Electrochemical/Peroxymonosulfate/NrGO-MnFe2O4 for Advanced Treatment of Landfill Leachate Nanofiltration Concentrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Target Concentrate
2.2. Preparation of Catalysts
2.3. Experimental Setup and Procedure
2.4. Analytical Methods
3. Results and Discussion
3.1. Characterization of Catalysts
3.2. Comparison of Different Catalytic Systems
3.3. Factors Affectings LLNC Treatment in EC/PMS/NrGO-MnFe2O4 Process
3.3.1. Effect of pH
3.3.2. Effect of NrGO-MnFe2O4 Dosage
3.3.3. Effect of PMS Dosage
3.3.4. Effect of Current Density
3.3.5. Effect of Electorcle Spacing
3.4. The 3D-EEM Fluorescence Spectroscopic and GC-MS Analysis on the Organic Removal
3.5. Identification of Free Radicals in EC/PMS/NrGO-MnFe2O4 System and Possible Reaction Mechanism
3.6. The Stability of rGO-MnFe2O4 and NrGO-MnFe2O4
4. Conclusions
- NrGO-MnFe2O4 and rGO-MnFe2O4 particles with magnetic cycling ability were prepared in one step by simple hydrothermal method, and were characterized by SEM, XRD, RAMAN and XPS. Through comparison, it was found that NrGO-MnFe2O4 formed more active centers due to nitrogen doping, causing: (a) more defects, which were used to activate PMS and greatly promoted the accessibility and adsorption of substrates to the active centers; (b) more conductivity to uniform magnetic particle load; (c) stronger electrical conductivity, making it conducive to electron transfer in the catalytic process. NrGO-MnFe2O4 is more suitable as a catalyst for the EC/PMS system. Through the catalyst cycle experiment, it was found that NrGO-MnFe2O4 has better secondary cycle performance than rGO-MnFe2O4.
- In the comparison of catalytic systems, EC/PMS/NrGO-MnFe2O4 process shows the advantages of electrochemical coupling of NrGO and MnFe2O4 in the treatment of LLNC refractory wastewater. The operating conditions were optimized by single factor analysis experiments, with initial pH of 5.0, NrGO-MnFe2O4 dose of 1.0 g/L, PMS dose of 2.0 mm, current density of 25 mA/cm2 and plate spacing of 2.0 cm. Under the best conditions, the COD removal rate of LLNC can reach 72.89% after 120 min.
- The 3D-EEM fluorescence and GC-MS analysis of LLNC before and after treatment showed that EC/PMS/NrGO-MnFe2O4 could effectively treat LLNC, a kind of refractory wastewater. Combined with the radical quenching experiment, it was found that PMS mainly generated SO4•— and •OH under the combined action of electrochemistry and NrGO-MnFe2O4. Thus, most macromolecules, such as heterocyclic macromolecules in wastewater, can be effectively removed and degraded into small molecular weight intermediates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Luo, Y.; Ran, G.; Li, Q. An investigation of refractory organics in membrane bioreactor effluent following the treatment of landfill leachate by the O3/H2O2 and MW/PS processes. Waste Manag. 2019, 97, 1–9. [Google Scholar] [CrossRef]
- Koshy, L.; Paris, E.; Ling, S.; Jones, T.; Bérubé, K.A. Bioreactivity of leachate from municipal solid waste landfills—Assessment of toxicity. Sci. Total. Environ. 2007, 384, 171–181. [Google Scholar] [CrossRef]
- Long, Y.; Xu, J.; Shen, D.; Du, Y.; Feng, H.J. Effective removal of contaminants in landfill leachate membrane concentrates by coagulation. Chemosphere 2017, 167, 512–519. [Google Scholar] [CrossRef]
- Fernandes, A.; Labiadh, L.; Ciríaco, L.; Pacheco, M.; Gadri, A.; Ammar, S.; Lopes, A. Electro-Fenton oxidation of reverse osmosis concentrate from sanitary landfill leachate: Evaluation of operational parameters. Chemosphere 2017, 184, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Yu, Z.; Wei, Q.; Long, H.; Xie, Y.; Wang, Y. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode. Appl. Surf. Sci. 2016, 377, 406–415. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, Y.; Liu, G.; Luo, H.; Zhang, R.; Cai, X. Effect of the structure of stacked electro-Fenton reactor on treating nanofiltration concentrate of landfill leachate. Chemosphere 2018, 202, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ouyang, F.; Yang, Y.; Tang, W. Degradation of recalcitrant organics in nanofiltration concentrate from biologically pretreated landfill leachate by ultraviolet-Fenton method. Sep. Purif. Technol. 2020, 235, 116076. [Google Scholar] [CrossRef]
- Liang, S.-X.; Jia, Z.; Liu, Y.-J.; Zhang, W.; Wang, W.; Lu, J.; Zhang, L.-C. Compelling Rejuvenated Catalytic Performance in Metallic Glasses. Adv. Mater. 2018, 30, e1802764. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Wang, H.; Yang, W.; Fida, H.; You, L.; Zhou, K. Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation. Appl. Catal. B Environ. 2020, 262, 118250. [Google Scholar] [CrossRef]
- Sun, Z.; Li, S.; Ding, H.; Zhu, Y.; Wang, X.; Liu, H.; Zhang, Q.; Zhao, C. Electrochemical/Fe3+/peroxymonosulfate system for the degradation of Acid Orange 7 adsorbed on activated carbon fiber cathode. Chemosphere 2020, 241, 125125. [Google Scholar] [CrossRef]
- Li, J.; Lin, H.; Zhu, K.; Zhang, H. Degradation of Acid Orange 7 using peroxymonosulfate catalyzed by granulated activated carbon and enhanced by electrolysis. Chemosphere 2017, 188, 139–147. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, J.; Zhao, Z.; Liu, J. Degradation of haloacetonitriles with UV/peroxymonosulfate process: Degradation pathway and the role of hydroxyl radicals. Chem. Eng. J. 2019, 364, 1–10. [Google Scholar] [CrossRef]
- Wei, M.; Gao, L.; Li, J.; Fang, J.; Cai, W.; Li, X.; Xu, A. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation. J. Hazard. Mater. 2016, 316, 60–68. [Google Scholar] [CrossRef]
- Gu, X.; Wang, Y.; Miao, Z.; Lyu, S.; Qiu, Z.; Sui, Q.; Guo, X. Degradation of trichloroethylene in aqueous solution by persulfate activated with Fe(III)–EDDS complex. Res. Chem. Intermed. 2017, 43, 1–13. [Google Scholar] [CrossRef]
- Liang, S.-X.; Wang, X.; Zhang, W.; Liu, Y.-J.; Wang, W.; Zhang, L.-C. Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability. Appl. Mater. Today 2020, 19, 100543. [Google Scholar] [CrossRef]
- Yangab, Y.; Liab, Y.; Hongab, P.; Wua, Z.; Xiea, C.; Zhanga, K.; Lianxiangc, L.; Hea, J.; Konga, L.; Liua, J. Surface-active MnFeO@C cubes as enhanced peroxymonosulfate activators for efficient degradation of bisphenol A. Appl. Surf. Sci. 2021, 538, 148008. [Google Scholar] [CrossRef]
- Galindo, R.; Menéndez-González, N.; Crespo, P.; Velasco, V.; Bomatí-Miguel, O.; Diaz-Fernandez, D.; Herrasti, P. Comparison of different methodologies for obtaining nickel nanoferrites. J. Magn. Magn. Mater. 2014, 361, 118–125. [Google Scholar] [CrossRef]
- Hu, M.; Yao, Z.; Wang, X. Graphene-Based Nanomaterials for Catalysis. Ind. Eng. Chem. Res. 2017, 56, 3477–3502. [Google Scholar] [CrossRef]
- Primo, A.; Neatu, F.; Florea, M.; Parvulescu, V.; Garcia, H. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nat. Commun. 2014, 5, 5291. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; O’Donnell, K.; Sun, H.; Wang, Y.; Wang, S. Sulfur and Nitrogen Co-Doped Graphene for Metal-Free Catalytic Oxidation Reactions. Small 2015, 11, 3036–3044. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Wei, Z.; Gou, X. Nitrogen and Phosphorus Dual-Doped Graphene/Carbon Nanosheets as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. ACS Catal. 2015, 5, 4133–4142. [Google Scholar] [CrossRef]
- Zhang, T.; Li, C.; Sun, X.; Gao, H.; Liu, X.; Sun, J.; Shi, W.; Ai, S. Iron nanoparticles encapsulated within nitrogen and sulfur co-doped magnetic porous carbon as an efficient peroxymonosulfate activator to degrade 1-naphthol. Sci. Total. Environ. 2020, 739, 139896. [Google Scholar] [CrossRef]
- Liang, S.; Jia, Z.; Zhang, L.; Li, X.; Wang, W.-M.; Lin, H. Ultrafast activation efficiency of three peroxides by Fe78Si9B13 metallic glass under photo-enhanced catalytic oxidation: A comparative study. Appl. Catal. B Environ. 2018, 221, 108–118. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, W.; Yu, H.; Chen, S.; Quan, X. Electrochemical activation of peroxymonosulfate in cathodic micro-channels for effective degradation of organic pollutants in wastewater. J. Hazard. Mater. 2020, 398, 122879. [Google Scholar] [CrossRef]
- Kafshgari, L.A.; Ghorbani, M.; Azizi, A. Fabrication and investigation of MnFe2O4/MWCNTs nanocomposite by hydrothermal technique and adsorption of cationic and anionic dyes. Appl. Surf. Sci. 2017, 419, 70–83. [Google Scholar] [CrossRef]
- Kafshgari, L.A.; Ghorbani, M.; Azizi, A.; Agarwal, S.; Gupta, V.K. Modeling and optimization of Direct Red 16 adsorption from aqueous solutions using nanocomposite of MnFe2O4 /MWCNTs: RSM-CCRD model. J. Mol. Liq. 2017, 233, 370–377. [Google Scholar] [CrossRef]
- Guvenc, S.Y.; Dincer, K.; Varank, G. Performance of electrocoagulation and electro-Fenton processes for treatment of nanofiltration concentrate of biologically stabilized landfill leachate. J. Water Process. Eng. 2019, 31, 100863. [Google Scholar] [CrossRef]
- Amaral-Silva, N.; Martins, R.C.; Castro-Silva, S.; Quinta-Ferreira, R.M. Ozonation and perozonation on the biodegradability improvement of a landfill leachate. J. Environ. Chem. Eng. 2016, 4, 527–533. [Google Scholar] [CrossRef]
- Gao, H.; Li, R.; He, W.; Guo, R.; Chai, B. One-step synthesis of reduced graphene oxide supported Pt naoparticles and its electrocatalytic activity for methanol oxidation. Acta Phys. Chim. Sin. 2015, 33, 2117–2123. [Google Scholar] [CrossRef]
- Yuan, B.; Xing, W.; Hu, Y.; Mu, X.; Wang, J.; Tai, Q.; Li, G.; Liu, L.; Liew, K.M.; Hu, Y. Boron/phosphorus doping for retarding the oxidation of reduced graphene oxide. Carbon 2016, 101, 152–158. [Google Scholar] [CrossRef]
- Qin, W.; Fang, G.; Wang, Y.; Zhou, D. Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals. Chem. Eng. J. 2018, 348, 526–534. [Google Scholar] [CrossRef]
- Tang, W.; Su, Y.; Li, Q.; Gao, S.; Shang, J.K. Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Res. 2013, 47, 3624–3634. [Google Scholar] [CrossRef]
- Xiao, J.; Xu, G.; Sun, S.-G.; Meng, X. MFe2O4 and MFe@Oxide Core-Shell Nanoparticles Anchored on N-Doped Graphene Sheets for Synergistically Enhancing Lithium Storage Performance and Electrocatalytic Activity for Oxygen Reduction Reactions. Part. Part. Syst. Charact. 2013, 30, 893–904. [Google Scholar] [CrossRef]
- Merino, N.A.; Barbero, B.P.; Eloy, P.; Cadús, L.E. La1−xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS. Appl. Surf. Sci. 2006, 253, 1489–1493. [Google Scholar] [CrossRef]
- Zheng, W.; Xiao, X.; Chen, B. A nonradical reaction-dominated phenol degradation with peroxydisulfate catalyzed by nitrogen-doped graphene. Sci. Total. Environ. 2019, 667, 287–296. [Google Scholar] [CrossRef]
- Long, Y.; Huang, Y.; Wu, H.; Shi, X.; Xiao, L. Peroxymonosulfate activation for pollutants degradation by Fe-N-codoped carbonaceous catalyst: Structure-dependent performance and mechanism insight. Chem. Eng. J. 2019, 369, 542–552. [Google Scholar] [CrossRef]
- Fan, J.; Qin, H.; Jiang, S. Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: The role of superoxide anion and singlet oxygen. Chem. Eng. J. 2019, 359, 723–732. [Google Scholar] [CrossRef]
- Liao, X.; Wang, F.; Cai, Y.; Yao, Y.; Teng, B.-T.; Hao, Q.; Lu, S. Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced fenton-like performance for phenol removal. Appl. Catal. B Environ. 2019, 259, 118064. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, Y.; Huo, C.; Liu, H. Enhancing the light olefin selectivity of an iron-based Fischer–Tropsch synthesis catalyst by modification with CTAB. RSC Adv. 2018, 8, 32073–32083. [Google Scholar] [CrossRef] [Green Version]
- Pachfule, P.; Shinde, D.; Majumder, D.S.M.; Xu, P.P.Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 2016, 8, 718–724. [Google Scholar] [CrossRef]
- Zeng, T.; Zhang, H.; He, Z.; Chen, J.; Song, S. Mussel-inspired approach to constructing robust cobalt-embedded N-doped carbon nanosheet toward enhanced sulphate radical-based oxidation. Sci. Rep. 2016, 6, 33348. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Duan, X.; Oh, W.-D.; Zhang, P.-H.; Guan, C.-T.; Zhu, Y.-A.; Lim, T.-T. Insights into nitrogen and boron-co-doped graphene toward high-performance peroxymonosulfate activation: Maneuverable N-B bonding configurations and oxidation pathways. Appl. Catal. B Environ. 2019, 253, 419–432. [Google Scholar] [CrossRef]
- Bagastyo, A.Y.; Radjenovic, J.; Mu, Y.; Rozendal, R.A.; Batstone, D.J.; Rabaey, K. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes. Water Res. 2011, 45, 4951–4959. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Pignatello, J.J.; Ma, J.; Mitch, W.A. Effect of matrix components on UV/H2O2 and UV/S2O82− advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Res. 2016, 89, 192–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, J.; Xu, M.; Qiu, C.; Chen, Y.; Ma, X.; Gao, N.; Li, X. Magnetic MnFe2O4 activated peroxymonosulfate processes for degradation of bisphenol A: Performance, mechanism and application feasibility. Appl. Surf. Sci. 2018, 459, 138–147. [Google Scholar] [CrossRef]
- Leng, Y.; Guo, W.; Shi, X.; Li, Y.; Wang, A.; Hao, F.; Xing, L. Degradation of Rhodamine B by persulfate activated with Fe3O4: Effect of polyhydroquinone serving as an electron shuttle. Chem. Eng. J. 2014, 240, 338–343. [Google Scholar] [CrossRef]
- Oh, W.-D.; Dong, Z.; Lim, T.-T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B Environ. 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Guan, Y.-H.; Ma, J.; Li, X.-C.; Fang, J.; Chen, L.-W. Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System. Environ. Sci. Technol. 2011, 45, 9308–9314. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Bao, J.; Liu, Y.; Kim, S.H.; Dionysiou, D.D. Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenol A degradation. Chem. Eng. J. 2019, 376, 119193. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Shao, P.; Cui, F. Activation of peroxymonosulfate with magnetic Fe3O4–MnO2 core–shell nanocomposites for 4-chlorophenol degradation. Chem. Eng. J. 2015, 262, 854–861. [Google Scholar] [CrossRef]
- Deng, J.; Feng, S.; Ma, X.; Tan, C.; Wang, H.; Zhou, S.; Zhang, T.; Li, J.; Ni, Y.; Lu, Y. Heterogeneous degradation of Orange II with peroxymonosulfate activated by ordered mesoporous MnFe2O4. Sep. Purif. Technol. 2016, 167, 181–189. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, H.; Hou, L. Degradation of C. I. Acid Orange 7 in aqueous solution by a novel electro/Fe3O4/PDS process. J. Hazard. Mater. 2014, 276, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.-J.; Cui, Y.-H.; Liu, Z.-Q.; Yang, S.-Q.; Li, J.-Y.; Guo, X.-L. Treatment of landfill leachate nanofiltration concentrate after ultrafiltration by electrochemically assisted heat activation of peroxydisulfate. Sep. Purif. Technol. 2020, 231, 115928. [Google Scholar] [CrossRef]
- Ma, C.; He, Z.; Jia, S.; Zhang, X.; Hou, S. Treatment of stabilized landfill leachate by Fenton-like process using Fe3O4 particles decorated Zr-pillared bentonite. Ecotoxicol. Environ. Saf. 2018, 161, 489–496. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Tan, W.; Wu, X.; Lin, H.; Zhang, H. Removal of COD from landfill leachate by advanced Fenton process combined with electrolysis. Sep. Purif. Technol. 2019, 208, 3–11. [Google Scholar] [CrossRef]
Parameter | Unit | Concentration |
---|---|---|
pH | - | 8.3 ± 0.5 |
COD | mg/L | 1250 ± 67 |
BOD5 | mg/L | 54 ± 8 |
NH3-N | mg/L | 30 ± 3 |
NO3-N | mg/L | 647 ± 12 |
NO2-N | mg/L | 8 ± 0.5 |
TN | mg/L | 733 ± 15 |
Organic Compounds | Influent Values | Effluent Values | ||
---|---|---|---|---|
Type | Percentage (%) | Types | Percentage (%) | |
Alcohols | 1 | 3.44 | 0 | 0 |
Heterocyclic compounds | 3 | 24.64 | 1 | 1.77 |
Aromatic hydrocarbon | 1 | 1.14 | 1 | 0.98 |
Esters | 1 | 1.06 | 2 | 1.48 |
Phenolic compounds | 1 | 0.89 | 0 | 0 |
Siloxanes | 4 | 68.83 | 6 | 44.51 |
Carboxylic acid derivatives | 0 | 0 | 1 | 34.71 |
Alkane derivatives | 0 | 0 | 2 | 14.08 |
Cycloalkanes | 0 | 0 | 1 | 0.77 |
Aldehydes derivatives | 0 | 0 | 1 | 0.86 |
Ketone derivatives | 0 | 0 | 1 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; He, Z.; Wang, Y.; Lu, M. Electrochemical/Peroxymonosulfate/NrGO-MnFe2O4 for Advanced Treatment of Landfill Leachate Nanofiltration Concentrate. Water 2021, 13, 413. https://doi.org/10.3390/w13040413
Wang J, He Z, Wang Y, Lu M. Electrochemical/Peroxymonosulfate/NrGO-MnFe2O4 for Advanced Treatment of Landfill Leachate Nanofiltration Concentrate. Water. 2021; 13(4):413. https://doi.org/10.3390/w13040413
Chicago/Turabian StyleWang, Jiaqi, Zhengguang He, Yuzhong Wang, and Manjing Lu. 2021. "Electrochemical/Peroxymonosulfate/NrGO-MnFe2O4 for Advanced Treatment of Landfill Leachate Nanofiltration Concentrate" Water 13, no. 4: 413. https://doi.org/10.3390/w13040413
APA StyleWang, J., He, Z., Wang, Y., & Lu, M. (2021). Electrochemical/Peroxymonosulfate/NrGO-MnFe2O4 for Advanced Treatment of Landfill Leachate Nanofiltration Concentrate. Water, 13(4), 413. https://doi.org/10.3390/w13040413