Efficiency of Arsenic and Iron Removal Plants (AIRPs) for Groundwater Treatment in Rural Areas of Southwest Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Raw and AIRP Treated Waters
2.2. Analysis of As and Fe
2.3. Efficiency Calculation
2.4. Human Health Risk Assessment
2.5. Statistical Analysis
3. Results and Discussion
3.1. Concentrations of As and Fe in Raw and Treated Water
3.2. Removal Efficiencies of As and Fe by AIRPs
3.3. Efficiency of AIRPs in Terms of Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naidu, R.; Smith, E.; Owens, G.; Bhattacharya, P. Managing Arsenic in the Environment: From Soil to Human Health; CSIRO Publishing: Clayton, VIC, Australia, 2006. [Google Scholar]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer); Working Group on the Evaluation of Carcinogenic Risks to Humans. Chemical Agents and Related Occupations; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2012; Volume 100 F, p. 9. [Google Scholar]
- Rahman, M.M.; Naidu, R.; Bhattacharya, P. Arsenic contamination in groundwater in the Southeast Asia region. Environ. Geochem. Health 2009, 31, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Chakraborti, D.; Rahman, M.M.; Das, B.; Murrill, M.; Dey, S.; Mukherjee, S.C.; Dhar, R.K.; Biswas, B.K.; Chowdhury, U.K.; Roy, S. Status of groundwater arsenic contamination in Bangladesh: A 14-year study report. Water Res. 2010, 44, 5789–5802. [Google Scholar] [CrossRef] [PubMed]
- Fendorf, S.; Benner, S.G. Hydrology: Indo-Gangetic groundwater threat. Nat. Geosci. 2016, 9, 732–733. [Google Scholar] [CrossRef]
- Rasheed, H.; Slack, R.; Kay, P. Human health risk assessment for arsenic: A critical review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1529–1583. [Google Scholar] [CrossRef]
- Stopelli, E.; Duyen, V.T.; Mai, T.T.; Trang, P.T.; Viet, P.H.; Lightfoot, A.; Kipfer, R.; Schneider, M.; Eiche, E.; Kontny, A. Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam: Interplay of mobilisation and retardation processes. Sci. Total Environ. 2020, 717, 137143. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ng, J.C.; Naidu, R. Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ. Geochem. Health 2009, 31, 189–200. [Google Scholar] [CrossRef]
- Brennan, R.; McBean, E. A performance assessment of arsenic-iron removal plants in the Manikganj District of Bangladesh. J. Water Health 2011, 9, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Goldhaber, S.B. Trace element risk assessment: Essentiality vs. toxicity. Regul. Toxicol. Pharmacol. 2003, 38, 232–242. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- ECR. The Environment Conservation Rules, 1997; Department of Environment & Forest Ministry: Dhaka, Bangladesh, 1997; pp. 206–207.
- Annaduzzaman, M.; Rietveld, L.C.; Hoque, B.A.; Bari, M.N.; van Halem, D. Arsenic removal from iron-containing groundwater by delayed aeration in dual-media sand filters. J. Hazard. Mater. 2020, 124823. in press. [Google Scholar]
- Berg, M.; Luzi, S.; Trang, P.T.K.; Viet, P.H.; Giger, W.; Stüben, D. Arsenic removal from groundwater by household sand filters: Comparative field study, model calculations, and health benefits. Environ. Sci. Technol. 2006, 40, 5567–5573. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.D.; Pham, T.T.; Phan, M.N.; Ngo, T.M.V.; Vu, C.M. Adsorption characteristics of anionic surfactant onto laterite soil with differently charged surfaces and application for cationic dye removal. J. Mol. Liq. 2020, 301, 112456. [Google Scholar] [CrossRef]
- Dao, T.-H.; Vu, T.-Q.-M.; Nguyen, N.-T.; Pham, T.-T.; Nguyen, T.-L.; Yusa, S.-I.; Pham, T.-D. Adsorption Characteristics of Synthesized Polyelectrolytes onto Alumina Nanoparticles and their Application in Antibiotic Removal. Langmuir 2020, 36, 13001–13011. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.D.; Tran, T.T.; Pham, T.T.; Dao, T.H.; Le, T.S. Adsorption characteristics of molecular oxytetracycline onto alumina particles: The role of surface modification with an anionic surfactant. J. Mol. Liq. 2019, 287, 110900. [Google Scholar] [CrossRef]
- Wang, J.S.; Wai, C.M. Arsenic in drinking water—a global environmental problem. J. Chem. Educ. 2004, 81, 207. [Google Scholar] [CrossRef]
- Callegari, A.; Ferronato, N.; Rada, E.C.; Capodaglio, A.G.; Torretta, V. Assessment of arsenic removal efficiency by an iron oxide-coated sand filter process. Environ. Sci. Pollut. Res. 2018, 25, 26135–26143. [Google Scholar] [CrossRef]
- Kundu, D.K.; Gupta, A.; Mol, A.P.; Nasreen, M. Understanding social acceptability of arsenic-safe technologies in rural Bangladesh: A user-oriented analysis. Water Policy 2016, 18, 318–334. [Google Scholar] [CrossRef]
- Hoque, B.A.; Yamaura, S.; Sakai, A.; Khanam, S.; Karim, M.; Hoque, Y.; Hossain, S.; Islam, S.; Hossain, O. Arsenic mitigation for water supply in Bangladesh: Appropriate technological and policy perspectives. Water Qual. Res. J. 2006, 41, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K. An analysis of the cost-effectiveness of arsenic mitigation technologies: Implications for public policy. International J. Sustain. Built Environ. 2017, 6, 522–535. [Google Scholar] [CrossRef]
- Sorensen, I.M.; McBean, E.A. Beyond appropriate technology: Social considerations for the sustainable use of arsenic–iron removal plants in rural Bangladesh. Technol. Soc. 2015, 41, 1–9. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sorlini, S.; Crotti, B.M.; Collivignarelli, M.C.; Tjell, J.C.; Abbà, A. Enhancing arsenic removal from groundwater at household level with naturally occurring iron. Revista Ambiente Água 2016, 11, 486–498. [Google Scholar] [CrossRef] [Green Version]
- Gude, J.; Rietveld, L.; van Halem, D. As (III) removal in rapid filters: Effect of pH, Fe (II)/Fe (III), filtration velocity and media size. Water Res. 2018, 147, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Holm, T.R.; Wilson, S.D. Chemical Oxidation for Arsenic Removal; TR06-05; MTAC Publication: Champaign, IL, USA, 2006. [Google Scholar]
- Roberts, L.C.; Hug, S.J.; Ruettimann, T.; Billah, M.M.; Khan, A.W.; Rahman, M.T. Arsenic removal with iron (II) and iron (III) in waters with high silicate and phosphate concentrations. Environ. Sci. Technol. 2004, 38, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Mueller, B.; Hug, S.J. Climatic variations and de-coupling between arsenic and iron in arsenic contaminated ground water in the lowlands of Nepal. Chemosphere 2018, 210, 347–358. [Google Scholar] [CrossRef]
- Berg, M.; Trang, P.T.K.; Stengel, C.; Buschmann, J.; Viet, P.H.; Van Dan, N.; Giger, W.; Stüben, D. Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chem. Geol. 2008, 249, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F.; Bibi, M.H.; Ishiga, H.; Fukushima, T.; Maruoka, T. Geochemical study of arsenic and other trace elements in groundwater and sediments of the Old Brahmaputra River Plain, Bangladesh. Environ. Earth Sci. 2010, 60, 1303–1316. [Google Scholar] [CrossRef]
- Rahman, M.M.; Dong, Z.; Naidu, R. Concentrations of arsenic and other elements in groundwater of Bangladesh and West Bengal, India: Potential cancer risk. Chemosphere 2015, 139, 54–64. [Google Scholar] [CrossRef]
- Van Geen, A.; Ahmed, K.; Seddique, A.; Shamsudduha, M. Community Wells to Mitigate the Arsenic Crisis in Bangladesh. Bull. World Health Organ. 2003, 81, 632–638. [Google Scholar]
- Van Geen, A.; Ahsan, H.; Horneman, A.H.; Dhar, R.K.; Zheng, Y.; Hussain, I.; Ahmed, K.M.; Gelman, A.; Stute, M.; Simpson, H.J. Promotion of well-switching to mitigate the current arsenic crisis in Bangladesh. Bull. World Health Organ. 2002, 80, 732–737. [Google Scholar]
- Chakraborti, D.; Basu, G.K.; Biswas, B.K.; Chowdhury, U.K.; Rahman, M.M.; Paul, K.; Chowdhury, T.R.; Chanda, C.R.; Lodh, D.; Ray, S.L. Characterization of arsenic bearing sediments in Gangetic delta of West Bengal-India. In Arsenic Exposure and Health Effects; Elsevier Science: New York, NY, USA, 2001; pp. 27–52. [Google Scholar]
- Farooq, S.; Chandrasekharam, D.; Norra, S.; Berner, Z.; Eiche, E.; Thambidurai, P.; Stüben, D. Temporal variations in arsenic concentration in the groundwater of Murshidabad District, West Bengal, India. Environ. Earth Sci. 2011, 62, 223–232. [Google Scholar] [CrossRef]
- Ravenscroft, P.; Howarth, R.J.; McArthur, J.M. Comment on “Limited temporal variability of arsenic concentrations in 20 wells monitored for 3 Years in Araihazar, Bangladesh”. Environ. Sci. Technol. 2006, 40, 1716–1717. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, M.K.; Mukherjee, A.; Ahamed, S.; Hossain, M.A.; Das, B.; Nayak, B.; Chakraborti, D.; Goswami, A.B. Comment on “Limited Temporal Variability of Arsenic Concentrations in 20 Wells Monitored for 3 Years in Araihazar, Bangladesh”. Environ. Sci. Technol. 2006, 40, 1714–1715. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumar, P.; Ramanathan, A.; Bhattacharya, P.; Thunvik, R.; Singh, U.K.; Tsujimura, M.; Sracek, O. Arsenic enrichment in groundwater in the middle Gangetic Plain of Ghazipur District in Uttar Pradesh, India. J. Geochem. Explor. 2010, 105, 83–94. [Google Scholar] [CrossRef]
- Hossain, M.A.; Mukharjee, A.; Sengupta, M.K.; Ahamed, S.; Das, B.; Nayak, B.; Pal, A.; Rahman, M.M.; Chakraborti, D. Million dollar arsenic removal plants in West Bengal, India: Useful or not? Water Qual. Res. J. 2006, 41, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, I.M.; McBean, E.A.; Rahman, M. Retrofitting arsenic-iron removal plants in rural Bangladesh for performance enhancement. J. Water Sanit. Hyg. Dev. 2014, 4, 400–409. [Google Scholar] [CrossRef]
- APHA. American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Denver, CO, USA, 2012. [Google Scholar]
- Rahman, M.A.; Kumar, S.; Mohana, A.A.; Islam, R.; Hashem, M.A.; Chuanxiu, L. Coliform Bacteria and trace metals in drinking water, southwest Bangladesh: Multivariate and human health risk assessment. Int. J. Environ. Res. 2019, 13, 395–408. [Google Scholar] [CrossRef]
- US-EPA (United States-Environmental Protection Agency). Regional Screening Levels (RSLs)-Equations; US-EPA: Washington, DC, USA, 2019. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-equations (accessed on 26 August 2019).
- Hossain, M.A.; Rahman, M.M.; Murrill, M.; Das, B.; Roy, B.; Dey, S.; Maity, D.; Chakraborti, D. Water consumption patterns and factors contributing to water consumption in arsenic affected population of rural West Bengal, India. Sci. Total Environ. 2013, 463, 1217–1224. [Google Scholar] [CrossRef] [Green Version]
- US-EPA (United States-Environmental Protection Agency). Regional Screening Levels (RSLs)-Generic Tables, Tables as of Regional Screening Level (RSL) Summary Table (TR=1E-06, HQ=1); US-EPA: Washington, DC, USA, 2019.
- Rodrıguez, R.; Ramos, J.; Armienta, A. Groundwater arsenic variations: The role of local geology and rainfall. Appl. Geochem. 2004, 19, 245–250. [Google Scholar] [CrossRef]
- Ghosh, G.C.; Khan, M.J.H.; Chakraborty, T.K.; Zaman, S.; Kabir, A.E.; Tanaka, H. Human health risk assessment of elevated and variable iron and manganese intake with arsenic-safe groundwater in Jashore, Bangladesh. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Rahman, M.H.; Rahman, M.Z. Performance of arsenic and iron removal plants in Bangladesh. In Proceedings of the 30th WEDC International Conference, Vientiane, Laos, 25–29 October 2004. [Google Scholar]
- Ahmed, F. Development of Community Based Arsenic & Iron Removal Unit for Rural Water Supply System; ITN-Bangladesh, Centre for Water Supply and Waste Management, BUET: Dkhaka, Bangladesh, 2005; Volume 6. [Google Scholar]
- US-EPA (United States-Environmental Protection Agency). Oxidation filtration (iron removal). In Arsenic Virtual Trade Show; US-EPA: Washington, DC, USA, 2019. Available online: https://cfpub.epa.gov/safewater/arsenic/arsenictradeshow/arsenic.cfm?action=Oxidation (accessed on 26 August 2019).
- Islam, R.; Kumar, S.; Rahman, A.; Karmoker, J.; Ali, S.; Islam, S.; Islam, M.S. Trace metals concentration in vegetables of a sub-urban industrial area of Bangladesh and associated health risk assessment. AIMS Environ. Sci. 2018, 5, 130–142. [Google Scholar] [CrossRef]
Parameters | Pre-Monsoon (May 2019) (n = 20) | Post-Monsoon (November 2019) (n = 20) | Pairwise t-Test | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw Water (n = 20) | Treated Water (n = 20) | Raw Water (n = 20) | Treated Water (n = 20) | Raw Water (n = 20) | Treated Water (n = 20) | Raw Water vs. Treated Water (n = 20) | Raw Water vs. Treated Water (n = 20) | |||||||||
Pre-Monsoon vs. Post-Monsoon | Pre-Monsoon vs. Post-Monsoon | Pre-Monsoon | Post-Monsoon | |||||||||||||
As | Fe | As | Fe | As | Fe | As | Fe | As | Fe | As | Fe | As | Fe | As | Fe | |
Mean | 95.7 | 2698 | 20.3 | 460 | 78.9 | 2473 | 13.25 | 347.5 | 0.074 | 0.298 | 0.036 * | 0.051 | <0.01 ** | <0.01 ** | <0.01 ** | <0.01 ** |
Median | 87 | 2835 | 13.5 | 435 | 71 | 2570 | 7.5 | 375 | ||||||||
Standard deviation | 60.4 | 665 | 18.88 | 193 | 46.3 | 1098 | 12.94 | 153 | ||||||||
Range | 11–218 | 1230–3770 | 1–64 | 120–920 | 15–186 | 750–5350 | 1–45 | 100–670 |
Parameters | PC 1 (Dim 1) | PC 2 (Dim 2) |
---|---|---|
As removal efficiency (pre-monsoon) | 0.704 | 0.166 |
As Removal efficiency (post-monsoon) | 0.865 | –0.437 |
Fe Removal efficiency (pre-monsoon) | –0.809 | 0.119 |
Fe Removal efficiency (post-monsoon) | 0.098 | 0.923 |
Fe/As in Raw Water (pre-monsoon) | 0.646 | 0.139 |
Fe/As in Raw Water (post-monsoon) | 0.754 | 0.252 |
Fe/As in Treated Water (pre-monsoon) | 0.624 | 0.508 |
Fe/As in Treated Water (post-monsoon) | 0.839 | –0.394 |
Eigenvalues | 3.987 | 1.581 |
Cumulative Eigenvalues | 3.987 | 5.568 |
Percent of variance (%) | 49.837 | 19.757 |
Cumulative percent of variance (%) | 49.837 | 69.594 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.A.; Kumar, S.; Bari, A.S.M.F.; Sharma, A.; Rahman, M.M. Efficiency of Arsenic and Iron Removal Plants (AIRPs) for Groundwater Treatment in Rural Areas of Southwest Bangladesh. Water 2021, 13, 354. https://doi.org/10.3390/w13030354
Rahman MA, Kumar S, Bari ASMF, Sharma A, Rahman MM. Efficiency of Arsenic and Iron Removal Plants (AIRPs) for Groundwater Treatment in Rural Areas of Southwest Bangladesh. Water. 2021; 13(3):354. https://doi.org/10.3390/w13030354
Chicago/Turabian StyleRahman, Md. Aminur, Sazal Kumar, A. S. M. Fazle Bari, Abhishek Sharma, and Mohammad Mahmudur Rahman. 2021. "Efficiency of Arsenic and Iron Removal Plants (AIRPs) for Groundwater Treatment in Rural Areas of Southwest Bangladesh" Water 13, no. 3: 354. https://doi.org/10.3390/w13030354
APA StyleRahman, M. A., Kumar, S., Bari, A. S. M. F., Sharma, A., & Rahman, M. M. (2021). Efficiency of Arsenic and Iron Removal Plants (AIRPs) for Groundwater Treatment in Rural Areas of Southwest Bangladesh. Water, 13(3), 354. https://doi.org/10.3390/w13030354