Operationalizing Urban Resilience to Floods in Island Territories—Application in Punaauia, French Polynesia
Abstract
:1. Introduction
1.1. Issues and Background
1.2. Operational Approach Based on the Concept of Resilience
2. Operationalizing Territorial Resilience in Pacific Island States
2.1. Tools for Operationalizing the Concept of Resilience
2.1.1. Vulnerability Assessment of Critical Infrastructure in Hamburg
- Resilience capacity: The probability of services to malfunction in the event of a disturbance. The more the technical network is damaged, the more difficult it will be to put it back into service. Resilience analysis thus makes it possible to assess possible damage and its consequences on the system to highlight the interdependencies between the various network components.
- Absorption capacity: The possible alternatives allowing services to be maintained despite network disturbance. As well as the identification of solutions to maintain service continuity despite flooding, thus operating in “degraded” mode.
- Recovery capacity: The time required to bring the system back into service.
2.1.2. A Collaborative Approach with Parisian Urban Services
2.1.3. Indicators to Mapping Resilience in Avignon
2.2. Territorial Resilience Modeling in French Polynesia
2.2.1. Technical Resilience
2.2.2. Urban and Social Resilience
2.2.3. Flooding Scenario
3. Results and Discussion
3.1. Mapping Resilience of the Punaruu Valley
3.2. Towards a Spatial Support Decision
4. Conclusions
- adapting a resilience model to a small island developing state;
- the integration of local stakeholders in the design of a spatial decision support system;
- the use of public data from the Institut de la Statistique de Polynésie française (ISPF) to allow the reproducibility of the study in French Polynesia;
- the use of free and easy-to-use tools for mapping results: QGIS and Gephi;
- the production of visual and understandable maps and tables allowing dialogue with local actors;
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SAU. Plan de Prévention des Risques naturels de Punaauia; Report from the municipality of Punaauia. 2016. Available online: http://www.punaauia.pf/ (accessed on 13 June 2020).
- Folland, C.K.; Renwick, J.A.; Salinger, M.J.; Mullan, A.B. Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophys. Res. Lett. 2002, 29, 21-1–21-4. [Google Scholar] [CrossRef]
- Vincent, E.M.; Lengaigne, M.; Menkes, C.E.; Jourdain, N.C.; Marchesiello, P.; Madec, G. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Clim. Dyn. 2011, 36, 1881–1896. [Google Scholar] [CrossRef] [Green Version]
- Pheulpin, L.; Recking, A.; Sichoix, L.; Barriot, J.-P. Extreme floods regionalisation in the tropical island of Tahiti, French Polynesia. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2016; Volume 7, p. 01014. [Google Scholar]
- Lee, S.Y.; Dunn, R.J.K.; Young, R.A.; Connolly, R.M.; Dale, P.E.R.; DeHayr, R.; Lemckert, C.; McKinnon, S.; Powell, B.; Teasdale, P.R.; et al. Impact of urbanization on coastal wetland structure and function. Austral. Ecol. 2006, 31, 149–163. [Google Scholar] [CrossRef]
- Pheulpin, L.; Sichoix, L.; Barriot, J.; Recking, A. An example of flash-flood events in Tahiti. In Earth Observations and Societal Impacts. Adv. Meteorol. 2014. [Google Scholar] [CrossRef]
- Pheulpin, L.; Barriot, J.P.; Recking, A.; Sichoix, L. Extreme Runoff Simulation for A Small Catchment in the Tropical Island of Tahiti; EGU General Assembly Conference Abstracts: Vienna, Austria, 2016; Available online: https://hal.archives-ouvertes.fr/hal-01644056 (accessed on 10 December 2020).
- Le Point.fr. (27 January 2017). Tahiti au Ralenti Cinq Jours Après des Inondations Dévastatrices. Le Point. Available online: https://www.lepoint.fr (accessed on 10 December 2020).
- Hungr, O.; Morgan, G.C.; Kellerhals, R. Quantitative analysis of debris torrent hazards for design of remedial measures. Can. Geotech. J. 1984, 21, 663–677. [Google Scholar] [CrossRef]
- Lescarmontier, L.; Pen Point, S.; Wilgenbus, D.; Guilyardi, E.; Matthews, R.; Bhai Rumjaun, A.; Schluepmann, J.; Borde, B.; Niewoehner, C.; Kounkou-Arnaud, R.; et al. Special Report: Global Warming of 1.5° C—Summary for Policymakers 110; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/sr15 (accessed on 25 November 2020).
- Hay, J.E.; Forbes, D.L.; Mimura, N. Understanding and managing global change in small islands. Sustain. Sci. 2013, 8, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Merwade, V.; Olivera, F.; Arabi, M.; Edleman, S. Uncertainty in Flood Inundation Mapping: Current Issues and Future Directions. J. Hydrol. Eng. 2008, 13, 608–620. [Google Scholar] [CrossRef] [Green Version]
- Milly, P.C.D.; Wetherald, R.T.; Dunne, K.A.; Delworth, T.L. Increasing risk of great floods in a changing climate. Nat. Cell Biol. 2002, 415, 514–517. [Google Scholar] [CrossRef]
- Zevenbergen, C.; Cashman, A.; Evelpidou, N.; Pasche, E.; Garvin, S.; Ashley, R. Urban Flood Management; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2016, 134, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Briguglio, L. Small island developing states and their economic vulnerabilities. World Dev. 1995, 23, 1615–1632. [Google Scholar] [CrossRef]
- Pelling, M.; Uitto, J.I. Small island developing states: Natural disaster vulnerability and global change. Environ. Hazards 2001, 3, 49–62. [Google Scholar] [CrossRef]
- Lhomme, S. Les Réseaux Techniques Comme Vecteur de Propagation des Risques en Milieu urbain—Une Contribution Théorique et Pratique à l’analyse de la Résilience Urbaine. Ph.D. Thesis, Université Paris-Diderot–Paris VII, Paris, France, 2010. [Google Scholar]
- McNally, R.K.; Lee, S.-W.; Yavagal, D.; Xiang, W.-N. Learning the Critical Infrastructure Interdependencies through an Ontology-Based Information System. Environ. Plan. B Plan. Des. 2007, 34, 1103–1124. [Google Scholar] [CrossRef] [Green Version]
- Catane, S.G.; Abon, C.C.; Saturay, R.M.; Mendoza, E.P.P.; Futalan, K.M. Landslide-amplified flash floods—The June 2008 Panay Island flooding, Philippines. Geomorphology 2012, 169, 55–63. [Google Scholar] [CrossRef]
- Avila-Diaz, A.; Justino, F.; Wilson, A.; Bromwich, D.; Amorim, M. Recent precipitation trends, flash floods and landslides in southern Brazil. Environ. Res. Lett. 2016, 11, 114029. [Google Scholar] [CrossRef]
- Serre, D.; Heinzlef, C. Assessing and mapping urban resilience to floods with respect to cascading effects through critical infrastructure networks. Int. J. Disaster Risk Reduct. 2018, 30, 235–243. [Google Scholar] [CrossRef]
- Pregnolato, M.; Ford, A.; Wilkinson, S.M.; Dawson, R.J. The impact of flooding on road transport: A depth-disruption function. Transp. Res. Part D Transp. Environ. 2017, 55, 67–81. [Google Scholar] [CrossRef]
- Kadri, F.; Birregah, B.; Châtelet, E. The Impact of Natural Disasters on Critical Infrastructures: A Domino Effect-based Study. J. Homel. Secur. Emerg. Manag. 2014, 11, 217–241. [Google Scholar] [CrossRef]
- Rinaldi, S.M.; Peerenboom, J.P.; Kelly, T.K. Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control. Syst. 2001, 21, 11–25. [Google Scholar] [CrossRef]
- Morrison, A.; Westbrook, C.J.; Noble, B.F. A review of the flood risk management governance and resilience literature. J. Flood Risk Manag. 2017, 11, 291–304. [Google Scholar] [CrossRef]
- Gonzva, M.; Barroca, B.; Serre, D. Résilience des systèmes urbains: Proposition d’un cadre méthodologique pour répondre aux besoins des exploitants. Risques Urbains 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Serre, D. Advanced methodology for risk and vulnerability assessment of interdependency of critical infrastructure in respect to urban floods. E3S Web Conf. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Toubin, M.; Laganier, R.; Diab, Y.; Serre, D. Improving the Conditions for Urban Resilience through Collaborative Learning of Parisian Urban Services. J. Urban Plan. Dev. 2015, 141. [Google Scholar] [CrossRef]
- Heinzlef, C.; Becue, V.; Serre, D. A spatial decision support system for enhancing resilience to floods: Bridging resilience modelling and geovisualization techniques. Nat. Hazards Earth Syst. Sci. 2020, 20, 1049–1068. [Google Scholar] [CrossRef] [Green Version]
- Heinzlef, C.; Becue, V.; Serre, D. Operationalizing urban resilience to floods in embanked territories—Application in Avignon, Provence Alpes Côte d’azur region. Saf. Sci. 2019, 118, 181–193. [Google Scholar] [CrossRef]
- Cutter, S.; Burton, C.G.; Emrich, C.T. Disaster Resilience Indicators for Benchmarking Baseline Conditions. J. Homel. Secur. Emerg. Manag. 2010, 7. [Google Scholar] [CrossRef]
- Heinzlef, C.; Serre, D. Urban resilience: From a limited urban engineering vision to a more global comprehensive and long-term implementation. Water Secur. 2020, 11, 100075. [Google Scholar] [CrossRef]
- Balsells, M.; Barroca, B.; Becue, V.; Serre, D. Making urban flood resilience more operational: Current practice. Proc. Inst. Civ. Eng. Water Manag. 2015, 168, 57–65. [Google Scholar] [CrossRef]
- SAU. Schéma D’aménagement Général de la Polynésie Française (SAGE). Service de l’Aménagement et de l’Urbanisme. Available online: https://www.service-public.pf/sau/ (accessed on 11 November 2020).
- Fabbri, K.P. A methodology for supporting decision making in integrated coastal zone management. Ocean Coast. Manag. 1998, 39, 51–62. [Google Scholar] [CrossRef]
- Serre, D. La ville résiliente aux inondations Méthodes et outils d’évaluation. Ph.D. Thesis, Université Paris-Est, Paris, France, 2011. Available online: https://tel.archives-ouvertes.fr/tel-00777206 (accessed on 10 December 2020).
- Heinzlef, C.; Robert, B.; Hémond, Y.; Serre, D. Operating urban resilience strategies to face climate change and associated risks: Some advances from theory to application in Canada and France. Cities 2020, 104, 102762. [Google Scholar] [CrossRef]
- Albertini, C.; Mazzoleni, M.; Totaro, V.; Iacobellis, V.; Di Baldassarre, G. Socio-Hydrological Modelling: The Influence of Reservoir Management and Societal Responses on Flood Impacts. Water 2020, 12, 1384. [Google Scholar] [CrossRef]
- Helbing, D. Globally networked risks and how to respond. Nat. Cell Biol. 2013, 497, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 18–20 May 2009; Volume 3, p. No. 1. [Google Scholar] [CrossRef]
- Lhomme, S.; Laganier, R.; Diab, Y.; Serre, D. La résilience de la ville de Dublin aux inondations: De la théorie à la pratique. Cybergeo 2013. [Google Scholar] [CrossRef]
- Tarabusi, E.C.; Guarini, G. An Unbalance Adjustment Method for Development Indicators. Soc. Indic. Res. 2013, 112, 19–45. [Google Scholar] [CrossRef]
- Opach, T.; Rød, J.K. Cartographic Visualization of Vulnerability to Natural Hazards. Cartogr. Int. J. Geogr. Inf. Geovis. 2013, 48, 113–125. [Google Scholar] [CrossRef]
- Gotham, K.F. The Social Roots of Risk: Producing Disasters, Promoting Resilience by Kathleen J. Tierney. Am. J. Sociol. 2015, 121, 646–648. [Google Scholar] [CrossRef]
- Mileti, D. Disasters by Design: A Reassessment of Natural Hazards in the United States; Joseph Henry Press: Washington, DC, USA, 1999. [Google Scholar]
- Sutter, D.; Simmons, K.M. Tornado fatalities and mobile homes in the United States. Nat. Hazards 2009, 53, 125–137. [Google Scholar] [CrossRef]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. The geographies of community disaster resilience. Glob. Environ. Chang. 2014, 29, 65–77. [Google Scholar] [CrossRef]
- Boin, A. From Crisis to Disaster: Towards in Integrative Perspective; Xlibris Press: Bloomington, IN, USA, 2005; pp. 153–172. [Google Scholar]
- European Parliament. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the Assessment and Management of Flood Risks. 2007. Available online: http://data.europa.eu/eli/dir/2007/60/oj (accessed on 18 December 2020).
- Lopez, M.G.; Di Baldassarre, G.; Seibert, J. Impact of social preparedness on flood early warning systems. Water Resour. Res. 2017, 53, 522–534. [Google Scholar] [CrossRef] [Green Version]
- Lafforgue, A. Annales Hydrologiques de l’île de Tahiti de 1971 à 1986. 300; ORSTOM: Papeete, French Polynesia, 1987. [Google Scholar]
- Armenakis, C.; Nirupama, N. Estimating spatial disaster risk in urban environments. Geomat. Nat. Hazards Risk 2013, 4, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Heinzlef, C.; Serre, D. Dérèglement climatique et gestion des risques en Polynésie française: Conception d’un Observatoire de la résilience. Cah. D’Outre Mer Rev. Géogr. Bordx. 2019, 72, 531–563. [Google Scholar] [CrossRef]
- Viglione, A.; Di Baldassarre, G.; Brandimarte, L.; Kuil, L.; Carr, G.; Salinas, J.L.; Scolobig, A.; Blöschl, G. Insights from socio-hydrology modelling on dealing with flood risk—Roles of collective memory, risk-taking attitude and trust. J. Hydrol. 2014, 518, 71–82. [Google Scholar] [CrossRef]
- Annis, A.; Nardi, F.; Petroselli, A.; Apollonio, C.; Arcangeletti, E.; Tauro, F.; Belli, C.; Bianconi, R.; Grimaldi, S. UAV-DEMs for Small-Scale Flood Hazard Mapping. Water 2020, 12, 1717. [Google Scholar] [CrossRef]
- Apollonio, C.; Bruno, M.F.; Iemmolo, G.; Molfetta, M.G.; Pellicani, R. Flood Risk Evaluation in Ungauged Coastal Areas: The Case Study of Ippocampo (Southern Italy). Water 2020, 12, 1466. [Google Scholar] [CrossRef]
Issues | Testing Method Reproducibility | Providing Data | Encouraging a Collaborative Approach | Training a Decision Support Process | Raising Awareness of Resilience among Local Actors |
---|---|---|---|---|---|
Spatialization of flood risk | X | X | - | X | - |
Indicators of urban and social resilience [14,17] | X | X | X | X | - |
Technical resilience capacities [16] | X | X | X | X | X |
Interdependencies urban technical services [11] | X | X | X | X | X |
Id | Designation | Meaning of the Acronym | Main Service Provided | Function |
---|---|---|---|---|
1 | EDT Engie | Electricité de Tahiti | Electricity | Management of the public electricity distribution network |
2 | PdE | Polynésienne des Eaux | Drinking water Sanitation | Management of the public water production, distribution and sanitation service in the municipalities of Punaauia, Faa’a and Paea |
3 | FeMa | Fenua Ma | Waste treatment | Treatment and recycling of community waste |
4 | Voirie | Service du Patrimoine | Transport | Urban space planning, traffic organization |
5 | OPT | Office des Postes et Télécommunications | Telecommunications | Telephone and Internet operator |
6 | BdT | Brasserie de Tahiti | Beverages | Production and distribution of beverages |
7 | WAN | Groupe WAN | Food | Distribution of food products in supermarkets |
Resilience Indicators | Variables | Sources | Impact on Resilience | Justification |
---|---|---|---|---|
Social resilience indicator | Population structure | |||
00–09 years old | ISPF | Negative | (Cutter et al., 2010; Opach and Rød, 2013) [32,44] | |
10–59 years old | ISPF | Positive | ||
More than 60 years old | ISPF | Negative | ||
Employment status | ||||
Unemployed | ISPF | Negative | (Tierney, 2014) [45] | |
No professional activity | ISPF | Negative | ||
Employee | ISPF | Positive | ||
Educational attainment | ||||
Exit before the 3rd grade | ISPF | Negative | (Heinzlef et al., 2019) [30] | |
Bac and better | ISPF | Positive | ||
Urban resilience indicator | Date of construction of main residences | |||
Built before 1997 | ISPF | (Mileti, 1999; Cutter et al., 2010; Opach and Rød, 2013) [32,44,46] | ||
Built from 1997 to 2002 | ISPF | Negative | ||
Built after 2002 | ISPF | Positive | ||
Composition of the walls of main residences | ||||
Hard: cinder block, cement | ISPF | Positive | (Sutter and Simmons, 2010; Cutter et al., 2014) [47,48] | |
Wood | ISPF | Negative | ||
Others | ISPF | Negative | ||
Equipment | ||||
Running water | ISPF | Positive | (Cutter et al., 2010) [32] | |
Electricity | ISPF | Positive | ||
Computer | ISPF | Positive | ||
Internet connection | ISPF | Positive |
Resistance (before the Crisis) | Absorption (during the Crisis) | Recovery (after the Crisis) | ||||
---|---|---|---|---|---|---|
EDT | Flood zone power plant Underground network and protected posts, risk in case of carriage The network must not be in contact with water | Single power station supplies area Interruption of production (if water height > 50 cm) The network’s meshing makes it possible to bypass some impacted areas | Significant staff and resources Return-to-Service Time < 4 h after securing the system (cleaning and inspection) | |||
PdE | Factory outside the flood zone Underground network protected except risk of bank erosion Dam stability threatened | Interruption of sanitation Pumping into the water table is started The mesh of the network makes it possible to target distribution | Continuity of service Limited damages except in the case of major haulage operations | |||
FeMa | Transfer station outside the flood zone | Closing of the site Direct transfer of waste to Motu Uta and Paihoro landfill site | Uncertainty | |||
Voirie | The gutters must not be flooded or obstructed. Paths locally protected by gabion walls The bridge of the Industrial Zone appears vulnerable | The mesh size is important except for the Punaruuu river crossings and the exit of the Industrial Zone | Significant staff and resources Track cleaning can take a long time Restoration of uncertain traffic flow in case of bridge destruction | |||
OPT | The network must not be in contact with water | Highly meshed network Coverage provided in the territory | Significant staff and resources | |||
BdT | Several workshops in flood-prone areas Elevated equipment Routine machine maintenance | Factory must stop Distribution ensured thanks to a safety stock (1 week) | Qualified maintenance service Time to return to production < 4 h | |||
Legend of resilience levels | Good | Pretty good | Pretty bad | Bad | Unknown |
Resistance (before the Crisis) | Absorption (during the Crisis) | Recovery (after the Crisis) | ||
---|---|---|---|---|
Power plant | Pole and network condition monitoring Strengthening of protective walls | Diversification of power generation sites | Machine maintenance and technician training | |
Water dam | Installation of a drainage gallery | Promote electrical autonomy (generator set) | - | |
Road right bank | Gutter maintenance Reinforcement of protective walls Monitoring of incision and de-scoring campaigns Monitoring of scouring under the bridge | Reflection on an alternative access route | The gabion walls allow drainage out of the tracks? Benefit/cost comparison | |
Industrial zone bridge | Monitoring of scouring under the bridge | Reflection on alternative traffic | Temporary Bridge and Reconstruction (Ex. 20 months for the Matatia Bridge) | |
Socio-economic dynamics | Public Awareness of Risk | Design of a risk management awareness platform (Hawke’s bay Emergency Management) | Employment policy Lowering of the minimum wage/Creation of an activity bonus (Zylberberg, 2019) | |
Urban infrastructure | Renovation of buildings Encourage the construction of hard walls rather than wooden walls | Encouraging the purchase of a computer and setting up an internet connection for teleworking | Faster rebuilding in wood than in cinder block? Benefit/cost comparison | |
Priority level legend | Low | Moderate | High | Unknown |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamaury, Y.; Jessin, J.; Heinzlef, C.; Serre, D. Operationalizing Urban Resilience to Floods in Island Territories—Application in Punaauia, French Polynesia. Water 2021, 13, 337. https://doi.org/10.3390/w13030337
Lamaury Y, Jessin J, Heinzlef C, Serre D. Operationalizing Urban Resilience to Floods in Island Territories—Application in Punaauia, French Polynesia. Water. 2021; 13(3):337. https://doi.org/10.3390/w13030337
Chicago/Turabian StyleLamaury, Yoann, Jérémy Jessin, Charlotte Heinzlef, and Damien Serre. 2021. "Operationalizing Urban Resilience to Floods in Island Territories—Application in Punaauia, French Polynesia" Water 13, no. 3: 337. https://doi.org/10.3390/w13030337
APA StyleLamaury, Y., Jessin, J., Heinzlef, C., & Serre, D. (2021). Operationalizing Urban Resilience to Floods in Island Territories—Application in Punaauia, French Polynesia. Water, 13(3), 337. https://doi.org/10.3390/w13030337