. [Google Scholar] [CrossRef]
- Ma, Z.; Shi, Z.; Zhou, Y.; Xu, J.; Yu, W.; Yang, Y. A Spatial Data Mining Algorithm for Downscaling TMPA 3B43 V7 Data over the Qinghai-Tibet Plateau with the Effect of Systematic Anomalies Removed. Remote Sens. Environ. 2017, 200, 378–395. [Google Scholar] [CrossRef]
- Abdelmoneim, H.; Soliman, M.; Moghazy, H. Evaluation of TRMM 3B42V7 and CHIRPS Satellite Precipitation Products as an Input for Hydrological Model over Eastern Nile Basin. Earth Syst. Environ. 2020, 4, 685–698. [Google Scholar] [CrossRef]
- Constantinidou, K.; Hadjinicolaou, P.; Zittis, G.; Lelieveld, J. Performance of Land Surface Schemes in the WRF Model for Climate Simulations over the MENA-CORDEX Domain. Earth Syst. Environ. 2020, 4, 647–665. [Google Scholar] [CrossRef]
- Ehsan, M.; Almazroui, M.; Yousef, A. Impact of Different Cumulus Parameterization Schemes in SAUDI-KAU AGCM. Earth Syst. Environ. 2017, 1. [Google Scholar] [CrossRef] [Green Version]
- Kidd, C.; Huffman, G. Global precipitation measurement. Meteorol. Appl. 2011, 18, 334–353. [Google Scholar] [CrossRef]
- Jongjin, B.; Jongmin, P.; Dongryeol, R.; Minha, C. Geospatial blending to improve spatial mapping of precipitation with high spatial resolution by merging satellite-based and ground-based data. Hydrol. Process. 2016, 30, 2789–2803. [Google Scholar]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM multi-Satellite precipitation analysis (TMPA). J. Hydrometeorol. 2007, 8, 237–247. [Google Scholar]
- Li, N.; Tang, G.; Zhao, P.; Hong, Y.; Gou, Y.; Yang, K. Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin. Atmos. Res. 2017, 183, 212–223. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Zhou, L.Q.; Yu, W.; Yang, Y.Y.; Teng, H.F.; Shi, Z. Improving TMPA 3B43 V7 Data Sets Using Land-Surface Characteristics and Ground Observations on the Qinghai-Tibet Plateau. IEEE Geosci. Remote Sens. Lett. 2018, 99, 1–5. [Google Scholar] [CrossRef]
- Hong, Y.; Gochis, D.; Cheng, J.T.; Hsu, K.L.; Sorooshian, S. Evaluation of persiann-ccs rainfall measurement using the name event rain gauge network. J. Hydrometeorol. 2007, 8, 469. [Google Scholar] [CrossRef] [Green Version]
- Mahrooghy, M.; Anantharaj, V.G.; Younan, N.H.; Aanstoos, J.; Hsu, K.L. On an enhanced persiann-ccs algorithm for precipitation estimation. J. Atmos. Ocean. Technol. 2012, 29, 922–932. [Google Scholar] [CrossRef] [Green Version]
- Yin, R.; Han, W.; Gao, Z.; Di, D. The evaluation of fy4a’s geostationary interferometric infrared sounder (giirs) longwave temperature sounding channels using the grapes global 4dar. Q. J. R. Meteorol. Soc. 2020. [Google Scholar] [CrossRef]
- Lu, D.; Yong, B. A preliminary assessment of the gauge-adjusted near-real-time gsmap precipitation estimate over mainland china. Remote Sens. 2020, 12, 141. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Santo, H. Comparison of gpm imerg, tmpa 3b42 and persiann-cdr satellite precipitation products over malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Chen, S.; Tang, Z.; Wang, J. Multivariate Analysis and Geochemical Signatures of Shallow Groundwater in the Main Urban Area of Chongqing, Southwestern China. Water 2020, 12, 2833. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). In Algorithm Theoretical Basis Document (ATBD); NASA/GSFC: Greenbelt, MD, USA, 2019. [Google Scholar]
- Lu, H.; Ding, L.; Ma, Z.; Li, H.; Lu, T.; Su, M.; Xu, J. Spatiotemporal Assessments on the Satellite-Based Precipitation Products from Fengyun and GPM Over the Yunnan-Kweichow Plateau, China. Earth Space Sci. 2020, 7, e2019EA000857. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Z.; Tang, G.; Ji, Q.; Min, X.; Wan, W.; Shi, Z. Quantitative Evaluations and Error Source Analysis of Fengyun-2-Based and GPM-Based Precipitation Products over Mainland China in Summer, 2018. Remote Sens. 2019, 11, 2992. [Google Scholar] [CrossRef] [Green Version]
- Mayor, Y.; Tereshchenko, I.; Fonsecahernández, M.; Pantoja, D.; Montes, J. Evaluation of error in imerg precipitation estimates under different topographic conditions and temporal scales over mexico. Remote Sens. 2017, 9, 503. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Ruan, R.; Liu, Y. Accuracy assessment of global satellite mapping of precipitation (gsmap) product over poyang lake basin, china. Procedia Environ. Sci. 2011, 10, 2265–2271. [Google Scholar] [CrossRef] [Green Version]
- Hénin, R.; Liberato, M.; Ramos, A.; Gouveia, C. Assessing the use of satellite-based estimates and high-resolution precipitation datasets for the study of extreme precipitation events over the iberian peninsula. Water 2018, 10, 1688. [Google Scholar] [CrossRef] [Green Version]
- Skinner, M.W.; Kuhn, R.G.; Joseph, A.E. Agricultural land protection in china: A case study of local governance in zhejiang province. Land Use Policy 2001, 18, 329–340. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over china. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Yong, B.; Ren, R.L.; Hong, R.; Wang, R.H.; Gourley, R.J.; Jiang, S.H.; Chen, X.; Wang, W. Hydrologic evaluation of multisatellite precipitation analysis standard precipitation products in basins beyond its inclined latitude band: A case study in laohahe basin, china. Water Resour. Res. 2010, 46, 759–768. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Hsu, K.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 2004. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, L.; Günther, G.L.D.; Li, D. From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 2019, 19, 3097–3124. [Google Scholar] [CrossRef] [Green Version]
- Mega, T.; Ushio, T.; Matsuda, T.; Kubota, T.; Kachi, M.; Oki, R. Gauge-adjusted global satellite mapping of precipitation. IEEE Trans. Geosci. Remote Sens. 2018, 1–8. [Google Scholar] [CrossRef]
- Tan, X.; Ma, Z.; He, K.; Han, X.; He, Y. Evaluations on gridded precipitation products spanning more than half a century over the tibetan plateau and its surroundings. J. Hydrol. 2019. [Google Scholar] [CrossRef]
- Ma, Z.; Jin, X.; Zhu, S.; Tang, G.; Yang, Y.; Shi, Z.; Hong, Y. AIMERG: A new Asian precipitation dataset (0.1°/half-hourly, 2000–2008) by calibrating GPM IMERG at daily scale using APHRODITE. Earth Syst. Sci. Data 2020. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
Statistic Index | Formula | Best Value |
---|---|---|
Correlation coefficient (CC) | 1 | |
Relative bias (bias) | 0 | |
Root mean square error (RMSE) | RMSE = | 0 |
Probability of detection (POD) | 1 | |
False alarm ratio (FAR) | 0 | |
Critical success index (CSI) | 1 |
Index | Dataset | June | July | August | Summer |
---|---|---|---|---|---|
CC | PERSIANN-CCS | 0.24 | 0.27 | 0.29 | 0.26 |
ERA5-Land | 0.29 | 0.32 | 0.53 | 0.39 | |
FY4A QPE | 0.22 | 0.26 | 0.21 | 0.21 | |
GSMap_Gauge | 0.51 | 0.51 | 0.49 | 0.50 | |
IMERG-Final | 0.49 | 0.51 | 0.49 | 0.48 | |
bias (%) | PERSIANN-CCS | −26.74 | −23.74 | −57.94 | −35.03 |
ERA5-Land | 4.91 | 15.53 | −23.11 | 0.40 | |
FY4A QPE | −4.42 | 13.57 | −83.82 | −21.68 | |
GSMap_Gauge | 1.88 | 6.92 | −7.71 | 0.82 | |
IMERG-Final | 1.01 | 0.28 | −4.05 | −0.77 | |
RMSE (mm/h) | PERSIANN-CCS | 1.80 | 1.91 | 1.71 | 1.81 |
ERA5-Land | 1.60 | 1.79 | 1.45 | 1.62 | |
FY4A QPE | 2.17 | 2.27 | 1.72 | 2.06 | |
GSMap_Gauge | 1.40 | 1.56 | 1.56 | 1.51 | |
IMERG-Final | 1.55 | 1.58 | 1.77 | 1.64 | |
POD | PERSIANN-CCS | 0.31 | 0.36 | 0.30 | 0.33 |
ERA5-Land | 0.80 | 0.81 | 0.59 | 0.78 | |
FY4A QPE | 0.46 | 0.41 | 0.23 | 0.39 | |
GSMap_Gauge | 0.75 | 0.75 | 0.70 | 0.74 | |
IMERG-Final | 0.70 | 0.75 | 0.68 | 0.71 | |
FAR | PERSIANN-CCS | 0.51 | 0.47 | 0.35 | 0.47 |
ERA5-Land | 0.53 | 0.55 | 0.57 | 0.54 | |
FY4A QPE | 0.56 | 0.48 | 0.28 | 0.50 | |
GSMap_Gauge | 0.48 | 0.48 | 0.50 | 0.48 | |
IMERG-Final | 0.45 | 0.41 | 0.43 | 0.43 | |
CSI | PERSIANN-CCS | 0.23 | 0.27 | 0.26 | 0.25 |
ERA5-Land | 0.43 | 0.41 | 0.36 | 0.40 | |
FY4A QPE | 0.29 | 0.30 | 0.21 | 0.28 | |
GSMap_Gauge | 0.44 | 0.44 | 0.41 | 0.43 | |
IMERG-Final | 0.44 | 0.49 | 0.45 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, C.; Ding, L.; Zhang, L.; Xu, J.; Ma, Z. Quantitative Characteristics of the Current Multi-Source Precipitation Products over Zhejiang Province, in Summer, 2019. Water 2021, 13, 334. https://doi.org/10.3390/w13030334
Qiu C, Ding L, Zhang L, Xu J, Ma Z. Quantitative Characteristics of the Current Multi-Source Precipitation Products over Zhejiang Province, in Summer, 2019. Water. 2021; 13(3):334. https://doi.org/10.3390/w13030334
Chicago/Turabian StyleQiu, Chao, Leiding Ding, Lan Zhang, Jintao Xu, and Ziqiang Ma. 2021. "Quantitative Characteristics of the Current Multi-Source Precipitation Products over Zhejiang Province, in Summer, 2019" Water 13, no. 3: 334. https://doi.org/10.3390/w13030334
APA StyleQiu, C., Ding, L., Zhang, L., Xu, J., & Ma, Z. (2021). Quantitative Characteristics of the Current Multi-Source Precipitation Products over Zhejiang Province, in Summer, 2019. Water, 13(3), 334. https://doi.org/10.3390/w13030334