Occurrence and Sources of Synthetic Musk Fragrances in the Sewage Treatment Plants and the Han River, Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sampling
2.3. Analysis
2.4. Statistics
3. Results and Discussion
3.1. Synthetic Musk Fragrances in Personal Care Products
3.2. Synthetic Musk Fragrances in STP Influents
3.3. Synthetic Musk Fragrances in the STP Effluents
3.4. Synthetic Musk Fragrances in the Mainstream of the Han River
3.5. Effect of STP Effluents on SMF Concentrations in the Han River
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balk, F.; Blok, H.; Salvito, D. Environmental Risks of Musk Fragrance Ingredients; ACS Publications: Washington, DC, USA, 2001; pp. 168–190. [Google Scholar] [CrossRef]
- Kraft, P. Aroma Chemicals IV: Musks. Chemistry and Technology of Flavours and Fragrances; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 143–168. [Google Scholar] [CrossRef]
- Marchal, M.; Beltran, J. Determination of synthetic musk fragrances. Int. J. Environ. Anal. Chem. 2016, 96, 1213–1246. [Google Scholar] [CrossRef]
- Wong, F.; Robson, M.; Melymuk, L.; Shunthirasingham, C.; Alexandrou, N.; Shoeib, M.; Luk, E.; Helm, P.; Diamond, M.L.; Hung, H. Urban sources of synthetic musk compounds to the environment. Environ. Sci. Process. Impacts 2019, 21, 74–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ECCC. Draft Screening Assessment-Nitro Musks Group. 2018. Available online: https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/draft-screening-assessment-nitro-musks-group.html (accessed on 2 February 2020).
- Kathryn, M.; Weisskopf, M.; Shine, J. Human exposure to nitro musks and the evaluation of their potential toxicity: An overview. Environ. Health 2014, 13, 14. [Google Scholar] [CrossRef] [Green Version]
- Tumová, J.; Šauer, P.; Golovko, O.; Koba Ucun, O.; Grabic, R.; Máchová, J.; Kocour Kroupová, H. Effect of polycyclic musk compounds on aquatic organisms: A critical literature review supplemented by own data. Sci. Total Environ. 2019, 651, 2235–2246. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.S.; Kim, U.J.; Oh, J.E.; Choi, M.; Hwang, D.W. Comprehensive monitoring of synthetic musk compounds from freshwater to coastal environments in Korea: With consideration of ecological concerns and bioaccumulation. Sci. Total Environ. 2014, 470–471, 1502–1508. [Google Scholar] [CrossRef]
- Lee, I.; Lee, C.; Huh, S.; Yoon, Y.; Shin, S.; Yoon, J. Development of Analytical Method and Monitoring of Personal Care Products in the Nakdong River System. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201300007728 (accessed on 2 February 2020).
- Ministry of Environment (MOE) of Korea. The Survey on the Distribution Amount of Chemical Compounds; Ministry of Environment (MOE) of Korea: Sejong, Korea, 2016.
- Safety NI of C. Results of 2016 Chemical Usage Statistics Survey [WWW Document]. 2016. Available online: https://icis.me.go.kr/ (accessed on 29 October 2020).
- Kannan, K.; Reiner, J.L.; Se, H.Y.; Perrotta, E.E.; Tao, L.; Johnson-Restrepo, B.; Rodan, B.D. Polycyclic musk compounds in higher trophic level aquatic organisms and humans from the United States. Chemosphere 2005, 61, 693–700. [Google Scholar] [CrossRef]
- Schnell, S.; Martin-Skilton, R.; Fernandes, D.; Porte, C. The interference of nitro- and polycyclic musks with endogenous and xenobiotic metabolizing enzymes in carp: An in vitro study. Environ. Sci. Technol. 2009, 43, 9458–9464. [Google Scholar] [CrossRef]
- Schreurs, R.H.; Legler, J.; Artola-Garicano, E.; Sinnige, T.L.; Lanser, P.H.; Seinen, W.; Van der Burg, B. In vitro and in vivo antiestrogenic effects of polycyclic musks in Zebrafish. Environ. Sci. Technol. 2004, 38, 997–1002. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, R.; Ishibashi, H.; Hirano, M.; Mori, T.; Kim, J.W.; Arizono, K. Effects of synthetic polycyclic musks on estrogen receptor, vitellogenin, pregnane X receptor, and cytochrome P450 3A gene expression in the livers of male medaka (Oryzias latipes). Aquat. Toxicol. 2008, 90, 261–268. [Google Scholar] [CrossRef]
- EC. HHCB Summary Risk Assessment Report; EC: Roma, Italy, 2008. [Google Scholar]
- ECHA. AHTN EU Risk Assessment Report; EC: Roma, Italy, 2008. [Google Scholar] [CrossRef]
- ECHA. MUSK KETONE Summary Risk Assessment Report; EC: Roma, Italy, 2005. [Google Scholar]
- ECHA. MUSK XYLENE Summary Risk Assessment Report; EC: Roma, Italy, 2005. [Google Scholar]
- US EPA. TSCA Work Plan Chemical Risk Assessment: HHCB; EPA: Washington, DC, USA, 2014.
- ECHA. REACH SVHC List; EC: Roma, Italy, 2016. [Google Scholar]
- Cavalheiro, J.; Prieto, A.; Monperrus, M.; Etxebarria, N.; Zuloaga, O. Determination of polycyclic and nitro musks in environmental water samples by means of microextraction by packed sorbents coupled to large volume injection-gas chromatography-mass spectrometry analysis. Anal. Chim. Acta 2013, 773, 68–75. [Google Scholar] [CrossRef]
- Chase, D.A.; Karnjanapiboonwong, A.; Fang, Y.; Cobb, G.P.; Morse, A.N.; Anderson, T.A. Occurrence of synthetic musk fragrances in effluent and non-effluent impacted environments. Sci. Total Environ. 2012, 416, 253–260. [Google Scholar] [CrossRef]
- Juksu, K.; Liu, Y.S.; Zhao, J.L.; Yao, L.; Sarin, C.; Sreesai, S.; Klomjek, P.; Traitangwong, A.; Ying, G.G. Emerging contaminants in aquatic environments and coastal waters affected by urban wastewater discharge in Thailand: An ecological risk perspective. Ecotoxicol. Environ. Saf. 2020, 204, 110952. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.S.; Lee, S.H.; Oh, J.E. Occurrence and fate of synthetic musk compounds in water environment. Water Res. 2010, 44, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yao, Y.; Zeng, X.; Qian, G.; Guo, Y.; Wu, M.; Sheng, G.; Fu, J. Synthetic musks in the aquatic environment and personal care products in Shanghai, China. Chemosphere 2008, 72, 1553–1558. [Google Scholar] [CrossRef] [PubMed]
- Heberer, T. Occurrence, Fate, and Assessment of Polycyclic Musk Residues in the Aquatic Environment of Urban Areas-A Review. Acta Hydrochim. Hydrobiol. 2012, 30, 227–243. [Google Scholar] [CrossRef]
- Horii, Y.; Reiner, J.L.; Loganathan, B.G.; Senthil Kumar, K.; Sajwan, K.; Kannan, K. Occurrence and fate of polycyclic musks in wastewater treatment plants in Kentucky and Georgia, USA. Chemosphere 2007, 68, 2011–2020. [Google Scholar] [CrossRef]
- Yang, J.J.; Metcalfe, C.D. Fate of synthetic musks in a domestic wastewater treatment plant and in an agricultural field amended with biosolids. Sci. Total Environ. 2006, 363, 149–165. [Google Scholar] [CrossRef]
- Reiner, J.L.; Berset, J.D.; Kannan, K. Mass flow of polycyclic musks in two wastewater treatment plants. Arch. Environ. Contam. Toxicol. 2007, 52, 451–457. [Google Scholar] [CrossRef]
- Seo, C.D.; Son, H.J.; Lee, I.S.; Oh, J.E. Detection of Synthetic Musk Compounds (SMCs) in Nakdong River Basin. J. Korean Soc. Environ. Eng. 2010, 32, 615–624. [Google Scholar]
- Ministry of Environment (MOE) of Korea. Generation and Treatment of Industrial Wastewater; Ministry of Environment (MOE) of Korea: Sejong, Korea, 2020.
- Reiner, J.L.; Kannan, K. A survey of polycyclic musks in selected household commodities from the United States. Chemosphere 2006, 62, 867–873. [Google Scholar] [CrossRef]
- Tasselli, S.; Guzzella, L. Polycyclic musk fragrances (PMFs) in wastewater and activated sludge: Analytical protocol and application to a real case study. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homem, V.; Silva, J.A.; Ratola, N.; Santos, L.; Alves, A. Long lasting perfume e A review of synthetic musks in WWTPs. J. Environ. Manag. 2015, 149, 168–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallecillos, L.; Borrull, F.; Pocurull, E. On-line coupling of solid-phase extraction to gas chromatography-mass spectrometry to determine musk fragrances in wastewater. J. Chromatogr. A 2014, 1364, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lange, C.; Kuch, B.; Metzger, J.W. Occurrence and fate of synthetic musk fragrances in a small German river. J. Hazard. Mater. 2015, 282, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Kupper, T.; Plagellat, C.; Brändli, R.C.; de Alencastro, L.F.; Grandjean, D.; Tarradellas, J. Fate and removal of polycyclic musks, UV filters and biocides during wastewater treatment. Water Res. 2006, 40, 2603–2612. [Google Scholar] [CrossRef]
- Zhang, H.; Bu, Q.; Wu, D.; Yu, G. Polycyclic musks in surface water and sediments from an urban catchment in the megacity Beijing, China. Environ. Pollut. 2020, 263, 114548. [Google Scholar] [CrossRef]
- Wang, Q.; Kelly, B.C. Occurrence and distribution of synthetic musks, triclosan and methyl triclosan in a tropical urban catchment: Influence of land-use proximity, rainfall and physicochemical properties. Sci. Total Environ. 2017, 574, 1439–1447. [Google Scholar] [CrossRef]
- Quednow, K.; Püttmann, W. Organophosphates and synthetic musk fragrances in freshwater streams in Hessen/Germany. Clean Soil Air Water 2008, 36, 70–77. [Google Scholar] [CrossRef]
Synthetic Musk Fragrance (SMF | Analytes (Trade Name) | IUPAC Name | Log Kow | Solubility (mg/L) | Henry’s Law Constant (Pa·m3/mol) | Vapor Pressure (Pa) |
---|---|---|---|---|---|---|
Polycyclic Musk | DPMI (Cashmeran) | 1,1,2,3,3-pentamethyl-2,5,6,7-tetrahydroinden-4-one | 4.9 | 0.17 | 9.9 | 5.2 |
ADBI (Celestolide) | 1-(6-tert-butyl-1,1-dimethyl-2,3-dihydroinden-4-yl)ethanone | 6.6 | 0.015 | 1801 | 0.020 | |
AHMI (Phantolide) | 1-(1,1,2,3,3,6-hexamethyl-2H-inden-5-yl)ethanone | 6.7 | 0.027 | 646 | 0.024 | |
HHCB (Galaxolide) | 4,6,6,7,8,8-hexamethyl-1,3,4,7-tetrahydrocyclopenta(g)isochromene | 5.9 | 1.75 | 11.3 | 0.073 | |
ATII (Traseolide) | 1-(1,1,2,6-tetramethyl-3-propan-2-yl-2,3-dihydroinden-5-yl)ethanone | 8.1 | 0.085 | 85.1 | 1.2 | |
AHTN (Tonalide) | 1-(3,5,5,6,8,8-hexamethyl-6,7-dihydronaphthalen-2-yl)ethanone | 5.7 | 1.25 | 12.5 | 0.068 | |
Nitro musk | MA (Musk ambrette) | 1-tert-butyl-2-methoxy-4-methyl-3,5-dinitrobenzene | 4.0 | 0.79 | 0.071 | 0.00173 |
MX (Musk xylene) | 1-tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene | 4.9 | 0.49 | 0.018 | 0.00003 | |
MK (Musk ketone) | 1-(4-tert-butyl-2,6-dimethyl-3,5-dinitrophenyl)ethanone | 4.3 | 1.9 | 0.0061 | 0.00004 |
Category | μg/L | DPMI | ADBI | AHMI | HHCB | ATII | AHTN | MA | MX | MK | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|
Haircare products (n = 10) | Range | N.D. | N.D.–0.83 | N.D.–0.67 | 0.09–>4916.99 a | N.D.–58.85 | N.D.–442.87 | N.D. | N.D. | N.D.–18.76 | 0.13–5012.41 |
Median | N.D. | N.D. | N.D. | 395.82 | N.D. | 1.19 | N.D. | N.D. | N.D. | 455.51 | |
Frequency (%) | 0 | 20 | 20 | 100 | 40 | 80 | 0 | 0 | 20 | ||
Dishwashing detergent (n = 9) | Range | N.D. | N.D.–0.04 | N.D.–0.02 | N.D.–19.40 | N.D.–0.01 | N.D.–7.10 | N.D. | N.D. | N.D. | N.D.–26.50 |
Median | N.D. | N.D. | N.D. | 0.01 | N.D. | N.D. | N.D. | N.D. | N.D. | 0.03 | |
Frequency (%) | 0 | 11.1 | 11.1 | 77.8 | 11.1 | 44.4 | 0 | 0 | 0 | ||
Body washes (n = 2) | Range | N.D. | N.D. | N.D.–1.12 | 0.34–0.49 | N.D. | N.D. | N.D. | N.D. | N.D. | 0.34–1.61 |
Median | N.D. | N.D. | 0.56 | 0.41 | N.D. | N.D. | N.D. | N.D. | N.D. | 0.97 | |
Frequency (%) | 0 | 0 | 50 | 100 | 0 | 0 | 0 | 0 | 0 | ||
Hand cream (n = 3) | Range | N.D. | N.D. | N.D. | N.D.–213.95 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.–213.95 |
Median | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
Frequency (%) | 0 | 0 | 0 | 33.3 | 0 | 0 | 0 | 0 | 0 | ||
Perfume (n = 12) | Range | N.D.–21.93 | N.D. | N.D.–0.02 | 0.29–>157.73 a | N.D.–1.69 | N.D.–3.90 | N.D. | N.D. | N.D.–39.25 | 0.29–163.71 |
Median | N.D. | N.D. | N.D. | 72.58 | N.D. | N.D. | N.D. | N.D. | 0.41 | 88.27 | |
Frequency (%) | 41.7 | 0 | 8.3 | 100 | 16.7 | 41.7 | 0 | 0 | 58.3 | ||
Total (n = 36) | Range | N.D.–18.69 | N.D.–0.83 | N.D.–1.12 | N.D.–>4916.99 a | N.D.–58.85 | N.D.–442.87 | N.D. | N.D. | N.D.–39.25 | N.D.–5012.41 |
Median | N.D. | N.D. | N.D. | 2.44 | N.D. | N.D. | N.D. | N.D. | N.D. | 8.03 | |
Freq.% | 13.9 | 8.3 | 13.9 | 86.1 | 19.4 | 47.2 | 0 | 0 | 25 |
Category | μg/L | DPMI | ADBI | AHMI | HHCB | ATII | AHTN | MA | MX | MK | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|
STP Influent (n = 27) | Range | 0.034–0.393 | N.D.–0.015 | N.D. | 3.200–10.110 | N.D.–0.090 | 0.012–0.572 | N.D. | N.D. | 0.148–1.056 | 3.532–11.08 |
Median | 0.166 | N.D. | N.D. | 6.130 | 0.058 | 0.373 | N.D. | N.D. | 0.352 | 6.756 | |
Frequency (%) | 100 | 28 | 0 | 100 | 92 | 100 | 0 | 0 | 100 | ||
STP Effluent (n = 35) | Range | 0.015–0.129 | N.D. | N.D. | 0.701–5.390 | N.D.–0.059 | N.D.–0.306 | N.D. | N.D. | 0.055–0.423 | 0.949–5.880 |
Median | 0.071 | N.D. | N.D. | 2.546 | 0.028 | 0.161 | N.D. | N.D. | 0.218 | 2.945 | |
Frequency (%) | 100 | 0 | 0 | 100 | 82.9 | 97.1 | 0 | 0 | 100 | ||
Tributary (n = 153) | Range | N.D.–0.131 | N.D. | N.D. | 0.017–2.825 | N.D.–0.040 | N.D.–0.169 | N.D. | N.D. | 0.005–0.258 | 0.034–3.392 |
Median | 0.007 | N.D. | N.D. | 0.220 | N.D. | 0.019 | N.D. | N.D. | 0.022 | 0.304 | |
Frequency (%) | 52.3 | 0 | 0 | 100 | 46.4 | 82.4 | 0 | 0 | 100 | ||
Han river (n = 40) | Range | N.D.–0.045 | N.D. | N.D. | 0.026–0.705 | N.D.–0.016 | N.D.–0.046 | N.D. | N.D. | N.D.–0.074 | N.D.–0.844 |
Median | N.D. | N.D. | N.D. | 0.105 | N.D. | 0.010 | N.D. | N.D. | 0.016 | 0.141 | |
Frequency (%) | 37.5 | 0 | 0 | 100 | 15.0 | 62.5 | 0 | 0 | 87.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.-H.; Lee, J.-Y.; Ha, H.-J.; Lee, J.-H.; Oh, S.-R.; Lee, Y.-M.; Lee, M.-Y.; Zoh, K.-D. Occurrence and Sources of Synthetic Musk Fragrances in the Sewage Treatment Plants and the Han River, Korea. Water 2021, 13, 392. https://doi.org/10.3390/w13040392
Hong J-H, Lee J-Y, Ha H-J, Lee J-H, Oh S-R, Lee Y-M, Lee M-Y, Zoh K-D. Occurrence and Sources of Synthetic Musk Fragrances in the Sewage Treatment Plants and the Han River, Korea. Water. 2021; 13(4):392. https://doi.org/10.3390/w13040392
Chicago/Turabian StyleHong, Ju-Hee, Jun-Yeon Lee, Hyun-Ju Ha, Jin-Hyo Lee, Seok-Ryul Oh, Young-Min Lee, Mok-Young Lee, and Kyung-Duk Zoh. 2021. "Occurrence and Sources of Synthetic Musk Fragrances in the Sewage Treatment Plants and the Han River, Korea" Water 13, no. 4: 392. https://doi.org/10.3390/w13040392
APA StyleHong, J. -H., Lee, J. -Y., Ha, H. -J., Lee, J. -H., Oh, S. -R., Lee, Y. -M., Lee, M. -Y., & Zoh, K. -D. (2021). Occurrence and Sources of Synthetic Musk Fragrances in the Sewage Treatment Plants and the Han River, Korea. Water, 13(4), 392. https://doi.org/10.3390/w13040392