Optimal Sizing of Rooftop Rainwater Harvesting Tanks for Sustainable Domestic Water Use in the West Bank, Palestine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
3. Results and Discussion
3.1. RRWHo Tank Size Estimation
3.2. Reliability of RRWH
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EEA. EEA Signals 2009: Key Environmental Issues Facing Europe; European Environment Agency: Copenhagen, Denmark, 2009. [Google Scholar]
- Santos, C.; Taveira-Pinto, F. Analysis of different criteria to size rainwater storage tanks using detailed methods. Resour. Conserv. Recycl. 2013, 71, 1–6. [Google Scholar] [CrossRef]
- Shadeed, S.; Lange, J. Rainwater harvesting to alleviate water scarcity in dry conditions: A case study in Faria Catchment, Palestine. Water Sci. Eng. 2010, 3, 132–143. [Google Scholar]
- Bocanegra-Martínez, A.; Ponce-Ortega, J.M.; Nápoles-Rivera, F.; Serna-González, M.; Castro-Montoya, A.J.; El-Halwagi, M.M. Optimal design of rainwater collecting systems for domestic use into a residential development. Resour. Conserv. Recycl. 2014, 84, 44–56. [Google Scholar] [CrossRef]
- Awawdeh, M.; Al-Shraideh, S.; Al-Qudah, K.; Jaradat, R. Rainwater harvesting assessment for a small size urban area in Jordan. Int. J. Water Resour. Environ. Eng. 2012, 4, 415–422. [Google Scholar]
- Mays, L.; Antoniou, G.P.; Angelakis, A.N. History of water cisterns: Legacies and lessons. Water 2013, 5, 1916–1940. [Google Scholar] [CrossRef] [Green Version]
- Ndiritu, J.G.; McCarthy, S.; Tshirangwana, N. Probabilistic assessment of the rainwater harvesting potential of schools in South Africa. Proc. Int. Assoc. Hydrol. Sci. 2014, 364, 435–440. [Google Scholar] [CrossRef]
- Fewkes, A. Modeling the performance of rainwater collection systems: Towards a generalized approach. Urban. Water 2000, 1, 323–333. [Google Scholar] [CrossRef]
- MwengeKahinda, J.; Taigbenu, A.E.; Boroto, J.R. Domestic rainwater harvesting to improve water supply in rural South Africa. Phys. Chem. Earth 2007, 32, 1050–1057. [Google Scholar] [CrossRef]
- Shadeed, S.; Judeh, T.; Almasri, M. Developing a GIS-based water poverty and rainwater harvesting suitability maps for domestic use in the Dead Sea region (West Bank, Palestine). Hydrol. Earth Syst. Sci. 2019, 23, 1581–1592. [Google Scholar] [CrossRef] [Green Version]
- Alawna, S. Rooftop Rainwater Harvesting to Alleviate Domestic Water Shortage in the West Bank, Palestine. Master’s Thesis, An-Najah National University, Nablus, Palestine, 2019. [Google Scholar]
- Khastagir, A.; Jayasuriya, N. Parameters influencing the selection of optimal rainwater tank size: A case study for Melbourne. In Proceedings of the Rain Water and Urban Design Conference, Sydney, Australia, 21–23 August 2007. [Google Scholar]
- Liaw, C.; Chiang, Y. Dimensionless Analysis for Designing Domestic Rainwater Harvesting Systems at the Regional Level in Northern Taiwan. Water 2014, 6, 3913–3933. [Google Scholar] [CrossRef] [Green Version]
- Sturm, M.; Zimmermann, M.; Schutz, K.; Urban, W.; Hartung, H. Rainwater harvesting as an alternative water resource in rural sites in central northern Namibia. Phys. Chem. Earth 2009, 34, 776–785. [Google Scholar] [CrossRef]
- Aladenola, O.O.; Adeboye, O.B. Assessing the potential for rainwater harvesting. Water Resour. Manag. 2010, 24, 2129–2137. [Google Scholar] [CrossRef]
- Eroksuz, E.; Rahman, A. Rainwater tanks in multi-unit buildings: A case study for three Australian cities. Resour. Conserv. Recycl. 2010, 54, 1449–1452. [Google Scholar] [CrossRef]
- Ghisi, E. Parameters influencing the sizing of rainwater tanks for use in houses. Water Resour. Manag. 2010, 24, 2381–2403. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; Lanza, L.G.; La Barbera, P. Performance analysis of domestic rainwater harvesting systems under various European climate zones. Resour. Conserv. Recycl. 2012, 62, 71–80. [Google Scholar] [CrossRef]
- Londra, P.; Theocharis, A.; Baltas, E.; Tsihrintzis, V. Optimal sizing of rainwater harvesting tanks for domestic use in Greece. Water Resour. Manag. 2015, 29, 4357–4377. [Google Scholar] [CrossRef]
- Treiber, B.; Schultz, G. Comparison of required reservoir storages computed by the Thomas-Fiering model and the Karlsruhe Model Type A and B. Hydrol. Sci. J. 1976, 21, 177–185. [Google Scholar] [CrossRef]
- Basinger, M.; Montalto, F.; Lall, U. Rainwater harvesting system reliability model based on non-parametric stochastic rainfall generator. J. Hydrol. 2010, 392, 105–118. [Google Scholar] [CrossRef]
- Cowden, J.R.; Watkins, D.W.; Mihelcic, J.R. Stochastic rainfall modeling in West Africa: Parsimonious approaches for domestic rainwater harvesting assessment. J. Hydrol. 2008, 361, 64–77. [Google Scholar] [CrossRef]
- Campisano, A.; Modica, C. Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily. Resour. Conserv. Recycl. 2012, 63, 9–16. [Google Scholar] [CrossRef]
- Semaan, M.; Day, S.D.; Garvi, M.; Ramakrishnan, N.; Pearce, A. Optimal sizing of rainwater harvesting systems for domestic water usages: A systematic literature review. Resour. Conserv. Recycl. 2020, 6, 100033. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Ahsan, A.; Naser, J.; Rahman, A. Reliability analysis of rainwater tanks in Melbourne using daily water balance model. Resour. Conserv. Recycl. 2011, 56, 80–86. [Google Scholar] [CrossRef]
- Abu-Zreig, M.; Ababneh, F.; Abdullah, F. Assessment of rooftop rainwater harvesting in northern Jordan. Phys. Chem. Earth 2019, 114, 102794. [Google Scholar] [CrossRef]
- Rippl, W. The Capacity of storage-reservoirs for water-supply. Min. Proc. Inst. Civ. Eng. 1883, 71, 270–278. [Google Scholar]
- Abu-Zreig, M.; Hazayme, A.; Shatanawi, M. Evaluation of residential rainfall harvesting systems in Jordan. Urban Water J. 2012, 10, 1–7. [Google Scholar] [CrossRef]
- Okoye, C.O.; Solyal, O.; Akıntu, B. Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach. Resour. Conserv. Recycl. 2015, 104, 131–140. [Google Scholar] [CrossRef]
- Matos, C.; Santos, C.; Pereira, S.; Bentes, I.; Imteaz, M. Rainwater storage tank sizing: Case study of a commercial building. Int. J. Sustain. Built Environ. 2013, 2, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Komeh, Z.; Memarian, H.; Tajbakhsh, S. Reservoir volume optimization and performance evaluation of rooftop catchment systems in arid regions: A case study of Birjand, Iran. Water Sci. Eng. 2017, 10, 125–133. [Google Scholar] [CrossRef]
- Rahman, A.; Keane, J.; Imteaz, M.A. Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits. Resour. Conserv. Recycl. 2012, 61, 16–21. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Shanableh, A.; Rahman, A.; Ahsan, A. Optimisation of rainwater tank design from large roofs: A case study in Melbourne, Australia. Resour. Conserv. Recycl. 2011, 55, 1022–1029. [Google Scholar] [CrossRef]
- PCBC. Water Supply-Demand Statistics. Available online: http://www.pcbs.gov.ps/Portals/_Rainbow/Documents/water-A9-2018.html (accessed on 10 December 2020).
- Ministry of Local Governance. GeoMOLG. Available online: https://geomolg-geomolgarconline.hub.arcgis.com/search?collection=Dataset (accessed on 4 February 2019).
- PCBS. Final Result of Population, Housing, and Establishment Census; Palestinian Central Bureau of Statistics: Ramallah, Palestine, 2017. [Google Scholar]
- UNEP. Desk Study on the Environment in the Occupied Palestinian Territories; United Nation Environment Programme: Nairobi, Kenya, 2003. [Google Scholar]
- Shadeed, S. Spatio-temporal drought analysis in arid and semiarid regions: A case study from Palestine. Arab. J. Sci. Eng. 2012, 38, 2303–2313. [Google Scholar] [CrossRef]
- PWA. Status Report of Water Resources in the Occupied State of Palestine; Palestinian Water Authority: Ramallah, Palestine, 2013. [Google Scholar]
- Shadeed, S. Up to Date Hydrological Modeling in Arid and Semi-arid Catchment, the Case of Faria Catchment, West Bank, Palestine. Ph.D. Thesis, Faculty of Forest and Environmental Sciences, Albert-Ludwigs-Universität, Freiburg imBreisgau, Germany, 2008. [Google Scholar]
- Gould, J.; Nissen-Petersen, E. Rainwater Catchment Systems for Domestic Supply: Design, Construction and Implementation; Intermediate Technology Publications: London, UK, 1999. [Google Scholar]
- PMD. Meteorological Database; Palestinian Metrological Department: Ramallah, Palestine, 2019. [Google Scholar]
- Al-Houri, Z.M.; Abu-Hadba, O.K.; Hamdan, K.A. The Potential of Roof Top Rain Water Harvesting as a Water Resource in Jordan: Featuring Two Application Case Studies. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 2014, 8, 147–153. [Google Scholar]
- Abdulla, F.A.; Al-Shareef, A.W. Roof rainwater harvesting systems for household water supply in Jordan. Desalination 2009, 243, 195–207. [Google Scholar] [CrossRef]
- Ghisi, E.; Montibeller, A.; Schmidt, R.W. Potential for potable water savings by using rainwater: An analysis over 62 cities in southern Brazil. Build. Environ. 2006, 41, 204–210. [Google Scholar] [CrossRef]
- Hari, D.; Reddy, K.R.; Vikas, K.; Srinivas, N.; Vikas, G. Assessment of rainwater harvesting potential using GIS. IOP Conf. Ser. Mater. Sci. Eng. 2018, 330, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liaw, C.-H.; Tsai, Y. Optimum storage volume of rooftop rain water harvesting systems for domestic use. J. Am. Water Resour. Assoc. 2004, 40, 901–912. [Google Scholar] [CrossRef]
Governorate | Jerusalem | Jenin | Tulkarm | Qalqiliya | Ramallah & Al-Bireh | Nablus | Bethlehem | Hebron | Jericho | Salfit | Tubas |
---|---|---|---|---|---|---|---|---|---|---|---|
Oct | 10 | 20 | 21 | 30 | 20 | 22 | 17 | 26 | 6 | 35 | 14 |
Nov | 60 | 46 | 59 | 67 | 68 | 49 | 67 | 47 | 20 | 68 | 36 |
Dec | 78 | 122 | 193 | 196 | 181 | 200 | 102 | 142 | 38 | 214 | 106 |
Jan | 111 | 125 | 135 | 128 | 123 | 154 | 131 | 138 | 32 | 149 | 101 |
Feb | 88 | 89 | 103 | 92 | 103 | 113 | 93 | 92 | 32 | 102 | 78 |
Mar | 51 | 40 | 47 | 49 | 59 | 51 | 56 | 52 | 15 | 63 | 33 |
Apr | 30 | 30 | 22 | 30 | 33 | 29 | 33 | 28 | 15 | 32 | 25 |
May | 6 | 7 | 6 | 5 | 7 | 6 | 6 | 6 | 6 | 5 | 8 |
Jun | 0 | 0 | 1 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
Jul | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Aug | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sep | 2 | 1 | 0 | 1 | 1 | 0 | 1 | 2 | 0 | 1 | 0 |
Year | Sum (mm) | MADR * (mm) | Number of Rainy Days (Rainfall > 1 mm) |
---|---|---|---|
2012/2013 | 701 | 107 | 44 |
2013/2014 | 466 | 123 | 24 |
2014/2015 | 667 | 83 | 53 |
2015/2016 | 498 | 48 | 42 |
2016/2017 | 476 | 74 | 41 |
2017/2018 | 566 | 61 | 42 |
2018/2019 | 925 | 90 | 59 |
Month | Rainfall (mm) | Rooftop Area (m2) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 150 | 200 | 250 | 300 | |||||||||||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | ||
Oct | 21.8 | 1.7 | 13.0 | 11.2 | 11.2 | 2.6 | 13.0 | 10.3 | 10.3 | 3.5 | 13.0 | 9.5 | 9.5 | 4.4 | 13.0 | 8.6 | 8.6 | 5.2 | 13.0 | 7.7 | 7.7 |
Nov | 49.4 | 4.0 | 13.0 | 9.0 | 20.2 | 5.9 | 13.0 | 7.0 | 17.4 | 7.9 | 13.0 | 5.1 | 14.5 | 9.9 | 13.0 | 3.1 | 11.7 | 11.9 | 13.0 | 1.1 | 8.8 |
Dec | 199.8 | 16.0 | 13.0 | −3.0 | 17.2 | 24.0 | 13.0 | −11.0 | 6.4 | 32.0 | 13.0 | −19.0 | −4.5 | 40.0 | 13.0 | −27.0 | −15.3 | 48.0 | 13.0 | −35.0 | −26.2 |
Jan | 154.1 | 12.3 | 13.0 | 0.6 | 17.8 | 18.5 | 13.0 | −5.5 | 0.8 | 24.7 | 13.0 | −11.7 | −16.2 | 30.8 | 13.0 | −17.9 | −33.2 | 37.0 | 13.0 | −24.0 | −50.2 |
Feb | 112.5 | 9.0 | 13.0 | 4.0 | 21.8 | 13.5 | 13.0 | −0.54 | 0.3 | 18.0 | 13.0 | −5.0 | −21.2 | 22.5 | 13.0 | −9.54 | −42.7 | 27.0 | 13.0 | −14.0 | −64.2 |
Mar | 51.0 | 4.1 | 13.0 | 8.9 | 30.7 | 6.1 | 13.0 | 6.8 | 7.1 | 8.2 | 13.0 | 4.8 | −16.4 | 10.2 | 13.0 | 2.8 | −40.0 | 12.2 | 13.0 | 0.7 | −63.5 |
Apr | 29.3 | 2.3 | 13.0 | 10.6 | 41.3 | 3.5 | 13.0 | 9.4 | 16.6 | 4.7 | 13.0 | 8.3 | −8.1 | 5.9 | 13.0 | 7.1 | −32.9 | 7.0 | 13.0 | 5.9 | −57.6 |
May | 6.4 | 0.5 | 13.0 | 12.4 | 53.7 | 0.8 | 13.0 | 12.2 | 28.8 | 1.0 | 13.0 | 11.9 | 3.8 | 1.3 | 13.0 | 11.7 | −21.2 | 1.5 | 13.0 | 11.4 | −46.2 |
Jun | 0.6 | 0.0 | 13.0 | 12.9 | 66.6 | 0.1 | 13.0 | 12.9 | 41.7 | 0.1 | 13.0 | 12.9 | 16.7 | 0.1 | 13.0 | 12.8 | −8.3 | 0.1 | 13.0 | 12.8 | −33.3 |
Jul | 0.0 | 0.0 | 13.0 | 13.0 | 79.6 | 0.0 | 13.0 | 13.0 | 54.6 | 0.0 | 13.0 | 13.0 | 29.6 | 0.0 | 13.0 | 13.0 | 4.6 | 0.0 | 13.0 | 13.0 | −20.4 |
Aug | 0.0 | 0.0 | 13.0 | 13.0 | 92.6 | 0.0 | 13.0 | 13.0 | 67.6 | 0.0 | 13.0 | 13.0 | 42.6 | 0.0 | 13.0 | 13.0 | 17.6 | 0.0 | 13.0 | 13.0 | −7.4 |
Sep | 0.1 | 0.0 | 13.0 | 13.0 | 105.5 | 0.0 | 13.0 | 12.9 | 80.5 | 0.0 | 13.0 | 12.9 | 55.5 | 0.0 | 13.0 | 12.9 | 30.5 | 0.0 | 13.0 | 12.9 | 5.5 |
Annual | 625.0 | 50.0 | 155.5 | 75.0 | 155.5 | 100.0 | 155.5 | 125.0 | 155.5 | 150.0 | 155.5 | ||||||||||
RRWHr | 106 | 81 | 56 | 31 | 9 | ||||||||||||||||
RRWHm | 50 | 75 | 100 | 125 | 150 | ||||||||||||||||
RRWHo | 50 | 75 | 56 | 31 | 9 | ||||||||||||||||
Rv (%) | 32 | 48 | 64 | 80 | 96 |
Month | Rainfall (mm) | Rooftop Area (m2) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 150 | 200 | 250 | 300 | |||||||||||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | ||
Oct | 21.8 | 1.7 | 13.0 | 11.2 | 11.2 | 2.6 | 13.0 | 10.3 | 10.3 | 3.5 | 13.0 | 9.5 | 9.5 | 4.4 | 13.0 | 8.6 | 8.6 | 5.2 | 13.0 | 7.7 | 7.7 |
Nov | 49.4 | 4.0 | 13.0 | 9.0 | 20.2 | 5.9 | 13.0 | 7.0 | 17.4 | 7.9 | 13.0 | 5.1 | 14.5 | 9.9 | 13.0 | 3.1 | 11.7 | 11.9 | 13.0 | 1.1 | 8.8 |
Dec | 199.8 | 16.0 | 13.0 | −3.0 | 17.2 | 24.0 | 13.0 | −11.0 | 6.4 | 32.0 | 13.0 | −19.0 | −4.5 | 40.0 | 13.0 | −27.0 | −15.3 | 48.0 | 13.0 | −35.0 | −26.2 |
Jan | 154.1 | 12.3 | 13.0 | 0.6 | 17.8 | 18.5 | 13.0 | −5.5 | 0.8 | 24.7 | 13.0 | −11.7 | −16.2 | 30.8 | 13.0 | −17.9 | −33.2 | 37.0 | 13.0 | −24.0 | −50.2 |
Feb | 112.5 | 9.0 | 13.0 | 4.0 | 21.8 | 13.5 | 13.0 | −0.5 | 0.3 | 18.0 | 13.0 | −5.0 | −21.2 | 22.5 | 13.0 | −9.5 | −42.7 | 27.0 | 13.0 | −14.0 | −64.2 |
Mar | 51.0 | 4.1 | 13.0 | 8.9 | 30.7 | 6.1 | 13.0 | 6.8 | 7.1 | 8.2 | 13.0 | 4.8 | −16.4 | 10.2 | 13.0 | 2.8 | −40.0 | 12.2 | 13.0 | 0.7 | −63.5 |
Apr | 29.3 | 2.3 | 13.0 | 10.6 | 41.3 | 3.5 | 13.0 | 9.4 | 16.6 | 4.7 | 13.0 | 8.3 | −8.1 | 5.9 | 13.0 | 7.1 | −32.9 | 7.0 | 13.0 | 5.9 | −57.6 |
May | 6.4 | 0.5 | 13.0 | 12.4 | 53.7 | 0.8 | 13.0 | 12.2 | 28.8 | 1.0 | 13.0 | 11.9 | 3.8 | 1.3 | 13.0 | 11.7 | −21.2 | 1.5 | 13.0 | 11.4 | −46.2 |
Annual | 624.3 | 49.9 | 103.7 | 74.9 | 103.7 | 99.9 | 103.7 | 124.9 | 103.7 | 149.8 | 103.7 | ||||||||||
RRWHr | 54 | 29 | 15 | 12 | 9 | ||||||||||||||||
RRWHm | 50 | 75 | 100 | 125 | 150 | ||||||||||||||||
RRWHo | 50 | 29 | 15 | 12 | 9 | ||||||||||||||||
Rv (%) | 48 | 72 | 96 | 120 | 145 |
Rooftop Areas (m2) | RRWHo Tank Size (m3) | |||
---|---|---|---|---|
S1 | S2 | |||
Monthly | Daily | Monthly | Daily | |
100 | 50 | 49 | 50 | 49 |
150 | 75 | 75 | 29 | 31 |
200 | 56 | 59 | 15 | 15 |
250 | 31 | 35 | 12 | 13 |
300 | 9 | 10 | 9 | 11 |
Rooftop Areas (m2) | Re (%) | |||||
---|---|---|---|---|---|---|
S1 | S2 | |||||
25% | 10% | 8% | 25% | 10% | 8% | |
100 | 34 | 85 | - | 51 | - | - |
150 | 51 | - | - | 76 | - | - |
200 | 68 | - | - | - | - | - |
250 | 85 | - | - | - | - | - |
300 | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shadeed, S.; Alawna, S. Optimal Sizing of Rooftop Rainwater Harvesting Tanks for Sustainable Domestic Water Use in the West Bank, Palestine. Water 2021, 13, 573. https://doi.org/10.3390/w13040573
Shadeed S, Alawna S. Optimal Sizing of Rooftop Rainwater Harvesting Tanks for Sustainable Domestic Water Use in the West Bank, Palestine. Water. 2021; 13(4):573. https://doi.org/10.3390/w13040573
Chicago/Turabian StyleShadeed, Sameer, and Sandy Alawna. 2021. "Optimal Sizing of Rooftop Rainwater Harvesting Tanks for Sustainable Domestic Water Use in the West Bank, Palestine" Water 13, no. 4: 573. https://doi.org/10.3390/w13040573
APA StyleShadeed, S., & Alawna, S. (2021). Optimal Sizing of Rooftop Rainwater Harvesting Tanks for Sustainable Domestic Water Use in the West Bank, Palestine. Water, 13(4), 573. https://doi.org/10.3390/w13040573