Three-Dimensional Flow of a Vortex Drop Shaft Spillway with an Elliptical Tangential Inlet
Abstract
:1. Introduction
2. Physical Model and Measurement
3. Numerical Simulation
3.1. Governing Equations
3.2. Mesh and Boundary Conditions
4. Results and Discussion
4.1. Flow Pattern in the Vortex Drop Shaft
4.1.1. Standing Shock Wave
4.1.2. Air Core
4.1.3. Annular Hydraulic Jump
4.2. Distribution of Pressure in the Vortex Drop Shaft
4.2.1. Wall Pressure Distribution
4.2.2. Cross-Sectional Pressure Distribution
4.3. Three-Dimensional Velocity Field in the Vortex Drop Shaft
4.3.1. Velocity Field near the Wall
4.3.2. Swirl Angle
- (1)
- The large swirl angle appeared at the vortex chamber, where the tangential velocity was much larger than the axial flow velocity, according to Figure 15. As the initial tangential dominant movement was transformed into a compound movement of the tangential and axial direction, the swirl angle gradually decreased along the wall;
- (2)
- The swirl angle in the gradient section tended to fluctuate due to the complex and unstable flow field herein. This phenomenon corresponded to the noticeable fluctuation of and in Figure 15, which was beneficial to increase the local water head loss to improve the energy dissipation rate;
- (3)
- In the vertical shaft, the tangential velocity along the shaft was gradually consumed due to friction effects, whereas the axial velocity increased because of gravity, which together reduced the swirl angle.
4.3.3. Cross-Sectional Velocity Field
- (1)
- Resultant velocity distribution
- (2)
- Tangential velocity distribution
4.3.4. Theoretical Analysis between Cross-Sectional Pressure and Tangential Velocity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aw | Volume of fluid function |
C | Constant of combined eddy |
C1 | Integral constant |
D1 | Diameter of the vortex chamber (m) |
D2 | Diameter of the vertical shaft (m) |
E | Entrance width of the vortex chamber (m) |
Fa | A dimensionless discharge parameter |
Fr | Froude number |
Fr0 | Froude number at the beginning of the elliptical guiding wall |
ε | Turbulent dissipation rate (m2·s−3) |
fi | Gravity component (m·s−2) |
g | Gravity acceleration (m·s−2) |
Gk | Turbulent kinetic energy generated by the velocity gradient |
h0 | Water depth at the beginning of the elliptical guiding wall (m) |
hm | Maximum standing wave elevation (m) |
hj | Elevation of the hydraulic jump (m) |
k | Index of combined eddy |
n | Roughness coefficient |
P | Pressure (kPa) |
pR | Wall pressure (kPa) |
P | Flood frequency |
ρ | Density of water (kg·m−3) |
Q | Discharge (m3·s) |
r | Radius of swirling flow (m) |
R | Radius of the VDS (m) |
t | Time (s) |
ui | Velocity component (m/s) |
µ | Coefficient of dynamic viscosity (kg·m−1·s−1) |
µeff | Revisionary coefficient of dynamic viscosity (kg·m−1·s−1) |
v | Resultant velocity (m·s−1) |
vm | Maximum velocity (m·s−1) |
vt | Tangential velocity (m·s−1) |
vtc | Tangential velocity of the air–water interface (m·s−1) |
vtR | Tangential velocity of the wall (m·s−1) |
vz | Axial velocity (m·s−1) |
vr | Radial velocity (m·s−1) |
α | Swirl angle |
β | Inclination angle of the tapering section |
ηm | Relative maximum height |
λ | Air-core ratio |
λm | Minimum air-core ratio |
xi | Coordinate component |
z | Elevation (m) |
References
- Dong, X.L. Spillway with Swirling Flow; The Yellow River Water Conservancy Press: Zhengzhou, China, 2011. [Google Scholar]
- Liu, Z.P.; Guo, X.L.; Xia, Q.F.; Fu, H.; Wang, T. Experimental and Numerical Investigation of Flow in a Newly Developed Vortex Drop Shaft Spillway. J. Hydraul. Eng. 2018, 144. [Google Scholar] [CrossRef]
- Lian, J.J.; He, J.L.; Guo, W.J.; Ran, D.J. Effects of Bucket Type and Angle on Downstream Nappe Wind Caused by a Turbulent Jet. Int. J. Environ. Res. Public Health 2019, 16, 1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.L.; Guo, J. Report on Model Study of Retrofitting a Diversion Tunnel into a Vortex Dropshaft Spillway in Shapai Power Station; IWHR Research Rep, China Institute of Water Resources and Hydropower Research: Beijing, China, 1995. [Google Scholar]
- Sun, S.K.; Liu, Z.P.; Zhou, S.; Yang, J.W. Study on the rebuild of large-sized diversion tunnel into flood releasing tunnel in the Xiaowan Hydropower Station. Water Power 2001, 1, 26–31, 68. [Google Scholar]
- Dong, X.L.; Yang, K.l.; Guo, X.L.; Guo, Y.X. Hydraulic mechanism and application of swirling device in morning glory shaft spillway. J. Hydraul. Eng. 2011, 42, 14–18. (In Chinese) [Google Scholar]
- Jain, S.C.; Kennedy, J.F. Vortex-flow Drop Structures for the Milwaukee Metropolitan Sewerage District Inline Storage System. In Proceedings of IIHR Rep.264; Iowa Institute of Hydraulic Research, University of Iowa: Iowa City, IA, USA.
- Rhee, D.S.; Park, Y.S.; Park, I. Effects of the bottom slope and guiding wall length on the performance of a vortex drop inlet. Water Sci. Technol. 2018, 78, 1287–1295. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.C. Tangential Vortex-Inlet. J. Hydraul. Eng. 1984, 110, 1693–1699. [Google Scholar] [CrossRef]
- Quick, M.C. Analysis of Spiral Vortex and Vertical Slot Vortex Drop Shafts. J. Hydraul. Eng. 1990, 116, 309–325. [Google Scholar] [CrossRef]
- Hager, W.H. Vortex Drop Inlet for Supercritical Approaching Flow. J. Hydraul. Eng. 1990, 116, 1048–1054. [Google Scholar] [CrossRef]
- Chan, S.N.; Qiao, Q.S.; Lee, J.H.W. On the three-dimensional flow of a stable tangential vortex intake. J. Hydro-Environ. Res. 2018, 21, 29–42. [Google Scholar] [CrossRef]
- Pfister, M.; Crispino, G.; Fuchsmann, T.; Ribi, J.M.; Gisonni, C. Multiple Inflow Branches at Supercritical-Type Vortex Drop Shaft. J. Hydraul. Eng. 2018, 144, 9. [Google Scholar] [CrossRef]
- Slisskii, S.M.; Kuznetsov, E.B.; Akhmedov, T.K. Multistage whirlpool shaft spillways. Hydrotech. Constr. 1980, 14, 892–895. [Google Scholar] [CrossRef]
- Yu, D.; Lee, J.H.W. Hydraulics of Tangential Vortex Intake for Urban Drainage. J. Hydraul. Eng. 2009, 135, 164–174. [Google Scholar] [CrossRef]
- Del Giudice, G.; Gisonni, C. Vortex dropshaft retrofitting: Case of Naples city (Italy). J. Hydraul. Res. 2011, 49, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Crispino, G.; Pfister, M.; Gisonni, C. Hydraulic design aspects for supercritical flow in vortex drop shafts. Urban Water J. 2019, 16, 225–234. [Google Scholar] [CrossRef]
- Wu, J.H.; Ren, W.C.; Ma, F. Standing wave at dropshaft inlets. J. Hydrodyn. 2017, 29, 524–527. [Google Scholar] [CrossRef]
- Hager, W.H.; Kellenberger, M.H. Die Dimensionierung Des Wirbelfallschachtes [The Design of the Vortex Drop]. Gas-und Wasserfach. Wasser Abwasser 1987, 128, 582–590. [Google Scholar]
- Jain, S.C. Air Transport in Vortex-flow Drop Shafts. J. Hydraul. Eng. 1988, 114, 1485–1497. [Google Scholar] [CrossRef]
- Edwini-Bonsu, S.; Steffler, P.M. Dynamics of air flow in sewer conduit headspace. J. Hydraul. Eng. 2006, 132, 791–799. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.X.; Deng, J.; Xu, W.L. Calculation of the Cavity Length of Annular Aerator in the Vortex Drop Shaft Spillway. J. Sichuan. Univ. 2011, 43, 28–33. [Google Scholar]
- Gualtieri, C.; Chanson, H. Interparticle arrival time analysis of bubble distributions in a dropshaft and hydraulic jump. J. Hydraul. Res. 2013, 51, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.C.; Wang, J.X.; Dong, Z.S.; Zhou, Z.; Yang, X. Characteristics of energy dissipation and cavitation of vertical swirling spillway. J. Zhongnan Univ. 2018, 49, 3011–3019. [Google Scholar]
- Camino, G.A.; Zhu, D.Z.; Rajaratnam, N. Flow Observations in Tall Plunging Flow Dropshafts. J. Hydraul. Eng. 2015, 141, 7. [Google Scholar] [CrossRef]
- Zhao, C.H.; Zhu, D.Z.; Sun, S.K.; Liu, Z.P. Experimental study of flow in a vortex drop shaft. J. Hydraul. Eng. 2006, 132, 61–68. [Google Scholar] [CrossRef]
- He, J.L.; Yin, J.B.; Jiang, Q.F.; Wu, B.Q. Numerical simulation study on vortex shaft spillway with superhigh water head and large flood discharge. J. Hydroelect. Eng. 2016, 35, 45–51. [Google Scholar]
- Guo, Y.; Ni, H.G. Study on the water flow characteristics of the vortex shaft spillway. J. Hydrodyn. Ser. A 1995, 1, 97–105. [Google Scholar]
- Mahmouth-Rad, M.; Khanjani, M.J. Energy Dissipation of Flow in the Vortex Structure: Experimental Investigation. J. Pipel. Syst. Eng. Pract. 2019, 10, 16. [Google Scholar] [CrossRef]
- Cao, S.L.; Niu, Z.M.; Yang, J.; Lu, H.B. Velocity and pressure distributions in discharge tunnel of rotary-obstruction composite inner energy dissipation. Sci. Chin. Technol. Sci. 2011, 54, 111–117. [Google Scholar] [CrossRef]
- Nan, J.H.; Niu, Z.M.; Zhang, D. Study on Velocity Characteristics of Cavity Gyrating Flow in Gyrating Discharge Tunnel. J. Sichuan Univ. 2016, 48, 41–47. [Google Scholar]
- Niu, Z.M.; Zhang, M.Y. Wall Stress of Horizontal Rotary Cavity Flow. J. Chin. J. Appl. Mech. 2004, 4, 110–114, 174. [Google Scholar]
- LI, Q.L.; Niu, Z.M.; Wang, J. Analysis of Rotary Flow in Spillway Tunnel with Blocking Based on Quasi-free-vortex Rules. J. Sichuan Univ. 2014, 46, 49–57. [Google Scholar]
- Zhang, J.M.; Ren, C.Y.; Xu, W.L.; LI, Z.; HU, X.Y. Novel type of revolving-flow drop-shaft with submerged outlet. J. Hydroelect. Eng. 2012, 31, 96–101. [Google Scholar]
- Wei, Y.; Shi, Z.J.; Chang, X.Q. Hydraulic design of vertical vortex spillway tunnel. J. Hydroelect. Eng. 2007, 26, 88–92. [Google Scholar]
- Chen, J.G.; Zhang, J.M.; Xu, W.L.; Wang, Y.R. Scale Effects of Air-Water Flows in Stiling Basin of Multi-Horizontal Submerged Jets. J. Hydrodyn. 2010, 22, 788–795. [Google Scholar] [CrossRef]
- Galvan, S.; Reggio, M.; Guibault, F. Assessment Study of k-epsilon Turbulence Models and Near-Wall Modeling for Steady State Swirling Flow Analysis in Draft Tube Using Fluent. Eng. Appl. Comput. Fluid. 2011, 5, 459–478. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, J. Numerical Investigation on the Hydraulic Properties of the Skimming Flow over Pooled Stepped Spillway. Water 2018, 10, 1478. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Wang, Y.; Zhang, J. Three-Dimensional Turbulence Numerical Simulation of Flow in a Stepped Dropshaft. Water 2019, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- Yakhot, V. Renormalization group analysis of turbulence: Basic theory. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Jalil, S.A.; Hussein, B.S.; Sarhan, S.A. Visualization of elbow flow performance as shaft spillway. Ain Shams Eng. J. 2020, 11, 865–873. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. A Mathematical Model Illustrating the Theory of Turbulence; Academic Press: London, UK, 1972. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar]
- Bradley, D.; Pulling, D.J. Flow pattern in the hydraulic cyclone and their interpretation in terms of performance. Trans. Inst. Chem. Engrs. 1959, 37, 34–45. [Google Scholar]
Mesh Scheme | Mesh Number | Mesh Size Range | Outlet Average Velocity (m/s) | Relative Error | Experimental Average Velocity (m/s) |
---|---|---|---|---|---|
1 | 374, 240 | 12.5–25.0 mm | 3.44 | − | 2.82 |
2 | 530, 853 | 8.0–20.0 mm | 3.18 | 0.076 | |
3 | 781, 526 | 5.0–15.0 mm | 3.05 | 0.041 | |
4 | 131, 3582 | 2.5–10.0 mm | 2.98 | 0.023 |
Flood Frequency | Inlet Water Depth (m) | Inlet Velocity (m/s) | Outlet Velocity (m/s) | Deviation | |
---|---|---|---|---|---|
Simulation | Experiment | ||||
1% | 0.108 | 0.812 | 2.12 | 2.03 | 4.26% |
0.1% | 0.155 | 0.951 | 2.89 | 2.71 | 6.23% |
0.05% | 0.173 | 0.956 | 3.05 | 2.82 | 7.54% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Yin, J.; Lu, Y.; Liu, Z.; Yang, H.; Xu, G. Three-Dimensional Flow of a Vortex Drop Shaft Spillway with an Elliptical Tangential Inlet. Water 2021, 13, 504. https://doi.org/10.3390/w13040504
Yang Z, Yin J, Lu Y, Liu Z, Yang H, Xu G. Three-Dimensional Flow of a Vortex Drop Shaft Spillway with an Elliptical Tangential Inlet. Water. 2021; 13(4):504. https://doi.org/10.3390/w13040504
Chicago/Turabian StyleYang, Zhou, Jinbu Yin, Yangliang Lu, Zhiming Liu, Haoyu Yang, and Genhai Xu. 2021. "Three-Dimensional Flow of a Vortex Drop Shaft Spillway with an Elliptical Tangential Inlet" Water 13, no. 4: 504. https://doi.org/10.3390/w13040504
APA StyleYang, Z., Yin, J., Lu, Y., Liu, Z., Yang, H., & Xu, G. (2021). Three-Dimensional Flow of a Vortex Drop Shaft Spillway with an Elliptical Tangential Inlet. Water, 13(4), 504. https://doi.org/10.3390/w13040504