Vegetation and Geomorphic Connectivity in Mountain Fluvial Systems
Abstract
:1. Introduction
2. Vegetation and Geomorphic Connectivity
2.1. Lateral Connectivity
2.1.1. Bank Erosion
2.1.2. Avulsions
2.1.3. Hillslope Inputs
2.2. Longitudinal Connectivity
2.3. Vegetation and Geomorphic Connectivity: A Summary
3. Vegetation-Geomorphic Connectivity Linkages: Some Challenges to Understanding Fluvial Behavior in Mountain Landscape Systems
4. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Church, M. Bed Material Transport and the Morphology of Alluvial River Channels. Annu. Rev. Earth Planet. Sci. 2006, 34, 325–354. [Google Scholar] [CrossRef]
- Church, M. Channel stability: Morphodynamics and the morphology of rivers. In Rivers–Physical, Fluvial and Environmental Processes; Rowinski, P., Radecki-Pawlik, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 281–321. [Google Scholar]
- Walling, D.E. The Response of Sediment Yields to Environmental Change. IAHS Publ. 1997, 245, 77–89. [Google Scholar]
- Hinderer, M.; Einsele, G. The World’s Large Lake Basins as Denudation-Accumulation Systems and Implications for Their Lifetimes. J. Paleolimnol. 2001, 26, 355–372. [Google Scholar] [CrossRef]
- Macklin, M.G.; Lewin, J.; Woodward, J.C. The Fluvial Record of Climate Change. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 2143–2172. [Google Scholar] [CrossRef]
- Jerolmack, D.J.; Paola, C. Shredding of Environmental Signals by Sediment Transport. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Romans, B.W.; Castelltort, S.; Covault, J.A.; Fildani, A.; Walsh, J.P. Environmental Signal Propagation in Sedimentary Systems across Timescales. Earth Sci. Rev. 2016, 153, 7–29. [Google Scholar] [CrossRef] [Green Version]
- Fryirs, K. (Dis)Connectivity in Catchment Sediment Cascades: A Fresh Look at the Sediment Delivery Problem. Earth Surf. Process. Landf. 2013, 38, 30–46. [Google Scholar] [CrossRef]
- Bracken, L.J.; Turnbull, L.; Wainwright, J.; Bogaart, P. Sediment Connectivity: A Framework for Understanding Sediment Transfer at Multiple Scales. Earth Surf. Process. Landf. 2015, 40, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Poeppl, R.E.; Keesstra, S.D.; Maroulis, J. A Conceptual Connectivity Framework for Understanding Geomorphic Change in Human-Impacted Fluvial Systems. Geomorphology 2017, 277, 237–250. [Google Scholar] [CrossRef]
- Wohl, E.; Brierley, G.; Cadol, D.; Coulthard, T.J.; Covino, T.; Fryirs, K.; Grant, G.E.; Hilton, R.G.; Lane, S.N.; Magilligan, F.J.; et al. Connectivity as an Emergent Property of Geomorphic Systems. Earth Surf. Process. Landf. 2018. [Google Scholar] [CrossRef]
- Heckmann, T.; Cavalli, M.; Cerdan, O.; Foerster, S.; Javaux, M.; Lode, E.; Smetanová, A.; Vericat, D.; Brardinoni, F. Indices of Sediment Connectivity: Opportunities, Challenges and Limitations. Earth Sci. Rev. 2018, 187, 77–108. [Google Scholar] [CrossRef] [Green Version]
- Parsons, A.J.; Wainwright, J.; Brazier, R.E.; Powell, D.M. Is Sediment Delivery a Fallacy? Earth Surf. Process. Landf. 2018, 31, 1325–1328. [Google Scholar] [CrossRef]
- Singh, M.; Sinha, R.; Tandon, S.K. Geomorphic Connectivity and Its Application for Understanding Landscape Complexities: A Focus on the Hydro-Geomorphic Systems of India. Earth Surf. Process. Landf. 2020. [Google Scholar] [CrossRef]
- Turnbull, L.; Hütt, M.-T.; Ioannides, A.A.; Kininmonth, S.; Poeppl, R.; Tockner, K.; Bracken, L.J.; Keesstra, S.; Liu, L.; Masselink, R.; et al. Connectivity and Complex Systems: Learning from a Multi-Disciplinary Perspective. Appl. Netw. Sci. 2018, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Schumm, S.A. To Interpret the Earth: Ten Ways to Be Wrong; Cambridge University Press: Cambridge, UK, 1991; ISBN 0-521-64602-2. [Google Scholar]
- Fryirs, K.A. River Sensitivity: A Lost Foundation Concept in Fluvial Geomorphology. Earth Surf. Process. Landf. 2017, 42, 55–70. [Google Scholar] [CrossRef]
- Brunsden, D.; Thornes, J.B. Landscape Sensitivity and Change. Trans. Inst. Br. Geogr. 1979, 463–484. [Google Scholar] [CrossRef] [Green Version]
- Brunsden, D. A Critical Assessment of the Sensitivity Concept in Geomorphology. Catena 2001, 42, 99–123. [Google Scholar] [CrossRef]
- Phillips, J.D. Changes, Perturbations and Responses in Geomorphic Systems. Prog. Phys. Geogr. Earth Environ. 2009, 33, 17–30. [Google Scholar] [CrossRef]
- Thomas, M.F. Landscape Sensitivity in Time and Space—An Introduction. Catena 2001, 42, 83–98. [Google Scholar] [CrossRef]
- Brierley, G.; Fryirs, K.; Jain, V. Landscape Connectivity: The Geographic Basis of Geomorphic Applications. Area 2006, 38, 165–174. [Google Scholar] [CrossRef]
- Stallins, J.A. Geomorphology and Ecology: Unifying Themes for Complex Systems in Biogeomorphology. Geomorphology 2006, 77, 207–216. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Piegay, H.; Swanson, F.J.; Gregory, S.V. Large Wood and Fluvial Processes. Freshw. Biol. 2002, 47, 601–619. [Google Scholar] [CrossRef] [Green Version]
- Wohl, E. Floodplains and Wood. Earth Sci. Rev. 2013, 123, 194–212. [Google Scholar] [CrossRef]
- Wohl, E. Bridging the Gaps: An Overview of Wood across Time and Space in Diverse Rivers. Geomorphology 2017, 279, 3–26. [Google Scholar] [CrossRef]
- Wohl, E.; Kramer, N.; Ruiz-Villanueva, V.; Scott, D.N.; Comiti, F.; Gurnell, A.M.; Piegay, H.; Lininger, K.B.; Jaeger, K.L.; Walters, D.M.; et al. The Natural Wood Regime in Rivers. BioScience 2019, 69, 259–273. [Google Scholar] [CrossRef]
- Sutfin, N.A.; Wohl, E.; Fegel, T.S.; Lynch, L.M. Logjams and Channel Morphology Influence Sediment Storage, Transformation of Organic Matter and Carbon Storage within Mountain Stream Corridors. Available online: http://www.essoar.org/doi/10.1002/essoar.10503253.1 (accessed on 8 July 2020).
- Langbein, W.B.; Schumm, S.A. Yield of Sediment in Relation to Mean Annual Precipitation. EOS Trans. Am. Geophys. Union 1958, 39, 1076–1084. [Google Scholar] [CrossRef] [Green Version]
- Hack, J.T.; Goodlett, J.C. Geomorphology and Forest Ecology of a Mountain Region in the Central Appalachians; United States Government Publishing Office: Washington, DC, USA, 1960. [Google Scholar]
- Leopold, L.B.; Wolman, M.G.; Miller, J.P. Fluvial Processes in Geomorphology; Dover Publications, Inc.: New York, NY, USA, 1964; p. 522. [Google Scholar]
- Douglas, I. Man, Vegetation and the Sediment Yields of Rivers. Nature 1967, 215, 925–928. [Google Scholar] [CrossRef]
- Viles, H.A. Biogeomorphology; B. Blackwell: Oxford, UK, 1988; ISBN 0-631-15405-1. [Google Scholar]
- Viles, H. Biogeomorphology: Past, Present and Future. Geomorphology 2019. [Google Scholar] [CrossRef]
- Hupp, C.R.; Osterkamp, W.R.; Howard, A.D. Biogeomorphology, Terrestrial and Freshwater Systems. In Proceedings of the Binghamton Symposium in Geomorphology, Binghampton, NY, USA, 6–8 October 1995; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Naylor, L.A.; Viles, H.A.; Carter, N.E.A. Biogeomorphology Revisited: Looking towards the Future. Geomorphology 2002, 47, 3–14. [Google Scholar] [CrossRef]
- Murray, A.B.; Knaapen, M.A.F.; Tal, M.; Kirwan, M.L. Biomorphodynamics: Physical-biological Feedbacks That Shape Landscapes. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Corenblit, D.; Baas, A.C.W.; Bornette, G.; Darrozes, J.; Delmotte, S.; Francis, R.A.; Gurnell, A.M.; Julien, F.; Naiman, R.J.; Steiger, J. Feedbacks between Geomorphology and Biota Controlling Earth Surface Processes and Landforms: A Review of Foundation Concepts and Current Understandings. Earth Sci. Rev. 2011, 106, 307–331. [Google Scholar] [CrossRef]
- Osterkamp, W.R.; Hupp, C.R.; Stoffel, M. The Interactions between Vegetation and Erosion: New Directions for Research at the Interface of Ecology and Geomorphology. Earth Surf. Process. Landf. 2012, 37, 23–36. [Google Scholar] [CrossRef]
- Miller, H.R.; Lane, S.N. Biogeomorphic Feedbacks and the Ecosystem Engineering of Recently Deglaciated Terrain. Prog. Phys. Geogr. Earth Environ. 2019, 43, 24–45. [Google Scholar] [CrossRef] [Green Version]
- Wheaton, J.M.; Gibbins, C.; Wainwright, J.; Larsen, L.; McElroy, B. Preface: Multiscale Feedbacks in Ecogeomorphology. Geomorphology 2011, 126, 265–268. [Google Scholar] [CrossRef]
- Corenblit, D.; Tabacchi, E.; Steiger, J.; Gurnell, A.M. Reciprocal Interactions and Adjustments between Fluvial Landforms and Vegetation Dynamics in River Corridors: A Review of Complementary Approaches. Earth Sci. Rev. 2007, 84, 56–86. [Google Scholar] [CrossRef]
- Bätz, N.; Verrecchia, E.P.; Lane, S.N. The Role of Soil in Vegetated Gravelly River Braid Plains: More than Just a Passive Response? Earth Surf. Process. Landf. 2015, 40, 143–156. [Google Scholar] [CrossRef]
- Ruiz-Villanueva, V.; Piégay, H.; Gurnell, A.M.; Marston, R.A.; Stoffel, M. Recent Advances Quantifying the Large Wood Dynamics in River Basins: New Methods and Remaining Challenges. Rev. Geophys. 2016, 54, 611–652. [Google Scholar] [CrossRef] [Green Version]
- Tabacchi, E.; González, E.; Corenblit, D.; Garófano-Gómez, V.; Planty-Tabacchi, A.-M.; Steiger, J. Species Composition and Plant Traits: Characterization of the Biogeomorphological Succession within Contrasting River Corridors. River Res. Appl. 2019, 35, 1228–1240. [Google Scholar] [CrossRef]
- Thomas, M.F. Landscape Sensitivity to Rapid Environmental Change—A Quaternary Perspective with Examples from Tropical Areas. Catena 2004, 55, 107–124. [Google Scholar] [CrossRef]
- Macklin, M.G.; Lewin, J. Alluvial Responses to the Changing Earth System. Earth Surf. Process. Landf. 2008, 33, 1374–1395. [Google Scholar] [CrossRef]
- Slaymaker, O.; Owens, P.N. (Eds.) Mountain Geomorphology and Global Environmental Change. In Mountain Geomorphology; Routledge: Abingdon, UK, 2004; pp. 277–300. [Google Scholar]
- Evans, M.; Slaymaker, O. Spatial and Temporal Variability of Sediment Delivery from Alpine Lake Basins, Cathedral Provincial Park, Southern British Columbia. Geomorphology 2004, 61, 209–224. [Google Scholar] [CrossRef]
- Gibling, M.R.; Davies, N.S. Palaeozoic Landscapes Shaped by Plant Evolution. Nature Geosci. 2012, 5, 99. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Slaymaker, O.; Spencer, T.; Embleton-Hamann, C. Geomorphology and Global Environmental Change; Cambridge University Press: Cambridge, UK, 2009; ISBN 0-521-87812-8. [Google Scholar]
- Bernhardt, E.S.; Palmer, M.A.; Allan, J.D.; Alexander, G.; Barnas, K.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad-Shah, J. Synthesizing US River Restoration Efforts; American Association for the Advancement of Science: Washington, DC, USA, 2005; ISBN 0036-8075. [Google Scholar]
- Beechie, T.J.; Sear, D.A.; Olden, J.D.; Pess, G.R.; Buffington, J.M.; Moir, H.; Roni, P.; Pollock, M.M. Process-Based Principles for Restoring River Ecosystems. BioScience 2010, 60, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.A.; Hondula, K.L.; Koch, B.J. Ecological Restoration of Streams and Rivers: Shifting Strategies and Shifting Goals. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 247–269. [Google Scholar] [CrossRef] [Green Version]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The Science and Practice of River Restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.F.; Thorne, C.R.; Castro, J.M.; Kondolf, G.M.; Mazzacano, C.S.; Rood, S.B.; Westbrook, C. Biomic River Restoration: A New Focus for River Management. River Res. Appl. 2020, 36, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Marston, R.A. Geomorphology and Vegetation on Hillslopes: Interactions, Dependencies and Feedback Loops. Geomorphology 2010, 116, 206–217. [Google Scholar] [CrossRef]
- Osterkamp, W.R.; Hupp, C.R. Fluvial Processes and Vegetation—Glimpses of the Past, the Present and Perhaps the Future. Geomorphology 2010, 116, 274–285. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Bertoldi, W.; Corenblit, D. Changing River Channels: The Roles of Hydrological Processes Plants and Pioneer Fluvial Landforms in Humid Temperate, Mixed Load, Gravel Bed Rivers. Earth Sci. Rev. 2012, 111, 129–141. [Google Scholar] [CrossRef]
- Pawlik, Ł. The Role of Trees in the Geomorphic System of Forested Hillslopes—A Review. Earth Sci. Rev. 2013, 126, 250–265. [Google Scholar] [CrossRef]
- Gurnell, A. Plants as River System Engineers. Earth Surf. Process. Landf. 2014, 39, 4–25. [Google Scholar] [CrossRef]
- Sidle, R.C.; Bogaard, T.A. Dynamic Earth System and Ecological Controls of Rainfall-Initiated Landslides. Earth Sci. Rev. 2016, 159, 275–291. [Google Scholar] [CrossRef]
- Dufour, S.; Rodríguez-González, P.M.; Laslier, M. Tracing the Scientific Trajectory of Riparian Vegetation Studies: Main Topics, Approaches and Needs in a Globally Changing World. Sci. Total Environ. 2019, 653, 1168–1185. [Google Scholar] [CrossRef] [PubMed]
- Stella, J.C.; Bendix, J. Multiple Stressors in Riparian Ecosystems. In Multiple Stressors in River Ecosystems; Sabater, S., Elosegi, A., Ludwig, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 81–110. ISBN 978-0-12-811713-2. [Google Scholar]
- Fryirs, K.A.; Brierley, G.J.; Preston, N.J.; Kasai, M. Buffers, Barriers and Blankets: The (Dis)Connectivity of Catchment-Scale Sediment Cascades. Catena 2007, 70, 49–67. [Google Scholar] [CrossRef]
- Slingerland, R.; Smith, N.D. River Avulsions and Their Deposits. Annu. Rev. Earth Planet. Sci. 2004, 32, 257–285. [Google Scholar] [CrossRef]
- Lawler, D.M. Process Dominance in Bank Erosion Systems. In Lowland Floodplain Rivers. Geomorphological Perspectives; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1992; pp. 117–143. [Google Scholar]
- Lawler, D.M. The Impact of Scale on the Processes of Channel-Side Sediment Supply: A Conceptual Model. IAHS Publ. Ser. Proc. Rep. Intern. Assoc. Hydrol. Sci. 1995, 226, 175–186. [Google Scholar]
- Abernethy, B.; Rutherfurd, I.D. Where along a River’s Length Will Vegetation Most Effectively Stabilise Stream Banks? Geomorphology 1998, 23, 55–75. [Google Scholar] [CrossRef]
- Piégay, H.; Darby, S.E.; Mosselman, E.; Surian, N. A Review of Techniques Available for Delimiting the Erodible River Corridor: A Sustainable Approach to Managing Bank Erosion. River Res. Appl. 2005, 21, 773–789. [Google Scholar] [CrossRef]
- Florsheim, J.L.; Mount, J.F.; Chin, A. Bank Erosion as a Desirable Attribute of Rivers. AIBS Bull. 2008, 58, 519–529. [Google Scholar] [CrossRef]
- Hickin, E.J. Vegetation and River Channel Dynamics. Can. Geogr. Le Géographe Canadien 1984, 28, 111–126. [Google Scholar] [CrossRef]
- Millar, R.G. Influence of Bank Vegetation on Alluvial Channel Patterns. Water Resour. Res. 2000, 36, 1109–1118. [Google Scholar] [CrossRef]
- Micheli, E.R.; Kirchner, J.W. Effects of Wet Meadow Riparian Vegetation on Streambank Erosion. 2. Measurements of Vegetated Bank Strength and Consequences for Failure Mechanics. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2002, 27, 687–697. [Google Scholar] [CrossRef]
- Simon, A.; Collison, A.J.C. Quantifying the Mechanical and Hydrologic Effects of Riparian Vegetation on Streambank Stability. Earth Surf. Process. Landf. 2002, 27, 527–546. [Google Scholar] [CrossRef]
- Van De Wiel, M.J.; Darby, S.E. A New Model to Analyse the Impact of Woody Riparian Vegetation on the Geotechnical Stability of Riverbanks. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2007, 32, 2185–2198. [Google Scholar] [CrossRef]
- Eaton, B.C.; Giles, T.R. Assessing the Effect of Vegetation-Related Bank Strength on Channel Morphology and Stability in Gravel-Bed Streams Using Numerical Models. Earth Surf. Process. Landf. 2018, 34, 712–724. [Google Scholar] [CrossRef]
- Rinaldi, M.; Darby, S.E. 9 Modelling river-bank-erosion processes and mass failure mechanisms: Progress towards fully coupled simulations. In Gravel-Bed Rivers VI: From Process Understanding to River Restoration; Habersack, H., Piégay, H., Rinaldi, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 11, pp. 213–239. [Google Scholar]
- Pollen, N.; Simon, A.; Collison, A. Advances in Assessing the Mechanical and Hydrologic Effects of Riparian Vegetation on Streambank Stability. Riparian Veg. Fluv. Geomorphol. 2004, 8, 125–139. [Google Scholar]
- Hubble, T.C.T.; Docker, B.B.; Rutherfurd, I.D. The Role of Riparian Trees in Maintaining Riverbank Stability: A Review of Australian Experience and Practice. Ecol. Eng. 2010, 36, 292–304. [Google Scholar] [CrossRef]
- Rinaldi, M.; Casagli, N. Stability of Streambanks Formed in Partially Saturated Soils and Effects of Negative Pore Water Pressures: The Sieve River (Italy). Geomorphology 1999, 26, 253–277. [Google Scholar] [CrossRef]
- Moore, R.D.; Wondzell, S.M. Physical Hydrology and the Effects of Forest Harvesting in the Pacific Northwest: A Review 1. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 763–784. [Google Scholar] [CrossRef]
- Pollen-Bankhead, N.; Simon, A. Hydrologic and Hydraulic Effects of Riparian Root Networks on Streambank Stability: Is Mechanical Root-Reinforcement the Whole Story? Geomorphology 2010, 116, 353–362. [Google Scholar] [CrossRef]
- Johnson, M.S.; Lehmann, J. Double-Funneling of Trees: Stemflow and Root-Induced Preferential Flow. Ecoscience 2006, 13, 324–333. [Google Scholar] [CrossRef]
- Abernethy, B.; Rutherfurd, I.D. Does the Weight of Riparian Trees Destabilize Riverbanks? Regul. Rivers Res. Manag. Int. J. Devoted River Res. Manag. 2000, 16, 565–576. [Google Scholar] [CrossRef]
- Abernethy, B.; Rutherfurd, I.D. The Effect of Riparian Tree Roots on the Mass-Stability of Riverbanks. Earth Surf. Process. Landf. 2000, 25, 921–937. [Google Scholar] [CrossRef]
- Pollen, N.; Simon, A. Estimating the Mechanical Effects of Riparian Vegetation on Stream Bank Stability Using a Fiber Bundle Model. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Pollen, N. Temporal and Spatial Variability in Root Reinforcement of Streambanks: Accounting for Soil Shear Strength and Moisture. Catena 2007, 69, 197–205. [Google Scholar] [CrossRef]
- Abernethy, B.; Rutherfurd, I.D. The Distribution and Strength of Riparian Tree Roots in Relation to Riverbank Reinforcement. Hydrol. Process. 2001, 15, 63–79. [Google Scholar] [CrossRef]
- Gray, D.H.; Barker, D. Root-Soil Mechanics and Interactions. Riparian Veg. Fluv. Geomorphol. 2004, 8, 113–123. [Google Scholar]
- Rutherfurd, I.D.; Grove, J.R. The Influence of Trees on Stream Bank Erosion: Evidence from Root-Plate Abutments. Riparian Veg. Fluv. Geomorphol. 2004, 8, 141–152. [Google Scholar]
- Beechie, T.J.; Liermann, M.; Pollock, M.M.; Baker, S.; Davies, J. Channel Pattern and River-Floodplain Dynamics in Forested Mountain River Systems. Geomorphology 2006, 78, 124–141. [Google Scholar] [CrossRef]
- Ielpi, A.; Lapôtre, M.G. A Tenfold Slowdown in River Meander Migration Driven by Plant Life. Nature Geosci. 2020, 13, 82–86. [Google Scholar] [CrossRef]
- Bywater-Reyes, S.; Diehl, R.M.; Wilcox, A.C. The Influence of a Vegetated Bar on Channel-Bend Flow Dynamics. Earth Surf. Dyn. 2018, 6, 487. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Rutherfurd, I.D. The Effect of Instream Logs on River-Bank Erosion: Field Measurements of Hydraulics and Erosion Rates. Earth Surf. Process. Landf. 2020, 45, 1677–1690. [Google Scholar] [CrossRef]
- Zhang, N.; Rutherfurd, I.D.; Ghisalberti, M. The Effect of Instream Logs on Bank Erosion Potential: A Flume Study with Multiple Logs. J. Ecohydraulics 2020, 5, 57–70. [Google Scholar] [CrossRef]
- Collins, B.D.; Montgomery, D.R.; Fetherston, K.L.; Abbe, T.B. The Floodplain Large-Wood Cycle Hypothesis: A Mechanism for the Physical and Biotic Structuring of Temperate Forested Alluvial Valleys in the North Pacific Coastal Ecoregion. Geomorphology 2012, 139–140, 460–470. [Google Scholar] [CrossRef]
- Reesink, A.J.H.; Darby, S.E.; Sear, D.A.; Leyland, J.; Morgan, P.R.; Richardson, K.; Brasington, J. Mean Flow and Turbulence Structure over Exposed Roots on a Forested Floodplain: Insights from a Controlled Laboratory Experiment. PLoS ONE 2020, 15, e0229306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, B.D.; Montgomery, D.R. Forest Development, Wood Jams and Restoration of Floodplain Rivers in the Puget Lowland, Washington. Restor. Ecol. 2002, 10, 237–247. [Google Scholar] [CrossRef]
- Latterell, J.J.; Scott Bechtold, J.; O’keefe, T.C.; Van Pelt, R.; Naiman, R.J. Dynamic Patch Mosaics and Channel Movement in an Unconfined River Valley of the Olympic Mountains. Freshw. Biol. 2006, 51, 523–544. [Google Scholar] [CrossRef]
- Naiman, R.J.; Bechtold, J.S.; Beechie, T.J.; Latterell, J.J.; Pelt, R.V. A Process-Based View of Floodplain Forest Patterns in Coastal River Valleys of the Pacific Northwest. Ecosystems 2010, 13, 1–31. [Google Scholar] [CrossRef]
- Collins, B.D.; Montgomery, D.R.; Sheikh, A.J. Reconstructing the Historical Riverine Landscape of the Puget Lowland. In Restoration of Puget Sound Rivers; University of Washington Press: Seattle, WA, USA, 2003; pp. 79–128. [Google Scholar]
- Brummer, C.J.; Abbe, T.B.; Sampson, J.R.; Montgomery, D.R. Influence of Vertical Channel Change Associated with Wood Accumulations on Delineating Channel Migration Zones, Washington, USA. Geomorphology 2006, 80, 295–309. [Google Scholar] [CrossRef]
- Makaske, B.; Smith, D.G.; Berendsen, H.J.A.; de Boer, A.G.; van Nielen-Kiezebrink, M.F.; Locking, T. Hydraulic and Sedimentary Processes Causing Anastomosing Morphology of the Upper Columbia River, British Columbia, Canada. Geomorphology 2009, 111, 194–205. [Google Scholar] [CrossRef]
- Abbe, T.B.; Montgomery, D.R. Large Woody Debris Jams, Channel Hydraulics and Habitat Formation in Large Rivers. Regul. Rivers Res. Manag. 1996, 12, 201–221. [Google Scholar] [CrossRef]
- Hogan, D.L.; Bird, S.A.; Hassan, M.A. Spatial and temporal evolution of small coastal gravel-bed streams: Influence of forest management on channel morphology and fish habitats. In Gravel-bed Rivers in the Environment; Klingerman, P.C., Beschta, R.L., Komar, P.D., Bradley, J.B., Eds.; Water Resources Publications, LLC: Highlands Ranch, CO, USA, 1998; pp. 365–392. [Google Scholar]
- Abbe, T.B.; Montgomery, D.R. Patterns and Processes of Wood Debris Accumulation in the Queets River Basin, Washington. Geomorphology 2003, 51, 81–107. [Google Scholar] [CrossRef]
- Makaske, B.; Smith, D.G.; Berendsen, H.J.A. Avulsions, Channel Evolution and Floodplain Sedimentation Rates of the Anastomosing Upper Columbia River, British Columbia, Canada. Sedimentology 2002, 49, 1049–1071. [Google Scholar] [CrossRef]
- Thomas, H.; Nisbet, T.R. An Assessment of the Impact of Floodplain Woodland on Flood Flows. Water Environ. J. 2007, 21, 114–126. [Google Scholar] [CrossRef]
- Makaske, B.; Maas, G.J.; van den Brink, C.; Wolfert, H.P. The Influence of Floodplain Vegetation Succession on Hydraulic Roughness: Is Ecosystem Rehabilitation in Dutch Embanked Floodplains Compatible with Flood Safety Standards? AMBIO 2011, 40, 370–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Aly, T.R.; Pasternack, G.B.; Wyrick, J.R.; Barker, R.; Massa, D.; Johnson, T. Effects of LiDAR-Derived, Spatially Distributed Vegetation Roughness on Two-Dimensional Hydraulics in a Gravel-Cobble River at Flows of 0.2 to 20 Times Bankfull. Geomorphology 2014, 206, 468–482. [Google Scholar] [CrossRef] [Green Version]
- Nanson, G.C.; Croke, J.C. A Genetic Classification of Floodplains. Geomorphology 1992, 4, 459–486. [Google Scholar] [CrossRef] [Green Version]
- Grant, G.E.; Swanson, F.J. Morphology and Processes of Valley Floors in Mountain Streams, Western Cascades, Oregon. In Natural and Anthropogenic Influences in Fluvial Geomorphology; Costa, J.E., Miller, A.J., Potter, K.W., Wilcock, P.R., Eds.; American Geophysical Union: Washington, DC, USA, 1995; pp. 83–101. ISBN 978-1-118-66430-8. [Google Scholar]
- Bywater-Reyes, S.; Wilcox, A.C.; Stella, J.C.; Lightbody, A.F. Flow and Scour Constraints on Uprooting of Pioneer Woody Seedlings. Water Resour. Res. 2015, 51, 9190–9206. [Google Scholar] [CrossRef] [Green Version]
- Bywater-Reyes, S.; Wilcox, A.C.; Diehl, R.M. Multiscale Influence of Woody Riparian Vegetation on Fluvial Topography Quantified with Ground-based and Airborne Lidar. J. Geophys. Res. Earth Surf. 2017, 122, 1218–1235. [Google Scholar] [CrossRef]
- Alsdorf, D.; Rodríguez, E.; Lettenmaier, D. Measuring Surface Water from Space. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Rudorff, C.M.; Melack, J.M.; Bates, P.D. Flooding Dynamics on the Lower Amazon Floodplain: 1. Hydraulic Controls on Water Elevation, Inundation Extent and River-floodplain Discharge. Water Resour. Res. 2014, 50, 619–634. [Google Scholar] [CrossRef]
- Czuba, J.A.; David, S.R.; Edmonds, D.A.; Ward, A.S. Dynamics of Surface-Water Connectivity in a Low-Gradient Meandering River Floodplain. Water Resour. Res. 2019, 55, 1849–1870. [Google Scholar] [CrossRef]
- Castillo, C.R.; Güneralp, İ.; Hales, B.; Güneralp, B. Scale-Free Structure of Surface-Water Connectivity Within a Lowland River-Floodplain Landscape. Geophys. Res. Lett. 2020, 47, e2020GL088378. [Google Scholar] [CrossRef]
- Tal, M.; Paola, C. Effects of Vegetation on Channel Morphodynamics: Results and Insights from Laboratory Experiments. Earth Surf. Process. Landf. 2010, 35, 1014–1028. [Google Scholar] [CrossRef]
- Tal, M.; Paola, C. Dynamic Single-Thread Channels Maintained by the Interaction of Flow and Vegetation. Geology 2007, 35, 347–350. [Google Scholar] [CrossRef]
- Gran, K.B.; Tal, M.; Wartman, E.D. Co-Evolution of Riparian Vegetation and Channel Dynamics in an Aggrading Braided River System, Mount Pinatubo, Philippines. Earth Surf. Process. Landf. 2015, 40, 1101–1115. [Google Scholar] [CrossRef]
- Piegay, H. Interactions between Floodplain Forests and Overbank Flows: Data from Three Piedmont Rivers of Southeastern France. Glob. Ecol. Biogeogr. Lett. 1997, 6, 187–196. [Google Scholar] [CrossRef]
- Jeffries, R.; Darby, S.E.; Sear, D.A. The Influence of Vegetation and Organic Debris on Flood-Plain Sediment Dynamics: Case Study of a Low-Order Stream in the New Forest, England. Geomorphology 2003, 51, 61–80. [Google Scholar] [CrossRef]
- Sear, D. Integrating Science and Practice for the Sustainable Management of In-Channel Salmonid Habitat. In Salmonid Fisheries: Freshwater Habitat Management; Kemp, P., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; pp. 81–118. ISBN 978-1-4443-2333-7. [Google Scholar]
- Lewis, Q.W.; Edmonds, D.A.; Yanites, B.J. Integrated UAS and LiDAR Reveals the Importance of Land Cover and Flood Magnitude on the Formation of Incipient Chute Holes and Chute Cutoff Development. Earth Surf. Process. Landf. 2020, 45, 1441–1455. [Google Scholar] [CrossRef]
- Mao, L.; Ravazzolo, D.; Bertoldi, W. The Role of Vegetation and Large Wood on the Topographic Characteristics of Braided River Systems. Geomorphology 2020, 367, 107299. [Google Scholar] [CrossRef]
- Diehl, R.M.; Merritt, D.M.; Wilcox, A.C.; Scott, M.L. Applying Functional Traits to Ecogeomorphic Processes in Riparian Ecosystems. BioScience 2017, 67, 729–743. [Google Scholar] [CrossRef]
- Alsdorf, D.; Bates, P.; Melack, J.; Wilson, M.; Dunne, T. Spatial and Temporal Complexity of the Amazon Flood Measured from Space. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Kleinhans, M.G.; de Vries, B.; Braat, L.; van Oorschot, M. Living Landscapes: Muddy and Vegetated Floodplain Effects on Fluvial Pattern in an Incised River. Earth Surf. Process. Landf. 2018, 43, 2948–2963. [Google Scholar] [CrossRef]
- Pierik, H.J.; Stouthamer, E.; Cohen, K.M. Natural Levee Evolution in the Rhine-Meuse Delta, the Netherlands, during the First Millennium CE. Geomorphology 2017, 295, 215–234. [Google Scholar] [CrossRef]
- Törnqvist, T.E.; Bridge, J.S. Spatial Variation of Overbank Aggradation Rate and Its Influence on Avulsion Frequency. Sedimentology 2002, 49, 891–905. [Google Scholar] [CrossRef]
- Edmonds, D.A.; Hajek, E.A.; Downton, N.; Bryk, A.B. Avulsion Flow-Path Selection on Rivers in Foreland Basins. Geology 2016, 44, 695–698. [Google Scholar] [CrossRef]
- Whiting, P.J.; Bradley, J.B. A Process-based Classification System for Headwater Streams. Earth Surf. Process. Landf. 1993, 18, 603–612. [Google Scholar] [CrossRef]
- Harvey, A.M. Coupling between Hillslopes and Channels in Upland Fluvial Systems: Implications for Landscape Sensitivity, Illustrated from the Howgill Fells, Northwest England. Catena 2001, 42, 225–250. [Google Scholar] [CrossRef]
- Church, M. Geomorphic Thresholds in Riverine Landscapes. Freshw. Biol. 2002, 47, 541–557. [Google Scholar] [CrossRef] [Green Version]
- Korup, O. Geomorphic Imprint of Landslides on Alpine River Systems, Southwest New Zealand. Earth Surf. Process. Landf. 2005, 30, 783–800. [Google Scholar] [CrossRef]
- Davies, T.R.H.; Korup, O. Sediment Cascades in Active Landscapes. In Sediment Cascades; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 89–115. ISBN 978-0-470-68287-6. [Google Scholar]
- Lehre, A.K. Sediment Budget of a Small Coast Range Drainage Basin in North-Central California. In Sediment Budgets and Routing in Forested Drainage Basins; Technical Report PNW-141; Forest and Range Experiment Station, US Department of Agriculture, Forest Service General, Pacific Northwest: Portland, OR, USA, 1982; pp. 67–77. [Google Scholar]
- Roberts, R.G.; Church, M. The Sediment Budget in Severely Disturbed Watersheds, Queen Charlotte Ranges, British Columbia. Can. J. For. Res. 1986, 16, 1092–1106. [Google Scholar] [CrossRef]
- Slaymaker, O. The Sediment Budget of the Lillooet River Basin, British Columbia. Phys. Geogr. 1993, 14, 304–320. [Google Scholar] [CrossRef]
- Campbell, D.; Church, M. Reconnaissance Sediment Budgets for Lynn Valley, British Columbia: Holocene and Contemporary Time Scales. Can. J. Earth Sci. 2003, 40, 701–713. [Google Scholar] [CrossRef] [Green Version]
- Stoffel, M.; Wilford, D.J. Hydrogeomorphic Processes and Vegetation: Disturbance, Process Histories, Dependencies and Interactions. Earth Surf. Process. Landf. 2012, 37, 9–22. [Google Scholar] [CrossRef]
- Sidle, R.C.; Noguchi, S.; Tsuboyama, Y.; Laursen, K. A Conceptual Model of Preferential Flow Systems in Forested Hillslopes: Evidence of Self-organization. Hydrol. Process. 2001, 15, 1675–1692. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ziegler, A.D.; Negishi, J.N.; Nik, A.R.; Siew, R.; Turkelboom, F. Erosion Processes in Steep Terrain—Truths, Myths and Uncertainties Related to Forest Management in Southeast Asia. For. Ecol. Manag. 2006, 224, 199–225. [Google Scholar] [CrossRef]
- Pawlik, Ł.; Šamonil, P. Soil Creep: The Driving Factors, Evidence and Significance for Biogeomorphic and Pedogenic Domains and Systems—A Critical Literature Review. Earth Sci. Rev. 2018, 178, 257–278. [Google Scholar] [CrossRef]
- Lehre, A.K. Rates of soil creep on colluvium-mantled hillslopes in north-central California. In Erosion and Sedimentation in the Pacific Rim; Beschta, R.L., Blinn, R., Grant, C., Ice, G., Swanson, F.J., Eds.; IAHS: Wallingford, UK, 1987; pp. 91–100. ISBN 0144-7815. [Google Scholar]
- Gabet, E.J.; Reichman, O.J.; Seabloom, E.W. The Effects of Bioturbation on Soil Processes and Sediment Transport. Annu. Rev. Earth Planet. Sci. 2003, 31, 249–273. [Google Scholar] [CrossRef]
- Pawlik, Ł.; Migoń, P.; Owczarek, P.; Kacprzak, A. Surface Processes and Interactions with Forest Vegetation on a Steep Mudstone Slope, Stołowe Mountains, SW Poland. Catena 2013, 109, 203–216. [Google Scholar] [CrossRef]
- Pawlik, Ł.; Migoń, P.; Szymanowski, M. Local-and Regional-scale Biomorphodynamics Due to Tree Uprooting in Semi-natural and Managed Montane Forests of the Sudetes Mountains, Central Europe. Earth Surf. Process. Landf. 2016, 41, 1250–1265. [Google Scholar] [CrossRef]
- Phillips, J.D.; Šamonil, P.; Pawlik, Ł.; Trochta, J.; Daněk, P. Domination of Hillslope Denudation by Tree Uprooting in an Old-Growth Forest. Geomorphology 2017, 276, 27–36. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Doerr, S.H. Wildfire as a Hydrological and Geomorphological Agent. Earth Sci. Rev. 2006, 74, 269–307. [Google Scholar] [CrossRef]
- Imaizumi, F.; Nishii, R.; Ueno, K.; Kurobe, K. Forest Harvesting Impacts on Microclimate Conditions and Sediment Transport Activities in a Humid Periglacial Environment. Hydrol. Earth Syst. Sci. 2019, 23, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Curran, J.H.; Wohl, E.E. Large Woody Debris and Flow Resistance in Step-Pool Channels, Cascade Range, Washington. Geomorphology 2003, 51, 141–157. [Google Scholar] [CrossRef]
- Wilcox, A.C.; Wohl, E.E. Flow Resistance Dynamics in Step-pool Stream Channels: 1. Large Woody Debris and Controls on Total Resistance. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- David, G.C.; Wohl, E.; Yochum, S.E.; Bledsoe, B.P. Controls on Spatial Variations in Flow Resistance along Steep Mountain Streams. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Manga, M.; Kirchner, J.W. Stress Partitioning in Streams by Large Woody Debris. Water Resour. Res. 2000, 36, 2373–2379. [Google Scholar] [CrossRef] [Green Version]
- Manners, R.B.; Doyle, M.W.; Small, M.J. Structure and Hydraulics of Natural Woody Debris Jams. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Daniels, M.D.; Rhoads, B.L. Influence of a Large Woody Debris Obstruction on Three-Dimensional Flow Structure in a Meander Bend. Geomorphology 2003, 51, 159–173. [Google Scholar] [CrossRef]
- Daniels, M.D.; Rhoads, B.L. Spatial Pattern of Turbulence Kinetic Energy and Shear Stress in a Meander Bend with Large Woody Debris. In Vegetation and Fluvial Geomorphology; Wiley: Hoboken, NJ, USA, 2004; pp. 87–98. [Google Scholar]
- Leung, V. Large Woody Debris and River Morphology in Scour Pool Formation, Dam Removal and Delta Formation. 2019. Available online: http://hdl.handle.net/1773/45030 (accessed on 16 February 2021).
- Hassan, M.A.; Woodsmith, R.D. Bed Load Transport in an Obstruction-Formed Pool in a Forest, Gravelbed Stream. Geomorphology 2004, 58, 203–221. [Google Scholar] [CrossRef]
- Buffington, J.M.; Lisle, T.E.; Woodsmith, R.D.; Hilton, S. Controls on the Size and Occurrence of Pools in Coarse-Grained Forest Rivers. River Res. Applic. 2002, 18, 507–531. [Google Scholar] [CrossRef]
- Daniels, M.D.; Rhoads, B.L. Effect of Large Woody Debris Configuration on Three-dimensional Flow Structure in Two Low-energy Meander Bends at Varying Stages. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Manners, R.B.; Doyle, M.W. A Mechanistic Model of Woody Debris Jam Evolution and Its Application to Wood-Based Restoration and Management. River Res. Appl. 2008, 24, 1104–1123. [Google Scholar] [CrossRef]
- Hassan, M.A.; Smith, B.J.; Hogan, D.L.; Luzi, D.S.; Zimmermann, A.E.; Eaton, B.C. Sediment storage and transport in coarse bed streams: Scale considerations. In Gravel-Bed Rivers VI: From Process Understanding to River Restoration; Habersack, H., Piégay, H., Rinaldi, M., Eds.; Developments in Earth Surface Processes; Elsevier: Amsterdam, The Netherlands, 2007; Volume 11, pp. 473–496. [Google Scholar]
- Wohl, E.; Scott, D.N. Wood and Sediment Storage and Dynamics in River Corridors. Earth Surf. Process. Landf. 2017, 42, 5–23. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, A.; Wohl, E. Where Does Wood Most Effectively Enhance Storage? Network-scale Distribution of Sediment and Organic Matter Stored by Instream Wood. Geophys. Res. Lett. 2018, 45, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Benda, L.E.; Bigelow, P.; Worsley, T.M. Recruitment of Wood to Streams in Old-Growth and Second-Growth Redwood Forests, Northern California, U.S.A. Can. J. For. Res. 2002, 32, 1460–1477. [Google Scholar] [CrossRef]
- May, C.L.; Gresswell, R.E. Processes and Rates of Sediment and Wood Accumulation in Headwater Streams of the Oregon Coast Range, USA. Earth Surf. Process. Landf. 2003, 28, 409–424. [Google Scholar] [CrossRef]
- May, C.L.; Gresswell, R.E. Large Wood Recruitment and Redistribution in Headwater Streams in the Southern Oregon Coast Range, USA. Can. J. For. Res. 2003, 33, 1352–1362. [Google Scholar] [CrossRef]
- Reeves, G.H.; Burnett, K.M.; McGarry, E.V. Sources of Large Wood in the Main Stem of a Fourth-Order Watershed in Coastal Oregon. Can. J. For. Res. 2003, 33, 1363–1370. [Google Scholar] [CrossRef]
- Hoffman, D.F.; Gabet, E.J. Effects of Sediment Pulses on Channel Morphology in a Gravel-Bed River. GSA Bull. 2007, 119, 116–125. [Google Scholar] [CrossRef]
- Hassan, M.A.; Bird, S.; Reid, D.; Ferrer-Boix, C.; Hogan, D.; Brardinoni, F.; Chartrand, S. Variable Hillslope-Channel Coupling and Channel Characteristics of Forested Mountain Streams in Glaciated Landscapes. Earth Surf. Process. Landf. 2018. [Google Scholar] [CrossRef]
- Kramer, N.; Wohl, E. Rules of the Road: A Qualitative and Quantitative Synthesis of Large Wood Transport through Drainage Networks. Geomorphology 2017, 279, 74–97. [Google Scholar] [CrossRef]
- Dixon, S.J.; Sear, D.A. The Influence of Geomorphology on Large Wood Dynamics in a Low Gradient Headwater Stream. Water Resour. Res. 2014, 50, 9194–9210. [Google Scholar] [CrossRef] [Green Version]
- Davidson, S.L.; MacKenzie, L.G.; Eaton, B.C. Large Wood Transport and Jam Formation in a Series of Flume Experiments. Water Resour. Res. 2015, 51, 10065–10077. [Google Scholar] [CrossRef]
- Ruiz-Villanueva, V.; Wyżga, B.; Zawiejska, J.; Hajdukiewicz, M.; Stoffel, M. Factors Controlling Large-Wood Transport in a Mountain River. Geomorphology 2016, 272, 21–31. [Google Scholar] [CrossRef]
- Pollock, M.M.; Heim, M.; Werner, D. Hydrologic and Geomorphic Effects of Beaver Dams and Their Influence on Fishes. In American Fisheries Society Symposium; American Fisheries Society: Bethesda, MD, USA, 2003; Volume 37, pp. 213–233. [Google Scholar]
- Polvi, L.E.; Wohl, E. The Beaver Meadow Complex Revisited—The Role of Beavers in Post-Glacial Floodplain Development. Earth Surf. Process. Landf. 2012, 37, 332–346. [Google Scholar] [CrossRef]
- Malison, R.L.; Lorang, M.S.; Whited, D.C.; Stanford, J.A. Beavers (C Astor Canadensis) Influence Habitat for Juvenile Salmon in a Large Alaskan River Floodplain. Freshw. Biol. 2014, 59, 1229–1246. [Google Scholar] [CrossRef]
- Malison, R.L.; Eby, L.A.; Stanford, J.A. Juvenile Salmonid Growth, Survival and Production in a Large River Floodplain Modified by Beavers (Castor Canadensis). Can. J. Fish. Aquat. Sci. 2015, 72, 1639–1651. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Abbe, T.B.; Buffington, J.M.; Peterson, N.P.; Schmidt, K.M.; Stock, J.D. Distribution of Bedrock and Alluvial Channels in Forested Mountain Drainage Basins. Nature 1996, 381, 587–589. [Google Scholar] [CrossRef]
- Lancaster, S.T.; Grant, G.E. Debris Dams and the Relief of Headwater Streams. Geomorphology 2006, 82, 84–97. [Google Scholar] [CrossRef]
- Lancaster, S.T.; Casebeer, N.E. Sediment Storage and Evacuation in Headwater Valleys at the Transition between Debris-Flow and Fluvial Processes. Geology 2007, 35, 1027–1030. [Google Scholar] [CrossRef]
- Ryan, S.E.; Bishop, E.L.; Daniels, J.M. Influence of Large Wood on Channel Morphology and Sediment Storage in Headwater Mountain Streams, Fraser Experimental Forest, Colorado. Geomorphology 2014, 217, 73–88. [Google Scholar] [CrossRef]
- Reid, D.A.; Hassan, M.A.; Bird, S.; Hogan, D. Spatial and Temporal Patterns of Sediment Storage over 45 Years in Carnation Creek, BC, a Previously Glaciated Mountain Catchment. Earth Surf. Process. Landf. 2019. [Google Scholar] [CrossRef]
- Rice, S.; Church, M. Bed Material Texture in Low Order Streams on the Queen Charlotte Islands, British Columbia. Earth Surf. Process. Landf. 1996, 21, 1–18. [Google Scholar] [CrossRef]
- Umazano, A.M.; Melchor, R.N.; Bedatou, E.; Bellosi, E.S.; Krause, J.M. Fluvial Response to Sudden Input of Pyroclastic Sediments during the 2008–2009 Eruption of the Chaitén Volcano (Chile): The Role of Logjams. J. South Am. Earth Sci. 2014, 54, 140–157. [Google Scholar] [CrossRef]
- Short, L.E.; Gabet, E.J.; Hoffman, D.F. The Role of Large Woody Debris in Modulating the Dispersal of a Post-Fire Sediment Pulse. Geomorphology 2015, 246, 351–358. [Google Scholar] [CrossRef]
- Wohl, E.; Goode, J.R. Wood Dynamics in Headwater Streams of the Colorado Rocky Mountains. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Luzi, D.S. Long-Term Influence of Jams and LWD Pieces on Channel Morphology, Carnation Creek, B.C. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, May 2000. [Google Scholar]
- Haschenburger, J.K.; Rice, S.P. Changes in Woody Debris and Bed Material Texture in a Gravel-Bed Channel. Geomorphology 2004, 60, 241–267. [Google Scholar] [CrossRef]
- Umazano, A.M.; Melchor, R.N. Volcaniclastic Sedimentation Influenced by Logjam Breakups? An Example from the Blanco River, Chile. J. South Am. Earth Sci. 2020, 98, 102477. [Google Scholar] [CrossRef]
- Planet Team. Planet Application Program. Interface: In Space for Life on Earth; Planet Team: San Francisco, CA, USA, 2018; Available online: https://Api.Planet.Com (accessed on 15 February 2021).
- Montgomery, D.R.; Abbe, T.B. Influence of Logjam-Formed Hard Points on the Formation of Valley-Bottom Landforms in an Old-Growth Forest Valley, Queets River, Washington, USA. Quat. Res. 2006, 65, 147–155. [Google Scholar] [CrossRef]
- Gurnell, A.; Goodson, J.; Thompson, K.; Clifford, N.; Armitage, P. The River-Bed: A Dynamic Store for Plant Propagules? Earth Surf. Process. Landf. 2007, 32, 1257–1272. [Google Scholar] [CrossRef]
- Fetherston, K.L.; Naiman, R.J.; Bilby, R.E. Large Woody Debris, Physical Process and Riparian Forest Development in Montane River Networks of the Pacific Northwest. Geomorphology 1995, 13, 133–144. [Google Scholar] [CrossRef]
- Gurnell, A.; Tockner, K.; Edwards, P.; Petts, G. Effects of Deposited Wood on Biocomplexity of River Corridors. Front. Ecol. Environ. 2005, 3, 377–382. [Google Scholar] [CrossRef]
- Bertoldi, W.; Gurnell, A.M.; Welber, M. Wood Recruitment and Retention: The Fate of Eroded Trees on a Braided River Explored Using a Combination of Field and Remotely-Sensed Data Sources. Geomorphology 2013, 180, 146–155. [Google Scholar] [CrossRef]
- Bertoldi, W.; Welber, M.; Mao, L.; Zanella, S.; Comiti, F. A Flume Experiment on Wood Storage and Remobilization in Braided River Systems. Earth Surf. Process. Landf. 2014, 39, 804–813. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Petts, G.E.; Hannah, D.M.; Smith, B.P.G.; Edwards, P.J.; Kollmann, J.; Ward, J.V.; Tockner, K. Riparian Vegetation and Island Formation along the Gravel-Bed Fiume Tagliamento, Italy. Earth Surf. Process. Landf. 2001, 26, 31–62. [Google Scholar] [CrossRef]
- Gurnell, A.; Petts, G. Trees as Riparian Engineers: The Tagliamento River, Italy. Earth Surf. Process. Landf. 2006, 31, 1558–1574. [Google Scholar] [CrossRef]
- Van Pelt, R.; O’Keefe, T.C.; Latterell, J.J.; Naiman, R.J. Riparian Forest Stand Development Along the Queets River in Olympic National Park, Washington. Ecol. Monogr. 2006, 76, 277–298. [Google Scholar] [CrossRef] [Green Version]
- Slaymaker, O.; Spencer, T.; Dadson, S.J. Landscape and landscape-scale processes as the unfilled niche in the global environmental change debate: An introduction. In Geomorphology and Global Environmental Change; Slaymaker, O., Spencer, T., Embleton-Hamann, C., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 1–36. [Google Scholar]
- Lane, S.N. 21st Century Climate Change: Where Has All the Geomorphology Gone? Earth Surf. Process. Landf. 2013, 38, 106–110. [Google Scholar] [CrossRef]
- Knight, J.; Harrison, S. The Impacts of Climate Change on Terrestrial Earth Surface Systems. Nat. Clim. Chang. 2013, 3, 24–29. [Google Scholar] [CrossRef]
- Knight, J.; Harrison, S. Mountain Glacial and Paraglacial Environments under Global Climate Change: Lessons from the Past, Future Directions and Policy Implications. Geogr. Ann.Ser. A Phys. Geogr. 2014, 96, 245–264. [Google Scholar] [CrossRef]
- Harrison, S. Impact of Global Changes on Mountains: Responses and Adaptation. Mt. Res. Dev. 2016, 36, 247–248. [Google Scholar] [CrossRef]
- Harrison, S.; Mighall, T.; Stainforth, D.A.; Allen, P.; Macklin, M.; Anderson, E.; Knight, J.; Mauquoy, D.; Passmore, D.; Rea, B.; et al. Uncertainty in Geomorphological Responses to Climate Change. Clim. Chang. 2019, 156, 69–86. [Google Scholar] [CrossRef] [Green Version]
- East, A.E.; Sankey, J.B. Geomorphic and Sedimentary Effects of Modern Climate Change: Current and Anticipated Future Conditions in the Western United States. Rev. Geophys. 2020, e2019RG000692. [Google Scholar] [CrossRef]
- Beechie, T.; Imaki, H.; Greene, J.; Wade, A.; Wu, H.; Pess, G.; Roni, P.; Kimball, J.; Stanford, J.; Kiffney, P.; et al. Restoring Salmon Habitat for a Changing Climate. River Res. Applic. 2013, 29, 939–960. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Palmer, M.A. River Restoration: The Fuzzy Logic of Repairing Reaches to Reverse Catchment Scale Degradation. Ecol. Appl. 2011, 21, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
- Noroozi, J.; Talebi, A.; Doostmohammadi, M.; Rumpf, S.B.; Linder, H.P.; Schneeweiss, G.M. Hotspots within a Global Biodiversity Hotspot-Areas of Endemism Are Associated with High Mountain Ranges. Sci. Rep. 2018, 8, 10345. [Google Scholar] [CrossRef] [Green Version]
- Rahbek, C.; Borregaard, M.K.; Antonelli, A.; Colwell, R.K.; Holt, B.G.; Nogues-Bravo, D.; Rasmussen, C.M.Ø.; Richardson, K.; Rosing, M.T.; Whittaker, R.J.; et al. Building Mountain Biodiversity: Geological and Evolutionary Processes. Science 2019, 365, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.J.; Post, J.R. Spatial Distribution of Native and Nonnative Salmonids in Streams of the Eastern Slopes of the Canadian Rocky Mountains. Trans. Am. Fish. Soc. 2001, 130, 417–430. [Google Scholar] [CrossRef]
- McMahon, T.E.; Zale, A.V.; Barrows, F.T.; Selong, J.H.; Danehy, R.J. Temperature and Competition between Bull Trout and Brook Trout: A Test of the Elevation Refuge Hypothesis. Trans. Am. Fish. Soc. 2007, 136, 1313–1326. [Google Scholar] [CrossRef]
- Evans, S.G.; Clague, J.J. Recent climatic change and catastrophic geomorphic processes in mountain environments. In Geomorphology and Natural Hazards; Elsevier: Amsterdam, The Netherlands, 1994; pp. 107–128. [Google Scholar]
- Slaymaker, O. Mountain Hazards. In Geomorphological Hazards and Disaster Prevention; Cambridge University Press: Cambridge, UK, 2010; pp. 33–48. [Google Scholar]
- Huggel, C.; Clague, J.J.; Korup, O. Is Climate Change Responsible for Changing Landslide Activity in High Mountains? Earth Surf. Process. Landf. 2012, 37, 77–91. [Google Scholar] [CrossRef]
- Stoffel, M.; Wyżga, B.; Marston, R.A. Floods in Mountain Environments: A Synthesis. Geomorphology 2016, 272, 1–9. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraër, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D. Elevation-Dependent Warming in Mountain Regions of the World. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar]
- Nakamura, F.; Swanson, F.J.; Wondzell, S.M. Disturbance Regimes of Stream and Riparian Systems—A Disturbance-Cascade Perspective. Hydrol. Process. 2000, 14, 2849–2860. [Google Scholar] [CrossRef]
- Mazzorana, B.; Picco, L.; Rainato, R.; Iroumé, A.; Ruiz-Villanueva, V.; Rojas, C.; Valdebenito, G.; Iribarren-Anacona, P.; Melnick, D. Cascading Processes in a Changing Environment: Disturbances on Fluvial Ecosystems in Chile and Implications for Hazard and Risk Management. Sci. Total Environ. 2019, 655, 1089–1103. [Google Scholar] [CrossRef] [PubMed]
- Slaymaker, O. The Implications of Disconnectivity for the Study of Contemporary Geomorphic Processes. Rev. Geomorfol. 2017, 19, 5–15. [Google Scholar]
- Slaymaker, O.; Embleton-Hamann, C. Advances in Global Mountain Geomorphology. Geomorphology 2018, 308, 230–264. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Fausch, K.D.; Torgersen, C.E.; Baxter, C.V.; Li, H.W. Landscapes to Riverscapes: Bridging the Gap between Research and Conservation of Stream Fishes A Continuous View of the River Is Needed to Understand How Processes Interacting among Scales Set the Context for Stream Fishes and Their Habitat. BioScience 2002, 52, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Steel, E.A.; Hughes, R.M.; Fullerton, A.H.; Schmutz, S.; Young, J.A.; Fukushima, M.; Muhar, S.; Poppe, M.; Feist, B.E.; Trautwein, C. Are We Meeting the Challenges of Landscape-Scale Riverine Research? A Review. Living Rev. Landsc. Res. 2010, 4, 60. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.D. Sources of Nonlinearity and Complexity in Geomorphic Systems. Prog. Phys. Geogr. 2003, 27, 1–23. [Google Scholar] [CrossRef]
- Phillips, J.D. Evolutionary Geomorphology: Thresholds and Nonlinearity in Landform Response to Environmental Change. Hydrol. Earth Syst. Sci. 2006, 10, 731–742. [Google Scholar] [CrossRef] [Green Version]
- Gomi, T.; Sidle, R.C.; Swanston, D.N. Hydrogeomorphic Linkages of Sediment Transport in Headwater Streams, Maybeso Experimental Forest, Southeast Alaska. Hydrol. Process. 2004, 18, 667–683. [Google Scholar] [CrossRef]
- Tschaplinski, P.J.; Pike, R.G. Carnation Creek Watershed Experiment—Long-term Responses of Coho Salmon Populations to Historic Forest Practices. Ecohydrology 2017, 10. [Google Scholar] [CrossRef]
- Jakob, M. The Impacts of Logging on Landslide Activity at Clayoquot Sound, British Columbia. Catena 2000, 38, 279–300. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Schmidt, K.M.; Greenberg, H.M.; Dietrich, W.E. Forest Clearing and Regional Landsliding. Geology 2000, 28, 311–314. [Google Scholar] [CrossRef]
- Guthrie, R.H. The Effects of Logging on Frequency and Distribution of Landslides in Three Watersheds on Vancouver Island, British Columbia. Geomorphology 2002, 43, 273–292. [Google Scholar] [CrossRef]
- Brardinoni, F.; Slaymaker, O.; Hassan, M.A. Landslide Inventory in a Rugged Forested Watershed: A Comparison between Air-Photo and Field Survey Data. Geomorphology 2003, 54, 179–196. [Google Scholar] [CrossRef]
- Wondzell, S.M.; King, J.G. Postfire Erosional Processes in the Pacific Northwest and Rocky Mountain Regions. For. Ecol. Manag. 2003, 178, 75–87. [Google Scholar] [CrossRef]
- Eaton, B.C.; Moore, R.D.; Giles, T.R. Forest Fire, Bank Strength and Channel Instability: The ‘Unusual’ Response of Fishtrap Creek, British Columbia. Earth Surf. Process. Landf. 2010, 35, 1167–1183. [Google Scholar] [CrossRef]
- Jordan, P. Post-Wildfire Debris Flows in Southern British Columbia, Canada. Int. J. Wildland Fire 2016, 25, 322–336. [Google Scholar] [CrossRef]
- Sankey, J.B.; Kreitler, J.; Hawbaker, T.J.; McVay, J.L.; Miller, M.E.; Mueller, E.R.; Vaillant, N.M.; Lowe, S.E.; Sankey, T.T. Climate, Wildfire and Erosion Ensemble Foretells More Sediment in Western USA Watersheds. Geophys. Res. Lett. 2017, 44, 8884–8892. [Google Scholar] [CrossRef] [Green Version]
- Madej, M.A.; Ozaki, V. Channel Response to Sediment Wave Propagation and Movement, Redwood Creek, California, USA. Earth Surf. Process. Landf. 1996, 21, 911–927. [Google Scholar] [CrossRef]
- Benda, L.; Miller, D.; Bigelow, P.; Andras, K. Effects of Post-Wildfire Erosion on Channel Environments, Boise River, Idaho. For. Ecol. Manag. 2003, 178, 105–119. [Google Scholar] [CrossRef]
- Murphy, B.P.; Czuba, J.A.; Belmont, P. Post-Wildfire Sediment Cascades: A Modeling Framework Linking Debris Flow Generation and Network-Scale Sediment Routing. Earth Surf. Process. Landf. 2019, 44, 2126–2140. [Google Scholar] [CrossRef]
- Madej, M.A. Development of Channel Organization and Roughness Following Sediment Pulses in Single-thread, Gravel Bed Rivers. Water Resour. Res. 2001, 37, 2259–2272. [Google Scholar] [CrossRef] [Green Version]
- Madej, M.A.; Ozaki, V. Persistence of Effects of High Sediment Loading in a Salmon-Bearing River, Northern California. Manag. Restor. Fluv. Syst. Broad Hist. Chang. Hum. Impacts Geol. Soc. Am. Spec. Paper 2009, 451, 43–55. [Google Scholar]
- Cienciala, P.; Bernardo, M.M.; Nelson, A.D.; Haas, A.D. Sediment Yield from a Forested Mountain Basin in Inland Pacific Northwest: Rates, Partitioning and Sources. Geomorphology 2020, 107478. [Google Scholar] [CrossRef]
- Lamberti, G.A.; Gregory, S.V.; Ashkenas, L.R.; Wildman, R.C.; Moore, K.M. Stream Ecosystem Recovery Following a Catastrophic Debris Flow. Can. J. Fish. Aquat. Sci. 1991, 48, 196–208. [Google Scholar] [CrossRef]
- Cover, M.R.; May, C.L.; Dietrich, W.E.; Resh, V.H. Quantitative Linkages among Sediment Supply, Streambed Fine Sediment and Benthic Macroinvertebrates in Northern California Streams. J. N. Am. Benthol. Soc. 2008, 27, 135–149. [Google Scholar] [CrossRef]
- Cover, M.R.; de la Fuente, J.A.; Resh, V.H. Catastrophic Disturbances in Headwater Streams: The Long-Term Ecological Effects of Debris Flows and Debris Floods in the Klamath Mountains, Northern California. Can. J. Fish. Aquat. Sci. 2010, 67, 1596–1610. [Google Scholar] [CrossRef]
- D’Souza, L.E.; Reiter, M.; Six, L.J.; Bilby, R.E. Response of Vegetation, Shade and Stream Temperature to Debris Torrents in Two Western Oregon Watersheds. For. Ecol. Manag. 2011, 261, 2157–2167. [Google Scholar] [CrossRef]
- Cienciala, P.; Hassan, M.A. Linking Spatial Patterns of Bed Surface Texture, Bed Mobility and Channel Hydraulics in a Mountain Stream to Potential Spawning Substrate for Small Resident Trout. Geomorphology 2013, 197, 96–107. [Google Scholar] [CrossRef]
- Cienciala, P.; Hassan, M.A. Sampling Variability in Estimates of Flow Characteristics in Coarse-Bed Channels: Effects of Sample Size. Water Resour. Res. 2016, 52, 1899–1922. [Google Scholar] [CrossRef]
- Cienciala, P.; Hassan, M.A. Spatial Linkages between Geomorphic and Hydraulic Conditions and Invertebrate Drift Characteristics in a Small Mountain Stream. Can. J. Fish. Aquat. Sci. 2018. [Google Scholar] [CrossRef]
- Hassan, M.A.; Ferrer-Boix, C.; Cienciala, P.; Chartrand, S. Sediment Transport and Channel Morphology Implications for Fish Habitat. In Open Channel Hydraulics, River Hydraulic Structures and Fluvial Geomorphology; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Murphy, B.P.; Walsworth, T.E.; Belmont, P.; Conner, M.M.; Budy, P. Dynamic Habitat Disturbance and Ecological Resilience (DyHDER): Modeling Population Responses to Habitat Condition. Ecosphere 2020, 11, e03023. [Google Scholar] [CrossRef] [Green Version]
- Poff, B.; Koestner, K.A.; Neary, D.G.; Henderson, V. Threats to Riparian Ecosystems in Western North America: An Analysis of Existing Literature 1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 1241–1254. [Google Scholar] [CrossRef]
- Macfarlane, W.W.; Gilbert, J.T.; Jensen, M.L.; Gilbert, J.D.; Hough-Snee, N.; McHugh, P.A.; Wheaton, J.M.; Bennett, S.N. Riparian Vegetation as an Indicator of Riparian Condition: Detecting Departures from Historic Condition across the North American West. J. Environ. Manag. 2017, 202, 447–460. [Google Scholar] [CrossRef]
- Macfarlane, W.W.; Gilbert, J.T.; Gilbert, J.D.; Saunders, W.C.; Hough-Snee, N.; Hafen, C.; Wheaton, J.M.; Bennett, S.N. What Are the Conditions of Riparian Ecosystems? Identifying Impaired Floodplain Ecosystems across the Western U.S. Using the Riparian Condition Assessment (RCA) Tool. Environ. Manag. 2018. [Google Scholar] [CrossRef] [PubMed]
- Stella, J.C.; Riddle, J.; Piégay, H.; Gagnage, M.; Trémélo, M.-L. Climate and Local Geomorphic Interactions Drive Patterns of Riparian Forest Decline along a Mediterranean Basin River. Geomorphology 2013, 202, 101–114. [Google Scholar] [CrossRef]
- Bender, E.A.; Case, T.J.; Gilpin, M.E. Perturbation Experiments in Community Ecology: Theory and Practice. Ecology 1984, 65, 1–13. [Google Scholar] [CrossRef]
- Lake, P.S. Disturbance, Patchiness and Diversity in Streams. J. North Am. Benthol. Soc. 2000, 19, 573–592. [Google Scholar] [CrossRef] [Green Version]
- Dykaar, B.B.; Wigington, J. Floodplain Formation and Cottonwood Colonization Patterns on the Willamette River, Oregon, USA. Environ. Manag. 2000, 25, 87–104. [Google Scholar] [CrossRef]
- Wallick, J.R.; Lancaster, S.T.; Bolte, J.P. Determination of Bank Erodibility for Natural and Anthropogenic Bank Materials Using a Model of Lateral Migration and Observed Erosion along the Willamette River, Oregon, USA. River Res. Appl. 2006, 22, 631–649. [Google Scholar] [CrossRef]
- Wallick, J.R.; Jones, K.L.; O’Connor, J.E.; Keith, M.K.; Hulse, D.; Gregory, S.V. Geomorphic and Vegetation Processes of the Willamette River Floodplain, Oregon: Current Understanding and Unanswered Science Questions; US Geological Survey: Reston, VA, USA, 2013. [Google Scholar]
- Cline, S.P.; McAllister, L.S. Plant Succession after Hydrologic Disturbance: Inferences from Contemporary Vegetation on a Chronosequence of Bars, Willamette River, Oregon, USA. River Res. Appl. 2012, 28, 1519–1539. [Google Scholar] [CrossRef]
- Turner, D.P.; Conklin, D.R.; Bolte, J.P. Projected Climate Change Impacts on Forest Land Cover and Land Use over the Willamette River Basin, Oregon, USA. Clim. Chang. 2015, 133, 335–348. [Google Scholar] [CrossRef]
- Gregory, S.; Wildman, R.; Hulse, D.; Ashkenas, L.; Boyer, K. Historical Changes in Hydrology, Geomorphology and Floodplain Vegetation of the Willamette River, Oregon. River Res. Appl. 2019, 35, 1279–1290. [Google Scholar] [CrossRef]
- Downs, P.W.; Piégay, H. Catchment-Scale Cumulative Impact of Human Activities on River Channels in the Late Anthropocene: Implications, Limitations, Prospect. Geomorphology 2019, 338, 88–104. [Google Scholar] [CrossRef]
- Rasouli, K.; Pomeroy, J.W.; Whitfield, P.H. Are the Effects of Vegetation and Soil Changes as Important as Climate Change Impacts on Hydrological Processes? Hydrol. Earth Syst. Sci. 2019, 23, 4933–4954. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, R.V. A Hierarchical Concept of Ecosystems; Princeton University Press: Princeton, NJ, USA, 1986; ISBN 0-691-08437-8. [Google Scholar]
- Parsons, M.; Thoms, M.C. Hierarchical Patterns of Physical–Biological Associations in River Ecosystems. Geomorphology 2007, 89, 127–146. [Google Scholar] [CrossRef]
- Reinhardt, L.; Jerolmack, D.; Cardinale, B.J.; Vanacker, V.; Wright, J. Dynamic Interactions of Life and Its Landscape: Feedbacks at the Interface of Geomorphology and Ecology. Earth Surf. Process. Landf. 2010, 35, 78–101. [Google Scholar] [CrossRef]
- Corenblit, D.; Garófano-Gómez, V.; González, E.; Hortobágyi, B.; Julien, F.; Lambs, L.; Otto, T.; Roussel, E.; Steiger, J.; Tabacchi, E. Niche Construction within Riparian Corridors. Part II: The Unexplored Role of Positive Intraspecific Interactions in Salicaceae Species. Geomorphology 2018, 305, 112–122. [Google Scholar] [CrossRef]
- Giadrossich, F.; Schwarz, M.; Cohen, D.; Cislaghi, A.; Vergani, C.; Hubble, T.; Phillips, C.; Stokes, A. Methods to Measure the Mechanical Behaviour of Tree Roots: A Review. Ecol. Eng. 2017, 109, 256–271. [Google Scholar] [CrossRef]
- Schwarz, C.; Gourgue, O.; van Belzen, J.; Zhu, Z.; Bouma, T.J.; van de Koppel, J.; Ruessink, G.; Claude, N.; Temmerman, S. Self-Organization of a Biogeomorphic Landscape Controlled by Plant Life-History Traits. Nature Geosci. 2018, 11, 672–677. [Google Scholar] [CrossRef]
- Deljouei, A.; Abdi, E.; Schwarz, M.; Majnounian, B.; Sohrabi, H.; Dumroese, R.K. Mechanical Characteristics of the Fine Roots of Two Broadleaved Tree Species from the Temperate Caspian Hyrcanian Ecoregion. Forests 2020, 11, 345. [Google Scholar] [CrossRef] [Green Version]
- Dufour, S.; Piégay, H. Geomorphological Controls of Fraxinus Excelsior Growth and Regeneration in Floodplain Forests. Ecology 2008, 89, 205–215. [Google Scholar] [CrossRef]
- Rood, S.B.; Braatne, J.H.; Hughes, F.M.R. Ecophysiology of Riparian Cottonwoods: Stream Flow Dependency, Water Relations and Restoration. Tree Physiol. 2003, 23, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Corenblit, D.; Steiger, J.; González, E.; Gurnell, A.M.; Charrier, G.; Darrozes, J.; Dousseau, J.; Julien, F.; Lambs, L.; Larrue, S.; et al. The Biogeomorphological Life Cycle of Poplars during the Fluvial Biogeomorphological Succession: A Special Focus on Populus Nigra L. Earth Surf. Process. Landf. 2014, 39, 546–563. [Google Scholar] [CrossRef]
- Santamaría, L.; Figuerola, J.; Pilon, J.J.; Mjelde, M.; Green, A.J.; De Boer, T.; King, R.A.; Gornall, R.J. Plant Performance across Latitude: The Role of Plasticity and Local Adaptation in an Aquatic Plant. Ecology 2003, 84, 2454–2461. [Google Scholar] [CrossRef] [Green Version]
- Puijalon, S.; Léna, J.-P.; Rivière, N.; Champagne, J.-Y.; Rostan, J.-C.; Bornette, G. Phenotypic Plasticity in Response to Mechanical Stress: Hydrodynamic Performance and Fitness of Four Aquatic Plant Species. New Phytol. 2008, 177, 907–917. [Google Scholar] [CrossRef]
- Bornette, G.; Puijalon, S. Response of Aquatic Plants to Abiotic Factors: A Review. Aquat. Sci. 2011, 73, 1–14. [Google Scholar] [CrossRef]
- Puijalon, S.; Bornette, G. Multi-Scale Macrophyte Responses to Hydrodynamic Stress and Disturbances: Adaptive Strategies and Biodiversity Patterns. In Ecohydraulics; Wiley Online Library: Hoboken, NJ, USA, 2013; p. 261. [Google Scholar]
- Trémolières, M. Plant Response Strategies to Stress and Disturbance: The Case of Aquatic Plants. J. Biosci 2004, 29, 461–470. [Google Scholar] [CrossRef]
- Lowe, B.J.; Watts, R.J.; Roberts, J.; Robertson, A. The Effect of Experimental Inundation and Sediment Deposition on the Survival and Growth of Two Herbaceous Riverbank Plant Species. Plant. Ecol 2010, 209, 57–69. [Google Scholar] [CrossRef]
- Merritt, D.M.; Scott, M.L.; LeROY POFF, N.; Auble, G.T.; Lytle, D.A. Theory, Methods and Tools for Determining Environmental Flows for Riparian Vegetation: Riparian Vegetation-Flow Response Guilds. Freshw. Biol. 2010, 55, 206–225. [Google Scholar] [CrossRef]
- Stromberg, J.C.; Merritt, D.M. Riparian Plant Guilds of Ephemeral, Intermittent and Perennial Rivers. Freshw. Biol. 2016, 61, 1259–1275. [Google Scholar] [CrossRef]
- Lytle, D.A.; Merritt, D.M.; Tonkin, J.D.; Olden, J.D.; Reynolds, L.V. Linking River Flow Regimes to Riparian Plant Guilds: A Community-wide Modeling Approach. Ecol. Appl. 2017, 27, 1338–1350. [Google Scholar] [CrossRef]
- Wohl, E. Wood Process Domains and Wood Loads on Floodplains. Earth Surf. Process. Landf. 2020, 45, 144–156. [Google Scholar] [CrossRef]
- Ruiz-Villanueva, V.; Díez-Herrero, A.; Ballesteros, J.A.; Bodoque, J.M. Potential Large Woody Debris Recruitment Due to Landslides, Bank Erosion and Floods in Mountain Basins: A Quantitative Estimation Approach. River Res. Appl. 2014, 30, 81–97. [Google Scholar] [CrossRef]
- Gasser, E.; Schwarz, M.; Simon, A.; Perona, P.; Phillips, C.; Hübl, J.; Dorren, L. A Review of Modeling the Effects of Vegetation on Large Wood Recruitment Processes in Mountain Catchments. Earth Sci. Rev. 2019, 194, 350–373. [Google Scholar] [CrossRef]
- Phillips, J.D. The Perfect Landscape. Geomorphology 2007, 84, 159–169. [Google Scholar] [CrossRef]
- Church, M. Space, Time and the Mountain—How Do We Order What We See. In The Scientific Nature of Geomorphology, Proceedings of the 27th Binghamton Symposium in Geomorphology Held 27–29 September 1996; John Wiley & Sons: Hoboken, NJ, USA, 1996; Volume 27, p. 147. Available online: https://www.worldcat.org/title/scientific-nature-of-geomorphology-proceedings-of-the-27th-binghamton-symposium-in-geomorphology-held-27-29-september-1996/oclc/34474590 (accessed on 15 February 2021).
- Harrison, S. On Reductionism and Emergence in Geomorphology. Trans. Inst. Br. Geogr. 2001, 26, 327–339. [Google Scholar] [CrossRef]
- Major, J.J.; Zheng, S.; Mosbrucker, A.R.; Spicer, K.R.; Christianson, T.; Thorne, C.R. Multidecadal Geomorphic Evolution of a Profoundly Disturbed Gravel Bed River System—A Complex, Nonlinear Response and Its Impact on Sediment Delivery. J. Geophys. Res. Earth Surf. 2019, 124, 1281–1309. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Halpern, C.B.; Antos, J.A.; Avolio, M.L.; Biswas, A.; Cook, J.E.; del Moral, R.; Fischer, D.G.; Holz, A.; Pabst, R.J.; et al. Testing Conceptual Models of Early Plant Succession across a Disturbance Gradient. J. Ecol. 2019, 107, 517–530. [Google Scholar] [CrossRef]
- Chang, C.C.; Turner, B.L. Ecological Succession in a Changing World. J. Ecol. 2019, 107, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.D. Earth Surface Systems: Complexity, Order and Scale; Blackwell: Oxford, UK, 1999. [Google Scholar]
- Syvitski, J.P.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Milliman, J.D. Geology, Geography and Humans Battle for Dominance over the Delivery of Fluvial Sediment to the Coastal Ocean. J. Geol. 2007, 115, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Syvitski, J.P.M.; Kettner, A. Sediment Flux and the Anthropocene. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2011, 369, 957–975. [Google Scholar] [CrossRef]
- Milliman, J.D.; Farnsworth, K.L. Runoff, Erosion and Delivery to the Coastal Ocean. In River Discharge to the Coastal Ocean: A Global Synthesis; Cambridge University Press: Cambridge, UK, 2011; pp. 13–69. [Google Scholar]
- Von Elverfeldt, K.; Embleton-Hamann, C.; Slaymaker, O. Self-Organizing Change? On Drivers, Causes and Global Environmental Change. Geomorphology 2016, 253, 48–58. [Google Scholar] [CrossRef]
- Lisle, T.E.; Cui, Y.; Parker, G.; Pizzuto, J.E.; Dodd, A.M. The Dominance of Dispersion in the Evolution of Bed Material Waves in Gravel-bed Rivers. Earth Surf. Process. Landf. 2001, 26, 1409–1420. [Google Scholar] [CrossRef]
- Cui, Y.; Parker, G. Numerical Model of Sediment Pulses and Sediment-Supply Disturbances in Mountain Rivers. J. Hydraul. Eng. 2005, 131, 646–656. [Google Scholar] [CrossRef] [Green Version]
- Madej, M.A.; Sutherland, D.G.; Lisle, T.E.; Pryor, B. Channel Responses to Varying Sediment Input: A Flume Experiment Modeled after Redwood Creek, California. Geomorphology 2009, 103, 507–519. [Google Scholar] [CrossRef]
- Elgueta-Astaburuaga, M.A.; Hassan, M.A.; Saletti, M.; Clarke, G.K.C. The Effect of Episodic Sediment Supply on Bedload Variability and Sediment Mobility. Water Resour. Res. 2018, 54, 6319–6335. [Google Scholar] [CrossRef]
- Hassan, M.A.; Saletti, M.; Zhang, C.; Ferrer-Boix, C.; Johnson, J.P.L.; Müller, T.; Flotow, C. von Co-Evolution of Coarse Grain Structuring and Bed Roughness in Response to Episodic Sediment Supply in an Experimental Aggrading Channel. Earth Surf. Process. Landf. 2020, 45, 948–961. [Google Scholar] [CrossRef]
- Lisle, T.E. The Evolution of Sediment Waves Influenced by Varying Transport Capacity in Heterogeneous Rivers. Dev. Earth Surf. Process. 2007, 11, 443–469. [Google Scholar]
- Sklar, L.S.; Fadde, J.; Venditti, J.G.; Nelson, P.; Wydzga, M.A.; Cui, Y.; Dietrich, W.E. Translation and Dispersion of Sediment Pulses in Flume Experiments Simulating Gravel Augmentation below Dams. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Venditti, J.G.; Dietrich, W.E.; Nelson, P.A.; Wydzga, M.A.; Fadde, J.; Sklar, L. Effect of Sediment Pulse Grain Size on Sediment Transport Rates and Bed Mobility in Gravel Bed Rivers. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.J.; Fryirs, K.; Croke, J. The Disconnected Sediment Conveyor Belt: Patterns of Longitudinal and Lateral Erosion and Deposition during a Catastrophic Flood in the Lockyer Valley, South East Queensland, Australia. River Res. Appl. 2016, 32, 540–551. [Google Scholar] [CrossRef]
- Constantine, J.A.; Dunne, T.; Ahmed, J.; Legleiter, C.; Lazarus, E.D. Sediment Supply as a Driver of River Meandering and Floodplain Evolution in the Amazon Basin. Nat. Geosci. 2014, 7, 899–903. [Google Scholar] [CrossRef] [Green Version]
- Ashworth, P.J.; Best, J.L.; Jones, M. Relationship between Sediment Supply and Avulsion Frequency in Braided Rivers. Geology 2004, 32, 21–24. [Google Scholar] [CrossRef]
- Nelson, A.; Dubé, K. Channel Response to an Extreme Flood and Sediment Pulse in a Mixed Bedrock and Gravel-Bed River. Earth Surf. Process. Landf. 2016, 41, 178–195. [Google Scholar] [CrossRef] [Green Version]
- Gubernick, R.A.; Montgomery, D.R.; Reutebuch, S.E. Sediment Slug Migration in the North Fork Bradfield River Southeast Alaska. In Natural Resource Management Using Remote Sensing and GIS, Proceedings of the Seventh Forest Service Remote Sensing Applications Conference, Nassau Bay, TX, USA, 6–10 April 1998; Greer, J.D., Ed.; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 1998. [Google Scholar]
- Larsen, I.J.; Montgomery, D.R.; Korup, O. Landslide Erosion Controlled by Hillslope Material. Nat. Geosci. 2010, 3, 247. [Google Scholar] [CrossRef]
- Wistuba, M.; Malik, I.; Wójcicki, K.; Michałowicz, P. Coupling between Landslides and Eroding Stream Channels Reconstructed from Spruce Tree Rings (Examples from the Carpathians and Sudetes–Central Europe). Earth Surf. Process. Landf. 2015, 40, 293–312. [Google Scholar] [CrossRef]
- Dethier, E.; Magilligan, F.J.; Renshaw, C.E.; Nislow, K.H. The Role of Chronic and Episodic Disturbances on Channel–Hillslope Coupling: The Persistence and Legacy of Extreme Floods. Earth Surf. Process. Landf. 2016, 41, 1437–1447. [Google Scholar] [CrossRef]
- Booth, A.M.; LaHusen, S.R.; Duvall, A.R.; Montgomery, D.R. Holocene History of Deep-seated Landsliding in the North Fork Stillaguamish River Valley from Surface Roughness Analysis, Radiocarbon Dating and Numerical Landscape Evolution Modeling. J. Geophys. Res. Earth Surf. 2017, 122, 456–472. [Google Scholar] [CrossRef] [Green Version]
- Cienciala, P.; Nelson, A.D.; Haas, A.D.; Xu, Z. Lateral Geomorphic Connectivity in a Fluvial Landscape System: Unraveling the Role of Confinement, Biogeomorphic Interactions and Glacial Legacies. Geomorphology 2020, 107036. [Google Scholar] [CrossRef]
- Richardson, P.W.; Wagenbrenner, J.W.; Sutherland, D.G.; Lisle, T.E. Measuring and Modeling Gravel Transport at Caspar Creek, CA, to Detect Changes in Sediment Supply, Storage and Transport Efficiency. Water Resour. Res. 2020, 56, e2019WR026389. [Google Scholar] [CrossRef]
- Gran, K.B. Strong Seasonality in Sand Loading and Resulting Feedbacks on Sediment Transport, Bed Texture and Channel Planform at Mount Pinatubo, Philippines. Earth Surf. Process. Landf. 2012, 37, 1012–1022. [Google Scholar] [CrossRef]
- Anderson, S.W.; Jaeger, K.L. Coarse Sediment Dynamics in a Large Glaciated River System: Holocene History and Storage Dynamics Dictate Contemporary Climate Sensitivity. GSA Bull. 2020. [Google Scholar] [CrossRef]
- Benda, L.; Andras, K.; Miller, D.; Bigelow, P. Confluence Effects in Rivers: Interactions of Basin Scale, Network Geometry and Disturbance Regimes. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Gran, K.B.; Czuba, J.A. Sediment Pulse Evolution and the Role of Network Structure. Geomorphology 2017, 277, 17–30. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cienciala, P. Vegetation and Geomorphic Connectivity in Mountain Fluvial Systems. Water 2021, 13, 593. https://doi.org/10.3390/w13050593
Cienciala P. Vegetation and Geomorphic Connectivity in Mountain Fluvial Systems. Water. 2021; 13(5):593. https://doi.org/10.3390/w13050593
Chicago/Turabian StyleCienciala, Piotr. 2021. "Vegetation and Geomorphic Connectivity in Mountain Fluvial Systems" Water 13, no. 5: 593. https://doi.org/10.3390/w13050593
APA StyleCienciala, P. (2021). Vegetation and Geomorphic Connectivity in Mountain Fluvial Systems. Water, 13(5), 593. https://doi.org/10.3390/w13050593