Quantifying Uncertainty in Exposure to Coastal Hazards Associated with Both Climate Change and Adaptation Strategies: A U.S. Pacific Northwest Alternative Coastal Futures Analysis
Abstract
:1. Introduction
2. Methods
2.1. Alternative Futuring through Coupled Human and Natural Systems Modeling
2.1.1. Simulating Coastal Flood and Erosion Hazards
2.1.2. Simulating Community Growth and Development
2.2. Evaluating Uncertainty
2.2.1. Capturing Climate Uncertainty through Probabilistic Simulation of TWLs
2.2.2. Capturing Human Decision-Making Uncertainty through Stakeholder Derived Policy Options
2.2.3. Capturing Uncertainty within the Context of Integrated Scenarios
3. Results and Discussion
3.1. How Do Physical and Human Drivers Alter the Landscape through Time?
3.1.1. Impact of Individual Drivers
3.1.2. Impact of Drivers Integrated as Scenarios
3.2. How Do Climate and Policy Drivers Change Landscape Performance Metric Uncertainty over Time?
3.2.1. Impact of Individual Drivers on Metric Uncertainty
3.2.2. Impact of Drivers Integrated as Scenarios on Metric Uncertainty
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variability | Buildings Impacted by Flooding | Buildings Impacted by Erosion | Beach Accessibility | |
---|---|---|---|---|
As Individual Drivers | Max. Range Associated with Climate | 840 Buildings | 411 Buildings | 33% |
Max. Range Associated with Human Decisions | 610 Buildings | 555 Buildings | 23% | |
Within Scenarios | Max. Range Associated with Climate | 1780 Buildings | 174 Buildings | 35% |
Max. Range Associated with Human Decisions | 1922 Buildings | 178 Buildings | 24% |
Appendix B
Acronym or Symbol | Definition |
---|---|
BPS | Backshore protection structure |
CCevent | Event-based erosion |
CCRclimate | Coastal change rate associated with climate change-induced factors (i.e., SLR) computed using the Bruun Rule |
CCRSB | Pro-rated long-term (interannual- to decadal-scale) shoreline change rate |
dhigh | Dune crest height |
ENSO | El Niño Southern Oscillation |
hb | Water depth of wave breaking relative to MHW |
KTAN | Knowledge to action network |
MHW | Mean high water |
MSL | Mean sea level |
PNW | Pacific Northwest |
R2% | Two percent exceedance value of vertical wave runup on a beach or structure above the still water level |
SLR | Sea level rise |
SWH | Significant wave height |
T | Time |
Tan βf | Beach slope |
TD | Storm duration |
TS | Erosion response time scale |
TWL | Total water level |
xb | Surf zone width from MHW position determined using an equilibrium profile |
ηA | Deterministic astronomical tide |
ηNTR | Nontidal residual generated by physical processes including wind setup and barometric surge |
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding—A Global Assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [Green Version]
- Oliver-Smith, A. Sea Level Rise and the Vulnerability of Coastal Peoples: Responding to the Local Challenges of Global Climate Change in the 21st Century; UNU-EHS: Bonn, Germany, 2009. [Google Scholar]
- Webster, M.; Forest, C.; Reilly, J.; Babiker, M.; Kicklighter, D.; Mayer, M.; Prinn, R.; Sarofim, M.; Sokolov, A.; Stone, P.; et al. Uncertainty Analysis of Climate Change and Policy Response. Clim. Chang. 2003, 61, 295–320. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dessai, S. Robust adaptation to climate change. Weather 2010, 65, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Patt, A.; Klein, R.J.; De La Vega-Leinert, A. Taking the uncertainty in climate-change vulnerability assessment seriously. C. R. Geosci. 2005, 337, 411–424. [Google Scholar] [CrossRef]
- Murray, A.B.; Gopalakrishnan, S.; McNamara, D.E.; Smith, M.D. Progress in coupling models of human and coastal landscape change. Comput. Geosci. 2013, 53, 30–38. [Google Scholar] [CrossRef]
- Le, Q.B.; Park, S.J.; Vlek, P.L. Land Use Dynamic Simulator (LUDAS): A multi-agent system model for simulating spatio-temporal dynamics of coupled human–landscape system. Ecol. Inform. 2010, 5, 203–221. [Google Scholar] [CrossRef]
- McNamara, D.E.; Keeler, A.G. A coupled physical and economic model of the response of coastal real estate to climate risk. Nat. Clim. Chang. 2013, 3, 559–562. [Google Scholar] [CrossRef]
- Gornitz, V.M.; Daniels, R.C.; White, T.W.; Birdwell, K.R. The development of a coastal risk assessment database: Vulnerability to sea-level rise in the US Southeast. J. Coast. Res. 1994, 12, 327–338. [Google Scholar]
- Thieler, E.R.; Hammar-Klose, E.S. National Assessment of Coastal Vulnerability to Sea-Level Rise; Technical Report; U.S. Geological Survey: Woods Hole, MA, USA, 1999. [Google Scholar]
- Boruff, B.J.; Emrich, C.; Cutter, S.L. Erosion Hazard Vulnerability of US Coastal Counties. J. Coast. Res. 2005, 215, 932–942. [Google Scholar] [CrossRef] [Green Version]
- Anfuso, G.; Postacchini, M.; Di Luccio, D.; Benassai, G. Coastal Sensitivity/Vulnerability Characterization and Adaptation Strategies: A Review. J. Mar. Sci. Eng. 2021, 9, 72. [Google Scholar] [CrossRef]
- Berkhout, F.; Hurk, B.V.D.; Bessembinder, J.; De Boer, J.; Bregman, B.; Van Drunen, M. Framing climate uncertainty: Socio-economic and climate scenarios in vulnerability and adaptation assessments. Reg. Environ. Chang. 2013, 14, 1–15. [Google Scholar] [CrossRef]
- Evans, L.S.; Hicks, C.C.; Fidelman, P.; Tobin, R.C.; Perry, A.L. Future Scenarios as a Research Tool: Investigating Climate Change Impacts, Adaptation Options and Outcomes for the Great Barrier Reef, Australia. Hum. Ecol. 2013, 41, 841–857. [Google Scholar] [CrossRef] [Green Version]
- Mokrech, M.; Nicholls, R.J.; Dawson, R.J. Scenarios of future built environment for coastal risk assessment of climate change using a GIS-based multicriteria analysis. Environ. Plan. B Plan. Des. 2012, 39, 120–136. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J. Climate change and coastal vulnerability assessment: Scenarios for integrated assessment. Sustain. Sci. 2008, 3, 89–102. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Isaac, M.; Kundzewicz, Z.W.; Arnell, N.; Barker, T.; Criqui, P.; Berkhout, F.; Hilderink, H.; Hinkel, J.; Hof, A.; et al. The use of scenarios as the basis for combined assessment of climate change mitigation and adaptation. Glob. Environ. Chang. 2011, 21, 575–591. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.C.; Komar, P.D. Climate Controls on US West Coast Erosion Processes. J. Coast. Res. 2006, 223, 511–529. [Google Scholar] [CrossRef]
- Ruggiero, P.; Komar, P.D.; Allan, J.C. Increasing wave heights and extreme value projections: The wave climate of the U.S. Pacific Northwest. Coast. Eng. 2010, 57, 539–552. [Google Scholar] [CrossRef]
- Komar, P.D.; Allan, K.; Ruggiero, R. Sea level variations along the U.S. Pacific Northwest coast: Tectonic and climate controls. J. Coast. Res. 2011, 27, 808–823. [Google Scholar] [CrossRef]
- Ruggiero, P. Is the Intensifying Wave Climate of the U.S. Pacific Northwest Increasing Flooding and Erosion Risk Faster Than Sea-Level Rise? J. Waterw. Port Coastal Ocean Eng. 2013, 139, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.; Ruggiero, P.; Antolínez, J.A.A.; Méndez, F.J.; Allan, J. A Climate Index Optimized for Longshore Sediment Transport Reveals Interannual and Multidecadal Littoral Cell Rotations. J. Geophys. Res. Earth Surf. 2018, 123, 1958–1981. [Google Scholar] [CrossRef]
- National Research Council (NRC). Sea Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future (Washington, D.C.); Committee on Sea Rise in California, Oregon, and Washington: Board of Earth Sciences and Resources; Ocean Studies Board; Division on Earth and Life Studies; National Academies Press: Washington, DC, USA, 2012; p. 216.
- Sallenger, A.H. Storm impact scale for barrier islands. J. Coast. Res. 2000, 16, 890–895. [Google Scholar]
- Yin, J.; Griffies, S.M.; Stouffer, R.J. Spatial Variability of Sea Level Rise in Twenty-First Century Projections. J. Clim. 2010, 23, 4585–4607. [Google Scholar] [CrossRef]
- Kopp, R.E.; De Conto, R.M.; Bader, D.A.; Hay, C.C.; Horton, R.M.; Kulp, S.; Oppenheimer, M.; Pollard, D.; Strauss, B.H. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections. Earth’s Future 2017, 5, 1217–1233. [Google Scholar] [CrossRef] [Green Version]
- Sweet, W.; Horton, R.; Kopp, R.; Le Grande, A.; Romanou, A. Ch. 12: Sea Level Rise. Climate Science Special Report: Fourth National Climate Assessment, Volume I; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; Global Change Research Program: Washington, DC, USA, 2017; Volume 1, pp. 1–470. [Google Scholar] [CrossRef]
- Hemer, M.A.; Fan, Y.; Mori, N.; Semedo, A.; Wang, X.L. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Chang. 2013, 3, 471–476. [Google Scholar] [CrossRef]
- Cai, W.; Borlace, S.; Lengaigne, M.; Van Rensch, P.; Collins, M.; Vecchi, G.A.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L.; et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Chang. 2014, 4, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Feng, Y.; Swail, V.R. Changes in global ocean wave heights as projected using multimodel CMIP5 simulations. Geophys. Res. Lett. 2014, 41, 1026–1034. [Google Scholar] [CrossRef]
- Erikson, L.H.; Hegermiller, C.A.; Barnard, P.L.; Ruggiero, P.; van Ormondt, M. Projected median and extreme deep-water wave conditions along the Eastern North Pacific margin and Hawai’i forced by CMIP5 global climate models under two ra-diative forcing scenarios. Ocean. Model 2015, 96, 171–185. [Google Scholar] [CrossRef]
- Serafin, K.A.; Ruggiero, P. Simulating extreme total water levels using a time-dependent, extreme value approach. J. Geophys. Res. Ocean. 2014, 119, 6305–6329. [Google Scholar] [CrossRef] [Green Version]
- Adger, W.N.; Dessai, S.; Goulden, M.; Hulme, M.; Lorenzoni, I.; Nelson, D.R.; Naess, L.O.; Wolf, J.; Wreford, A. Are there social limits to adaptation to climate change? Clim. Chang. 2008, 93, 335–354. [Google Scholar] [CrossRef]
- Karvetski, C.W.; Lambert, J.H.; Keisler, J.M.; Linkov, I. Integration of Decision Analysis and Scenario Planning for Coastal Engineering and Climate Change. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2010, 41, 63–73. [Google Scholar] [CrossRef]
- Kelly, P.M.; Adger, W.N. Theory and practice in assessing vulnerability to climate change andFacilitating adap-tation. Clim. Chang. 2000, 47, 325–352. [Google Scholar] [CrossRef]
- Moser, S.C.; Williams, S.J.; Boesch, D.F. Wicked Challenges at Land’s End: Managing Coastal Vulnerabil-ity Under Climate Change. Annu. Rev. Environ. Resour. 2012, 37, 51–78. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.J.T.; Nicholls, R.J.; Ragoonaden, S.; Capobianco, M.; Aston, J.; Buckley, E.N. Technological Options for Adap-tation to Climate Change in Coastal Zones. J. Coast. Res. 2001, 17, 531–543. [Google Scholar]
- Koslov, L. The Case for Retreat. Public Cult. 2016, 28, 359–387. [Google Scholar] [CrossRef]
- Ruggerio, P.; Kratzmann, M.G.; Himmelstoss, E.A.; Reid, D.; Allan, J.; Kaminsky, G. National Assessment of Shoreline Change: Historical Shoreline Change along the Pacific Northwest Coast; US Geological Survey: Liston, VA, USA, 2013. [Google Scholar]
- Allan, J.C.; Hart, R. Assessing the Temporal and Spatial Variability of Coastal Change in the Neskowin Littoral Cell: Developing a Comprehensive Monitoring Program for Oregon Beaches; Oregon Department of Geology and Mineral Industries: Portland, OR, USA, 2007. [Google Scholar]
- Lipiec, E.; Ruggiero, P.; Mills, A.; Serafin, K.; Bolte, J.; Corcoran, P.; Stevenson, J.; Zanocco, C. Mapping out Cli-mate Change: Assessing How Coastal Communities Adapt Using Alternative Future Scenarios. J. Coast. Res. 2018, 34, 1196–1208. [Google Scholar] [CrossRef]
- Mills, A.K.; Bolte, J.P.; Ruggiero, P.; Serafin, K.A.; Lipiec, E.; Corcoran, P.; Stevenson, J.; Zanocco, C.; Lach, D. Exploring the impacts of climate and policy changes on coastal community resilience: Simulating alternative future scenarios. Environ. Model. Softw. 2018, 109, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Bolte, J.P.; Hulse, D.W.; Gregory, S.V.; Smith, C. Modeling biocomplexity—Actors, landscapes and alternative futures. Environ. Model. Softw. 2007, 22, 570–579. [Google Scholar] [CrossRef] [Green Version]
- Stockdon, H.F.; Sallenger, A.H.; Holman, R.; Howd, P. A simple model for the spatially variable coastal re-sponse to hurricanes. Mar. Geol. 2007, 238, 1–20. [Google Scholar] [CrossRef]
- Serafin, K.A.; Ruggiero, P.; Stockdon, H.F. The relative contribution of waves, tides, and non-tidal residuals to extreme total water levels on US West Coast sandy beaches. Geophys. Res. Lett. 2017, 44, 1839–1847. [Google Scholar] [CrossRef]
- Holman, R. Extreme value statistics for wave run-up on a natural beach. Coast. Eng. 1986, 9, 527–544. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions 1. Model description and val-idation. J. Geophys. Res. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.; Ruggiero, P.; Garcia-Medina, G.; O’Brien, F.S.; Gabel, L.L.; Roberts, J. Coastal Flood Hazard Study. Tillamook County, Oregon: Oregon Department of Geology and Mineral Industries special paper. Or. Dep. Geol. Miner. Ind. 2015, 47, 274. [Google Scholar]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Pullen, T.A.; Allsop, N.W.H.; Bruce, T.; Kortenhaus, A.; Schuttrumpf, H.; van der Meer, J.W. Eurotop—Wave Overtop-Ping of Sea Defences and Related Structures: Assessment Manual; Kuratorium für Forschung im Küsteningenieurwesen: Heide im Holstein, Germany, 2007. [Google Scholar]
- Van der Meer, J.W. Technical Report Wave Run-Up and Wave Overtopping at Dikes; TAW Report; TU Delft Library: Delft, The Netherlands, 2002. [Google Scholar]
- Schmid, K.; Hadley, B.; Waters, K. Mapping and Portraying Inundation Uncertainty of Bathtub-Type Models. J. Coast. Res. 2014, 295, 548–561. [Google Scholar] [CrossRef]
- Baron, H.M.; Ruggiero, P.; Wood, N.J.; Harris, E.L.; Allan, J.; Komar, P.D.; Corcoran, P. Incorporating climate change and morphological uncertainty into coastal change hazard assessments. Nat. Hazards 2014, 75, 2081–2102. [Google Scholar] [CrossRef] [Green Version]
- Bruun, P. Sea-Level Rise as a Cause of Shore Erosion. J. Waterw. Harb. Div. 1962, 88, 117–130. [Google Scholar] [CrossRef]
- Kriebel, D.L.; Dean, R.G. Convolution method for time dependent beach-profile response. J. Waterw. Port. Coast. Eng. 1993, 119, 204–226. [Google Scholar] [CrossRef]
- Mull, J.; Ruggiero, P. Estimating storm-induced dune erosion and overtopping along the U.S. West Coast beach-es. J. Coast. Res. 2014, 30, 1173–1187. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; Van Dongeren, A.; Vries, J.V.T.D.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Long Term County Population Forecast; Oregon Office of Economic Analysis: Oregon, OR, USA, 2013.
Policy | Abbreviation | Description |
---|---|---|
1 | BPS | Maintain current BPS and allow more BPS to be built on eligible lots. |
2 | Nourishment | Add beach nourishment to locations where beach access in front of BPS has been lost. |
3 | Easements | Remove buildings repetitively impacted by coastal hazards from within the hazard zone and establish conservation easements (e.g., managed retreat). |
4 | Relocate | Require movement of buildings frequently impacted by coastal hazards to a location above the Federal Emergency Management Agency’s (FEMA) Base Flood Elevation (BFE) plus an additional 3ft and in the safest site of each respective lot. |
5 | Safest-Site | Construct new buildings above the Federal Emergency Management Agency’s (FEMA) Base Flood Elevation (BFE) plus an additional 3 ft and in the safest site of each respective lot. |
6 | Hazard Zone | Determine Urban/Community Growth Boundaries (U/CGB) in accordance with the present-day policy but with prevention of new development within existing coastal hazard zones. |
Policy Scenario | Scenario Narrative |
---|---|
Status Quo | Continuation of present-day policies. |
Hold the Line | Policies or decisions were implemented that involve resisting environmental change in order to preserve existing infrastructure and human activities |
Realign | Policies or decisions were implemented that involve shifting development to suit the changing environment (e.g., managed retreat). |
Laissez-Faire | Current policies (state and county) were relaxed such that existing buildings, infrastructure and new development all trump the protection of coastal resources, public rights, recreational use, beach access, scenic views. |
Buildings Impacted by Flooding | Buildings Impacted by Erosion | Beach Accessibility | |||||
---|---|---|---|---|---|---|---|
Max. Rel. Variance | General Trend | Max. Rel. Variance | Trend | Max. Rel. Variance | Trend | ||
Individual Drivers | Climate Uncertainty | 2.6 | Decrease | 0.2 | Decrease | 0.4 | Increase |
Policy Uncertainty | 3.7 | Decrease | 1.1 | Decrease | <0.1 | No Change | |
Within Scenarios | Climate Uncertainty | 3.1 | Decrease | 1.3 | Static | 0.2 | Increase |
Policy Uncertainty | 1.2 | Increase | 1.3 | Increase | 0.5 | No Change |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mills, A.K.; Ruggiero, P.; Bolte, J.P.; Serafin, K.A.; Lipiec, E. Quantifying Uncertainty in Exposure to Coastal Hazards Associated with Both Climate Change and Adaptation Strategies: A U.S. Pacific Northwest Alternative Coastal Futures Analysis. Water 2021, 13, 545. https://doi.org/10.3390/w13040545
Mills AK, Ruggiero P, Bolte JP, Serafin KA, Lipiec E. Quantifying Uncertainty in Exposure to Coastal Hazards Associated with Both Climate Change and Adaptation Strategies: A U.S. Pacific Northwest Alternative Coastal Futures Analysis. Water. 2021; 13(4):545. https://doi.org/10.3390/w13040545
Chicago/Turabian StyleMills, Alexis K., Peter Ruggiero, John P. Bolte, Katherine A. Serafin, and Eva Lipiec. 2021. "Quantifying Uncertainty in Exposure to Coastal Hazards Associated with Both Climate Change and Adaptation Strategies: A U.S. Pacific Northwest Alternative Coastal Futures Analysis" Water 13, no. 4: 545. https://doi.org/10.3390/w13040545
APA StyleMills, A. K., Ruggiero, P., Bolte, J. P., Serafin, K. A., & Lipiec, E. (2021). Quantifying Uncertainty in Exposure to Coastal Hazards Associated with Both Climate Change and Adaptation Strategies: A U.S. Pacific Northwest Alternative Coastal Futures Analysis. Water, 13(4), 545. https://doi.org/10.3390/w13040545