Comparative Investigation of Aquatic Invertebrates in Springs in Münsterland Area (Western Germany)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Groundwater System Baumberge
2.1.2. Groundwater System Schöppinger Berg
2.2. Methodology
2.2.1. Field Work
2.2.2. Laboratory Work
2.2.3. Biotic Data (Counting and Estimating of Invertebrates)
2.2.4. Meteorological Data
2.2.5. Data Processing
3. Results and Discussion
3.1. Abiotic Condition
3.1.1. Groundwater Table, Rainfall, and Spring Discharge
3.1.2. Spring Water Physicochemical Parameters
3.2. Biotic Variables
3.2.1. Invertebrate Existence and Abundance
3.2.2. Invertebrate Variability
3.3. Statistical Analysis
3.3.1. Spearman Correlation
3.3.2. Factor Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vaux, H. Groundwater under stress: The importance of management. Environ. Earth Sci. 2011, 62, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Jassas, H.; Kanoua, W.; Merkel, B. Actual evapotranspiration in the Al-Khazir Gomal Basin (Northern Iraq) using the surface energy balance algorithm for land (SEBAL) and water balance. Geosciences 2015, 5, 141–159. [Google Scholar] [CrossRef] [Green Version]
- Dandwate, S.R. Study of physicochemical parameters of groundwater quality of Kopargaon area, Maharastra State, India during pre-monsoon and post-monsoon seasons. E-J. Chem. 2012, 9, 15–20. [Google Scholar] [CrossRef]
- Rahnama, M.B.; Zamzam, A. Quantitative and qualitative simulation of groundwater by mathematical models in Rafsanjan aquifer using MODFLOW and MT3DMS. Arab. J. Geosci. 2013, 6, 901–912. [Google Scholar] [CrossRef]
- Agrawal, R. Study of physico-chemical parameters of groundwater quality of Dudu town in Rajasthan. Rasayan J. Chem. 2009, 2, 969–971. [Google Scholar]
- Shawky, H. Physical and chemical characteristics of groundwater in Baris-El Kharga Oases as realted to the prevailing different aquifer system, western desert, Egypt. Egypt. J. Desert Res 2007, 57, 149–172. [Google Scholar]
- Salako Adebayo, O.; Abraham, A. Classification and Characterization. Glob. Chem. Kinet. Foss. Fuels 2017, 1–24. [Google Scholar] [CrossRef]
- Elango, L.; Kannan, R. Rock–water interaction and its control on chemical composition of groundwater. In Concepts and Applications in Environmental Geochemistry; Sarkar, D., Datta, R., Hannigan, R.B.T.-D., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 5, pp. 229–243. ISBN 1474-8177. [Google Scholar]
- Safeeq, M.; Fares, A. Groundwater and surface water interactions in relation to natural and anthropogenic environmental changes. In Emerging Issues in Groundwater Resources; Fares, A., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 289–326. [Google Scholar] [CrossRef]
- Zhang, B.; Song, X.; Zhang, Y.; Ma, Y.; Tang, C.; Yang, L.; Wang, Z.L. The interaction between surface water and groundwater and its effect on water quality in the Second Songhua River basin, northeast China. J. Earth Syst. Sci. 2016, 125, 1495–1507. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, S.; Kong, X.; Zheng, W.; Feng, W.; Zhang, X.; Yuan, R.; Song, X.; Sprenger, M. Interaction of surface water and groundwater influenced by groundwater over-extraction, waste water discharge and water transfer in Xiong’an New Area, China. Water 2019, 11, 539. [Google Scholar] [CrossRef] [Green Version]
- Pour, H.V.; Sayari, M.; Bayat, N.; Forutan, F. Qualitative and Quantitative Evaluation of Groundwater in Isfahan Najaf Abad Study Area. J. Middle East Appl. Sci. Technol. (JMEAST) 2014, 16, 523–530. [Google Scholar]
- Schmidt, S.I.; Hahn, H.J. What is groundwater and what does this mean to fauna?—An opinion. Limnologica 2012, 42, 1–6. [Google Scholar] [CrossRef]
- Hölting, B.; Coldewey Wilhelm, G. Hydrogeology; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-662-56375-5. [Google Scholar]
- Menció, A.; Korbel, K.L.; Hose, G.C. River-aquifer interactions and their relationship to stygofauna assemblages: A case study of the Gwydir River alluvial aquifer (New South Wales, Australia). Sci. Total Environ. 2014, 479–480, 292–305. [Google Scholar] [CrossRef]
- Boulton, A.J.; Fenwick, G.D.; Hancock, P.J.; Harvey, M.S. Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr. Syst. 2008, 22, 103–116. [Google Scholar] [CrossRef]
- Gibert, J.; Danielopol, D.L.; Stanford, J. (Eds.) Groundwater Ecology (Aquatic Ecology); Academic Press: San Diego, CA, USA, 1994; ISBN 978-0-08-050762-0. [Google Scholar]
- Wilkens, H.; Culver, D.C.; Humphreys, W.F. Subterranean Ecosystems; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 2000; ISBN 0444822992. [Google Scholar]
- Hose, G.C.; Lategan, M.J. Sampling Strategies for Biological Assessment of Groundwater Ecosystems; CRC CARE Technical Rep. No. 21; CRC for Contamination Assessment and Remediation of the Environment: Adelaide, Australia, 2012. [Google Scholar]
- Brkić, Ž.; Kuhta, M.; Larva, O.; Gottstein, S. Groundwater and connected ecosystems: An overview of groundwater body status assessment in Croatia. Environ. Sci. Eur. 2019, 31, 75. [Google Scholar] [CrossRef]
- Malard, F.; Plenet, S.; Gibert, J. The use of invertebrates in ground water monitoring: A rising research field. Groundw. Monit. Remediat. 1996, 16, 103–113. [Google Scholar] [CrossRef]
- Stein, H.; Kellermann, C.; Schmidt, S.I.; Brielmann, H.; Steube, C.; Berkhoff, S.E.; Fuchs, A.; Hahn, H.J.; Thulin, B.; Griebler, C. The potential use of fauna and bacteria as ecological indicators for the assessment of groundwater quality. J. Environ. Monit. 2010, 12, 242–254. [Google Scholar] [CrossRef]
- Spengler, C.; Gerhardt, A.; Rütz, N.; Van Den Berg-stein, S.; Avramov, M.; Wolters, V.; Marxsen, J.; Griebler, C.; Hahn, J.H. Faunistische Grundwasserbewertung: Neue verfahren und moglichkeiten. Korresp. Wasserwirtschaf 2017, 10, 272–279. [Google Scholar] [CrossRef]
- Spengler, C.; Hahn, H.J. Thermostress: Ökologisch begründete, thermische Schwellenwerte und Bewertungsansätze für das Grundwasser. Korresp. Wasserwirtsch. Fachbeiträge Gewässer Böden 2018, 11, 521–525. [Google Scholar] [CrossRef]
- Brancelj, A.; Mori, N.; Treu, F.; Stoch, F. The groundwater fauna of the Classical Karst: Hydrogeological indicators and descriptors. Aquat. Ecol. 2020, 54, 205–224. [Google Scholar] [CrossRef]
- Hodkinson, I.D.; Jackson, J.K. Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ. Manag. 2005, 35, 649–666. [Google Scholar] [CrossRef]
- Cairns, J.; Pratt, J.R. A history of biological monitoring using benthic macroinvertebrates. In Freshwater Biomonitoring and Benthic Macroinvertebrates; Rosenberg, D.M., Resh, V.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 109–127. [Google Scholar]
- Korbel, K.L.; Stephenson, S.; Hose, G.C. Sediment size influences habitat selection and use by groundwater macrofauna and meiofauna. Aquat. Sci. 2019, 81, 1–10. [Google Scholar] [CrossRef]
- Johns, T.; Jones, J.I.; Knight, L.; Maurice, L.; Wood, P.; Robertson, A. Regional-scale drivers of groundwater faunal distributions. Freshw. Sci. 2015, 34, 316–328. [Google Scholar] [CrossRef] [Green Version]
- Korbel, K.L.; Lim, R.P.; Hose, G.C. An inter-catchment comparison of groundwater biota in the cotton-growing region of north-western New South Wales. Crop Pasture Sci. 2013, 64, 1195–1208. [Google Scholar] [CrossRef] [Green Version]
- Hose, G.C.; Sreekanth, J.; Barron, O.; Pollino, C. Stygofauna in Australian Groundwater Systems: Extent of Knowledge; Client Report; CSIRO: Canberra, Australia, 2015; p. 62. [Google Scholar] [CrossRef]
- Hartland, A.; Fenwick, G.D.; Bury, S.J. Tracing sewage-derived organic matter into a shallow groundwater food web using stable isotope and fluorescence signatures. Mar. Freshw. Res. 2011, 62, 119–129. [Google Scholar] [CrossRef]
- D’Aniello, A.; Cimorelli, L.; Cozzolino, L.; Pianese, D. Correction to: The Effect of Geological Heterogeneity and Groundwater Table Depth on the Hydraulic Performance of Stormwater Infiltration Facilities. Water Resour. Manag. 2019, 33, 4669. [Google Scholar] [CrossRef] [Green Version]
- Masciopinto, C.; Semeraro, F.; La Mantia, R.; Inguscio, S.; Rossi, E. Stygofauna abundance and distribution in the fissures and caves of the Nardò (Southern Italy) fractured aquifer subject to reclaimed water injections. Geomicrobiol. J. 2006, 23, 267–278. [Google Scholar] [CrossRef]
- Hancock, P.J.; Boulton, A.J. Stygofauna biodiversity and endemism in four alluvial aquifers in eastern Australia. Invertebr. Syst. 2008, 22, 117–126. [Google Scholar] [CrossRef]
- Stein, H.; Griebler, C.; Berkhoff, S.; Matzke, D.; Fuchs, A.; Hahn, H.J. Stygoregions-a promising approach to a bioregional classification of groundwater systems. Sci. Rep. 2012, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.I.; Cuthbert, M.O.; Schwientek, M. Towards an integrated understanding of how micro scale processes shape groundwater ecosystem functions. Sci. Total Environ. 2017, 592, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Hose, G.C.; Fryirs, K.A.; Bailey, J.; Ashby, N.; White, T.; Stumpp, C. Different depths, different fauna: Habitat influences on the distribution of groundwater invertebrates. Hydrobiologia 2017, 797, 145–157. [Google Scholar] [CrossRef]
- Stephenson, S.; Chariton, A.A.; Holley, M.P.; O’Sullivan, M.; Gillings, M.R.; Hose, G.C. Changes in Prokaryote and Eukaryote Assemblages Along a Gradient of Hydrocarbon Contamination in Groundwater. Geomicrobiol. J. 2013, 30, 623–634. [Google Scholar] [CrossRef]
- Español, C.; Comín, F.A.; Gallardo, B.; Yao, J.; Yela, J.L.; Carranza, F.; Zabaleta, A.; Ladera, J.; Martínez-Santos, M.; Gerino, M.; et al. Does land use impact on groundwater invertebrate diversity and functionality in floodplains? Ecol. Eng. 2017, 103, 394–403. [Google Scholar] [CrossRef]
- Stumpp, C.; Hose, G.C. The Impact of water table drawdown and drying on subterranean aquatic fauna in in-vitro experiments. PLoS ONE 2013, 8, e78502. [Google Scholar] [CrossRef]
- Korbel, K.L.; Hose, G.C. Habitat, water quality, seasonality, or site? Identifying environmental correlates of the distribution of groundwater biota. Freshw. Sci. 2015, 34, 329–342. [Google Scholar] [CrossRef]
- Maurice, L.; Bloomfield, J. Stygobitic Invertebrates in Groundwater—A Review from a Hydrogeological Perspective. Freshw. Rev. 2012, 5, 51–71. [Google Scholar] [CrossRef] [Green Version]
- Glanville, K.; Schulz, C.; Tomlinson, M.; Butler, D. Biodiversity and biogeography of groundwater invertebrates in Queensland, Australia. Subterr. Biol. 2016, 17, 55–76. [Google Scholar] [CrossRef] [Green Version]
- Drozdzewski, G.; Hiss, M.; Lehmann, F.; Michel, G.; Klaus, S.; Staude, H.; Thiermann, A.; Dahm-Arens, H.; Finke, W. Geologie im Münsterland; Geologisches Landesamt Nordrhein-Westfalen—Landesbetrieb: Düsseldorf, Germany, 1995; ISBN1 3860299220. ISBN2 9783860299227. [Google Scholar]
- Karczewski, K.; Göbel, P.; Meyer, E.I. Do composition and diversity of bacterial communities and abiotic conditions of spring water reflect characteristics of groundwater ecosystems exposed to different agricultural activities? Microbiologyopen 2019, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Geologischer Dienst Geologische Karte von Nordhein-Westflen 1:25000, Erlauuting 3909 Horstmar. 2001.183. Available online: https://www.gd.nrw.de/pr_od.htm (accessed on 25 May 2019).
- Hahn, H.J.; Matzke, D. A comparison of stygofauna communities inside and outside groundwater bores. Limnologica 2005, 35, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Morales-Serna, F.N.; Gomez, S.; Bustos-Hernandez, I.M. Spatial and temporal variation of taxonomic composition and species richness of benthic copepods (Cyclopoida and Harpacticoida) along a polluted coastal system from north-western Mexico during two contrasting months. In Contributions to the Study of East Pacific Crustaceans; Hendrickx, M.E., Ed.; ICML, UNAM: Mazatlán, Mexico, 2006; Volume 4, pp. 41–59. [Google Scholar]
- Grundwasserfauna Deutchlands-Ein Bestimmungswerk; Deutsche Vereinigung für Wasserwirtschaft Abwasser und Abfall: Hennef, Germany, 2007; p. 628.
- Hahn, H.J. The GW-Fauna-Index: A first approach to a quantitative ecological assessment of groundwater habitats. Limnologica 2006, 36, 119–137. [Google Scholar] [CrossRef] [Green Version]
- LANUV. Landesamt fur Nature, Umwelt und Verbrauchershutz Nordehein-Westfalen. Available online: https://www.lanuv.nrw.de (accessed on 21 August 2019).
- Khan, W.R.; Zulkifli, S.Z.; bin Mohamad Kasim, M.R.; Zimmer, M.; Pazi, A.M.; Kamrudin, N.A.; Rasheed, F.; Zafar, Z.; Mostapa, R.; Nazre, M. Risk Assessment of Heavy Metal Concentrations in Sediments of Matang Mangrove Forest Reserve. Trop. Conserv. Sci. 2020, 13. [Google Scholar] [CrossRef]
- Göbel, P. Historische Entwicklung der geologischen, hydrogeologischen und ökologischen Untersuchungen in den Baumbergen (Kreis Coesfeld, Nordrhein-Westfalen). Abh. Westfälischen Mus. Nat. 2010, 72, 9–16. [Google Scholar]
- Guo, X.; Zuo, R.; Meng, L.; Wang, J.; Teng, Y.; Liu, X.; Chen, M. Seasonal and spatial variability of anthropogenic and natural factors influencing groundwater quality based on source apportionment. Int. J. Environ. Res. Public Health 2018, 15, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosslacher, F.; Notenboom, J. Groundwater Biomonitoring. Environ. Sci. Forum. 2000, 9, 119–139. [Google Scholar]
- Di Lorenzo, T.; Fiasca, B.; Di Cicco, M.; Galassi, D.M.P. The impact of nitrate on the groundwater assemblages of European unconsolidated aquifers is likely less severe than expected. Environ. Sci. Pollut. Res. 2020, 1–10. [Google Scholar] [CrossRef]
- Berkhoff, S.E.; Bork, J.; Hahn, H.J. Grundwasserfauna als Indikator für Oberflächenwasser-Grundwasser- Interaktionen im Bereich einer Uferfiltrationsanlage. Grundwasser 2009, 14, 3–20. [Google Scholar] [CrossRef]
- Hahn, H.J. Studies on classifying of undisturbed springs in Southwestern Germany by macrobenthic communities. Limnologica 2000, 30, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Dumas, P.; Lescher-Moutoué, F. Cyclopoid distribution in an agriculturally impacted alluvial aquifer. Arch. Hydrobiol. 2001, 150, 511–528. [Google Scholar] [CrossRef] [Green Version]
- Mahi, A.; Di Lorenzo, T.; Haicha, B.; Belaidi, N.; Taleb, A. Environmental factors determining regional biodiversity patterns of groundwater fauna in semi-arid aquifers of northwest Algeria. Limnology 2019, 20, 309–320. [Google Scholar] [CrossRef]
- Castaño-Sánchez, A.; Hose, G.C.; Reboleira, A.S.P.S. Salinity and temperature increase impact groundwater crustaceans. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Datry, T.; Malard, F.; Gibert, J. Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer. J. N. Am. Benthol. Soc. 2005, 24, 461–477. [Google Scholar] [CrossRef]
- Tione, M.L.; Bedano, J.C.; Blarasin, M. Relationships among invertebrate communities and groundwater properties in an unconfined aquifer in Argentina. Int. J. Environ. Stud. 2016, 73, 760–777. [Google Scholar] [CrossRef]
- Simon, K.S. Organic matter flux in the Epikarst of the Dorvan Karst, France Tok. Acta Carsologica 2013, 42, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Allford, A.; Cooper, S.J.B.; Humphreys, W.F.; Austin, A.D. Diversity and distribution of groundwater fauna in a calcrete aquifer: Does sampling method influence the story? Invertebr. Syst. 2008, 22, 127–138. [Google Scholar] [CrossRef]
Study Area | Sampling Campaign Data (Unit) | November 2018 | January 2019 | April 2019 | July 2019 | October 2019 |
---|---|---|---|---|---|---|
Baumberge | Sampling date | 07–09 | 14–17 | 23–26 | 01–05 | 15–18 |
Sampling period = number of days nd (-) | 3 | 4 | 4 | 5 | 4 | |
Groundwater table at the observation well hGW (m a.s.l.) | 114.3 | 114.9 | 122.8 | 116.3 | 114.24 | |
Schöppinger Berg | Sampling date | 08–09 | 14–17 | 23–26 | 01–05 | 15–18 |
Sampling period = number of days nd (-) | 2 | 4 | 4 | 5 | 4 | |
Groundwater table at the observation well hGW (m a.s.l.) | 114.3 | 114.9 | 122.8 | 116.3 | 114.24 |
Type | GFI | Invertebrates | Total Abundance [Ind./L] | Number of Taxa |
---|---|---|---|---|
I | <2 | Often absent fauna; prevailingly stygobites individuals | <3 | <1 |
II | 2–10 | Prevailingly stygobite individuals | <50 | 1–4 |
III | >10 | Prevailingly ubiquists stygophile and stygoxene individuals | >50 | >3 |
Region | Sampling Campaign Parameters | November 2018 | January 2019 | April 2019 | July 2019 | October 2019 |
---|---|---|---|---|---|---|
Baumberge and Schöppinger Berg | Groundwater table at the observation well hGW (m a.s.l.) | 114.30 | 114.9 | 122.8 | 116.3 | 114.24 |
Average daily discharge of all springs V (m3/d) | 16.8 | 15.8 | 18.8 | 14 | 16.1 | |
Sum of 30-day rainfall before first sampling day (mm/30d) | 40.2 | 114.5 | 22.5 | 32.5 | 112.2 |
Region | Statistics | Temp (°C) | pH | DO (mg/L) | EC (µS/cm) | Discharge V (m3/d) |
---|---|---|---|---|---|---|
Baumberge | Mean | 10.0 | 7.2 | 6.0 | 729 | 25.3 |
Median | 9.9 | 7.2 | 5.9 | 727 | 24.2 | |
SD | 0.5 | 0.2 | 0.8 | 15 | 6.3 | |
Min. | 9.3 | 6.9 | 4.2 | 700 | 17.3 | |
Max. | 12.4 | 8.1 | 8.6 | 758 | 43.2 | |
Schöppinger Berg | Mean | 10.5 | 7.2 | 6.7 | 778 | 20.5 |
Median | 10.1 | 7.2 | 7.1 | 771 | 8.6 | |
SD | 0.7 | 0.2 | 1.2 | 22 | 22.9 | |
Min. | 9.5 | 7.0 | 4.7 | 749 | 1.7 | |
Max. | 12.0 | 7.8 | 8.7 | 825 | 60.5 |
Parameter | Component | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
sfTOT | 0.95 | |||
0.93 | ||||
sbTOT | 0.92 | |||
0.92 | ||||
0.87 | ||||
0.85 | ||||
Detritus | 0.72 | |||
GFI | 0.52 | |||
pH | 0.71 | |||
Temp. | 0.68 | |||
V | 0.8 | |||
hGW | 0.73 | |||
DO | 0.79 | |||
EC | 0.72 | |||
% Variance | 41.8 | 12.4 | 10.7 | 9.4 |
% Cumulative | 41.8 | 54.2 | 64.9 | 74.3 |
Parameter | Component | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
0.92 | ||||
0.91 | ||||
sfTOT | 0.87 | |||
sbTOT | 0.85 | |||
DO | 0.73 | |||
0.94 | ||||
0.94 | ||||
GFI | 0.88 | |||
Detritus | 0.82 | |||
V | 0.63 | |||
pH | 0.73 | |||
EC | 0.71 | |||
Temp. | 0.5 | |||
hGW | ||||
% Variance | 29.8 | 16.1 | 15 | 9.9 |
% Cumulative | 29.8 | 45.9 | 60.9 | 70.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqaragholi, S.A.; Kanoua, W.; Göbel, P. Comparative Investigation of Aquatic Invertebrates in Springs in Münsterland Area (Western Germany). Water 2021, 13, 359. https://doi.org/10.3390/w13030359
Alqaragholi SA, Kanoua W, Göbel P. Comparative Investigation of Aquatic Invertebrates in Springs in Münsterland Area (Western Germany). Water. 2021; 13(3):359. https://doi.org/10.3390/w13030359
Chicago/Turabian StyleAlqaragholi, Sura Abdulghani, Wael Kanoua, and Patricia Göbel. 2021. "Comparative Investigation of Aquatic Invertebrates in Springs in Münsterland Area (Western Germany)" Water 13, no. 3: 359. https://doi.org/10.3390/w13030359
APA StyleAlqaragholi, S. A., Kanoua, W., & Göbel, P. (2021). Comparative Investigation of Aquatic Invertebrates in Springs in Münsterland Area (Western Germany). Water, 13(3), 359. https://doi.org/10.3390/w13030359