A Paleo Perspective of Alabama and Florida (USA) Interstate Streamflow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Streamflow Data
2.2. Tree Ring Chronologies
2.3. Predictor Prescreening Methods
2.4. Reconstruction Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Tootle, G.A.; Piechota, T.C. Suwannee River Long Range Streamflow Forecasts Based on Seasonal Climate Predictors. J. Am. Water Resour. Assoc. 2004, 40, 523–532. [Google Scholar] [CrossRef]
- Crockett, K.; Martin, J.B.; Grissino-Mayer, H.D.; Larson, E.R.; Mirti, T. Assessment of Tree Rings as a Hydrologic Record in a Humid Subtropical Environment. J. Am. Water Resour. Assoc. 2010, 46, 919–931. [Google Scholar] [CrossRef]
- Stahle, D.W.; Cleaveland, M.K. Reconstruction and Analysis of Spring Rainfall over the Southeastern U.S. for the Past 1000 Years. Bull. Am. Meteorol. Soc. 1992, 73, 1947–1961. [Google Scholar] [CrossRef] [Green Version]
- Cook, E.; Meko, D.M.; Stahle, D.W.; Cleaveland, M. Drought reconstructions for the continental United States. J. Clim. 1999, 12, 1145–1162. [Google Scholar] [CrossRef] [Green Version]
- Woodhouse, C.A.; Lukas, J.J. Multi-Century Tree-Ring Reconstructions of Colorado Streamflow for Water Resource Planning. Clim. Chang. 2006, 78, 293–315. [Google Scholar] [CrossRef]
- Meko, D.M.; Woodhouse, C.A.; Baisan, C.A.; Knight, T.; Lukas, J.J.; Hughes, M.K.; Salzer, M.W. Medieval drought in the upper Colorado River Basin. Geophys. Res. Lett. 2007, 34, 10705. [Google Scholar] [CrossRef] [Green Version]
- Derose, R.; Bekker, M.F.; Wang, S.-Y.; Buckley, B.M.; Kjelgren, R.; Bardsley, T.; Rittenour, T.M.; Allen, E. A millennium-length reconstruction of Bear River stream flow, Utah. J. Hydrol. 2015, 529, 524–534. [Google Scholar] [CrossRef] [Green Version]
- Stahle, D.W.; Edmondson, J.R.; Howard, I.M.; Robbins, C.R.; Griffin, R.D.; Carl, A.; Torbenson, M.C.A. Longevity, climate sensitivity, and conservation status of wetland trees at Black River, North Carolina. Environ. Res. Commun. 2019, 1, 041002. [Google Scholar] [CrossRef]
- Stahle, D.W.; Cleaveland, M.K.; Hehr, J.G. North Carolina Climate Changes Reconstructed from Tree Rings: A.D. 372 to. Science 1988, 240, 1517–1519. [Google Scholar] [CrossRef] [PubMed]
- Cleaveland, M.K. A 963-year reconstruction of summer (JJA) stream flow in the White River, Arkansas, USA, from tree-rings. Holocene 2000, 10, 33–41. [Google Scholar] [CrossRef]
- Stahle, D.W.; Fye, F.K.; Therrell, M.D. Interannual to decadal climate and streamflow variability estimated from tree rings. Dev. Quat. Sci. 2003, 1, 491–504. [Google Scholar] [CrossRef]
- Seager, R.; Tzanova, A.; Nakamura, J. Drought in the Southeastern United States: Causes, Variability over the Last Millennium, and the Potential for Future Hydroclimate Change*. J. Clim. 2009, 22, 5021–5045. [Google Scholar] [CrossRef] [Green Version]
- Cook, E.R.; Palmer, J.G.; Ahmed, M.; Woodhouse, C.A.; Fenwick, P.; Zafar, M.U.; Wahab, M.; Khan, N. Five centuries of Upper Indus River flow from tree rings. J. Hydrol. 2013, 486, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Harley, G.L.; Maxwell, J.T.; Larson, E.; Grissino-Mayer, H.D.; Henderson, J.; Huffman, J. Suwannee River flow variability 1550–2005 CE reconstructed from a multispecies tree-ring network. J. Hydrol. 2017, 544, 438–451. [Google Scholar] [CrossRef]
- Maxwell, R.S.; Harley, G.L.; Maxwell, J.T.; Rayback, S.A.; Pederson, N.; Cook, E.R.; Barclay, D.J.; Li, W.; Rayburn, J.A. An interbasin comparison of tree-ring reconstructed streamflow in the eastern United States. Hydrol. Process. 2017, 31, 2381–2394. [Google Scholar] [CrossRef]
- Stockton, C.; Jacoby, G. Long-term Surface-water Supply and Streamflow Levels in the Upper Colorado River Basin. Lake Powell Res. Proj. Bull. 1976, 18, 70. [Google Scholar]
- Meko, D.M.; Graybill, D.A. Tree-ring reconstruction of upper Gila River discharge. J. Am. Water Resour. Assoc. 1995, 31, 605–616. [Google Scholar] [CrossRef]
- Meko, D.M.; Therrell, M.D.; Baisan, C.H.; Hughes, M.K. sacramento river flow reconstructed to a.d. 869 from tree rings. J. Am. Water Resour. Assoc. 2001, 37, 1029–1039. [Google Scholar] [CrossRef]
- Gray, S.T.; Fastie, C.L.; Betancourt, J.L.; Jackson, S.T. Patterns and sources of multidecadal oscillations in drought-sensitive tree-ring records from the central and southern Rocky Mountains. Geophys. Res. Lett. 2003, 30, 491–494. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.T.; Jackson, S.T.; Betancourt, J.L. Tree-Ring Based Reconstructions of Interannual to Decadal Scale Precipitation Variability For Northeastern Utah Since. J. Am. Water Resour. Assoc. 2004, 40, 947–960. [Google Scholar] [CrossRef]
- Woodhouse, C.A.; Gray, S.T.; Meko, D.M. Updated streamflow reconstructions for the Upper Colorado River ba-sin. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Timilsena, J.; Piechota, T.C.; Hidalgo, H.; Tootle, G. Five Hundred Years of Hydrological Drought in the Upper Colorado River Basin. JAWRA 2007, 43, 798–812. [Google Scholar] [CrossRef]
- Watson, T.A.; Barnett, F.A.; Gray, S.T.; Tootle, G.A. Reconstructed Streamflows for the Headwaters of the Wind River, Wyoming, United States. JAWRA 2009, 45, 224–236. [Google Scholar] [CrossRef]
- Barnett, F.A.; Gray, S.T.; Tootle, G.A. Upper Green River Basin (United States) Streamflow Reconstructions. J. Hydrol. Eng. 2010, 15, 567–579. [Google Scholar] [CrossRef] [Green Version]
- Wise, E.K. Tree ring record of streamflow and drought in the upper Snake River. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Margolis, E.Q.; Meko, D.M.; Touchan, R. A tree-ring reconstruction of streamflow in the Santa Fe River, New Mexico. J. Hydrol. 2011, 397, 118–127. [Google Scholar] [CrossRef]
- Anderson, S.; Moser, C.L.; Tootle, G.A.; Grissino-Mayer, H.D.; Timilsena, J.; Piechota, T. Snowpack Reconstructions Incorporating Climate in the Upper Green River Basin (Wyoming). Tree-Ring Res. 2012, 68, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.; Tootle, G.A.; Grissinomayer, H.D. Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Tree-Ring Chronologies. J. Am. Water Resour. Assoc. 2012, 48, 849–858. [Google Scholar] [CrossRef]
- Stahle, D.W.; Cleaveland, M.K. Tree-ring reconstructed rainfall over the southeastern U.S.A. during the medieval warm period and little ice age. Clim. Chang. 1994, 26, 199–212. [Google Scholar] [CrossRef]
- Pederson, N.; Bell, A.R.; Knight, T.A.; Leland, C.; Malcomb, N.; Anchukaitis, K.J.; Tackett, K.; Scheff, J.; Brice, A.; Catron, B.; et al. A long-term perspective on a modern drought in the American Southeast. Environ. Res. Lett. 2012, 7, 014034. [Google Scholar] [CrossRef]
- Therrell, M.D.; Elliott, E.A.; Meko, M.D.; Bregy, J.C.; Tucker, C.S.; Harley, G.L.; Maxwell, J.T.; Tootle, G.A. Streamflow Variability Indicated by False Rings in Bald Cypress (Taxodium distichum (L.) Rich.). Forests 2020, 11, 1100. [Google Scholar] [CrossRef]
- Anderson, S.; Ogle, R.; Tootle, G.; Oubeidillah, A. Tree-Ring reconstructions of streamflow for the Tennessee val-ley. Hydrology 2019, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Bregy, J.C.; Roberts, T.; Elliott, E.A.; Therrell, M.D.; Lampman, C.R.; Maxwell, J.T.; Harley, G.L. Utilizing Anatomical Anomalies in Taxodium Distichum to Reconstruct Tropical Cyclone Activity along the Northern Gulf of Mexico; American Geophyiscal Union: Washington, DC, USA, 2019; PP11C-1397. [Google Scholar]
- Kam, J.; Tootle, G.A.; Therrell, G.A.; Elliott, E.A. Future Streamflow in a Southeastern US watershed from a Paleo Perspective: A case study of St. Marys River, Florida. In Proceedings of the 34th Coneference on Climate Variability and Change at 101st American Meteorological Society Annual Meeting, 10–15 January 2021. (Virtual Meeting). [Google Scholar]
- McCabe, G.J.; Wolock, D.M. Spatial and temporal patterns in conterminous United States streamflow characteristics. Geophys. Res. Lett. 2014, 41, 6889–6897. [Google Scholar] [CrossRef]
- McCabe, G.J.; Palecki, M.A.; Betancourt, J.L. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA 2004, 101, 4136–4141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tootle, G.A.; Piechota, T.C.; Singh, A.K. Coupled oceanic/atmospheric variability and United States streamflow. Water Resour. Res. 2005, 41, W12408. [Google Scholar]
- Johnson, N.T.; Martinez, C.J.; Kiker, G.A.; Leitman, S. Pacific and Atlantic sea surface temperature influences on streamflow in the Apalachicola–Chattahoochee–Flint river basin. J. Hydrol. 2013, 489, 160–179. [Google Scholar] [CrossRef]
- Kam, J.; Sheffield, J. Changes in the low flow regime over the eastern United States (1962–2011): Variability, trends, and attributions. Clim. Chang. 2016, 135, 639–653. [Google Scholar] [CrossRef]
- Wang, H.; Asefa, T. Impact of different types of ENSO conditions on seasonal precipitation and streamflow in the Southeastern United States. Int. J. Clim. 2018, 38, 1438–1451. [Google Scholar] [CrossRef]
- Engström, J.; Waylen, P. Drivers of long-term precipitation and runoff variability in the southeastern USA. Theor. Appl. Clim. 2017, 131, 1133–1146. [Google Scholar] [CrossRef]
- Maleski, J.J.; Martinez, C.J. Coupled impacts of ENSO AMO and PDO on temperature and precipitation in the Alabama-Coosa-Tallapoosa and Apalachicola-Chattahoochee-Flint river basins. Int. J. Clim. 2018, 38, e717–e728. [Google Scholar] [CrossRef]
- Sadeghi, S.G.; Tootle, E.; Elliott, V.; Lakshmi, M.; Therrell, J.K.; Bearden, B. Atlantic Ocean Sea Surface Tem-peratures and Southeast United States streamflow variability: Associations with the recent multi-decadal decline. J. Hydrol. 2019, 576, 422–429. [Google Scholar] [CrossRef]
- Bureau, US Census. State Population Totals: 2010–2019. The United States Census Bureau. Available online: www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html (accessed on 30 December 2019).
- Bearden, B.L.; Andreen, W.L. Update on the Tri-State Water Wars. Wave 2017, 37, 15–21. [Google Scholar]
- Sheffield, J.; Wood, E.F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 2008, 31, 79–105. [Google Scholar] [CrossRef]
- National Weather Information System (NWIS): USGS surface-water data for the nation. Available online: http://waterdata.usgs.gov/nwis/sw (accessed on 16 June 2020).
- ITRDB (International Tree Ring Data Bank). Tree-Ring Data Search. Available online: https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring (accessed on 20 June 2020).
- Fritts, H.C. Tree Rings and Climate; Academic Press: New York, NY, USA, 1976; p. 567. [Google Scholar]
- Biondi, F.; Waikul, K. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput. Geosci. 2004, 30, 303–311. [Google Scholar] [CrossRef]
- Stahle, D.W.; Cleaveland, M.K. (2002-04-26): NOAA/WDS Paleoclimatology-Stahle-Choctawhatchee River-TADI-ITRDB FL001. [all]. NOAA National Cen-ters for Environmental Information. Available online: https://www.ncdc.noaa.gov/paleo-search/study/4830 (accessed on 1 June 2020).
- Stahle, D.W. (2002-04-26): NOAA/WDS Paleoclimatology-Stahle-Ebenezer Creek-TADI-ITRDB GA003. [all]. NOAA National Centers for Environmental Information. Available online: https://www.ncdc.noaa.gov/paleo-search/study/4842 (accessed on 1 June 2020).
- Stahle, D.W. (2002-04-26): NOAA/WDS Paleoclimatology-Stahle-Ocmulgee River-TADI-ITRDB GA004. [all]. NOAA National Centers for Environmental Information. Available online: https://www.ncdc.noaa.gov/paleo-search/study/4913 (accessed on 1 June 2020).
- Stahle, D.W.; Cook, E.R.; Burnette, D.J.; Villanueva, J.; Cerano, J.; Burns, J.N.; Griffin, D.; Cook, B.I.; Acuña, R.; Torbenson, M.C.; et al. The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quat. Sci. Rev. 2016, 149, 34–60. [Google Scholar] [CrossRef] [Green Version]
- Duvick, D.N. (2002-04-26): NOAA/WDS Paleoclimatology-Duvick-Piney Creek Pocket Wilderness-QUAL-ITRDB TN005. [all]. NOAA National Centers for Environmental Information. Available online: https://www.ncdc.noaa.gov/paleo-search/study/3178 (accessed on 1 June 2020).
- Stahle, D.W.; Cleaveland, M.K.; Sierzchula, S. (2005-08-25): NOAA/WDS Paleoclimatology-Stahle-Suwannee River-QULY-ITRDB FL005. [all]. NOAA National Centers for Environmental Information. Available online: https://www.ncdc.noaa.gov/paleo-search/study/4948 (accessed on 1 June 2020).
- Maxwell, J.T.; Knapp, P.A.; Ortegren, J.T. Influence of the Atlantic Multidecadal Oscillation on tupelo honey production from AD 1800 to. Agric. For. Meteorol. 2013, 174, 129–134. [Google Scholar] [CrossRef]
- Stahle, D.W.; Therrell, M.D.; Cleaveland, M.K. (2002-04-26): NOAA/WDS Paleoclimatology-Stahle-Pascagoula River-TADI-ITRDB MS002. [all]. NOAA National Centers for Environmental Information. Available online: https://www.ncdc.noaa.gov/paleo-search/study/4917 (accessed on 1 June 2020).
- Garen, D.C. Improved Techniques in Regression-Based Streamflow Volume Forecasting. J. Water Resour. Plan. Manag. 1992, 118, 654–670. [Google Scholar] [CrossRef]
- O’Brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Durbin, J.; Watson, G.S. Testing for serial correlation in least squares regression: I. Biometrika 1950, 37, 409–428. [Google Scholar]
- R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: http://www.R-project.org/ (accessed on 1 June 2020).
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Robeson, S.M.; Maxwell, J.T.; Ficklin, D.L. Bias Correction of Paleoclimatic Reconstructions: A New Look at 1,200+ Years of Upper Colorado River Flow. Geophys. Res. Lett. 2020, 47, e2019GL086689. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 2nd ed.; John Wiley: New York, NY, USA, 1981; p. 736. [Google Scholar]
- Henderson, J. Dendroclimatological analysis and fire history of longleaf pine (Pinus palustris Mill.) in the Atlantic and Gulf Coastal Plain. Ph.D. Thesis, The University of Tennessee, Knoxville, TN, USA, 2006; p. 463. [Google Scholar]
- Herweijer, C.; Seager, R.; Cook, E.R. North American droughts of the mid to late nineteenth century: A history, simulation and implication for Mediaeval drought. Holocene 2006, 16, 159–171. [Google Scholar] [CrossRef]
- Ho, M.; Lall, U.; Sun, X.; Cook, E.R. Multiscale temporal variability and regional patterns in 555 years of conterminous U.S. streamflow. Water Resour. Res. 2017, 53, 3047–3066. [Google Scholar] [CrossRef]
- Li, L.; Li, W.; Kushnir, Y. Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern US summer precipitation. Clim. Dyn. 2011, 39, 1401–1412. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Li, W.; Deng, Y.; Yang, S. Intra-seasonal variation of the summer rainfall over the Southeastern United States. Clim. Dyn. 2019, 53, 1171–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trouet, V.; Harley, G.L.; Domínguez-Delmás, M. Shipwreck rates reveal Caribbean tropical cyclone response to past radiative forcing. Proc. Natl. Acad. Sci. USA 2016, 113, 3169–3174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, C.S.; Trepanier, J.C.; Harley, G.L.; Delong, K.L. Recording Tropical Cyclone Activity from 1909 to 2014 along the Northern Gulf of Mexico using Maritime Slash Pine Trees (Pinus elliottii var. elliottii Engelm.). J. Coast. Res. 2018, 342, 328–340. [Google Scholar] [CrossRef]
- Strange, B.M.; Maxwell, J.T.; Robeson, S.M.; Harley, G.L.; Therrell, M.D.; Ficklin, D.L. Comparing three approaches to reconstructing streamflow using tree rings in the Wabash River basin in the Midwestern, US. J. Hydrol. 2019, 573, 829–840. [Google Scholar] [CrossRef]
Station Name | Station ID | Latitude | Longitude | Drainage Area (km2) | Period of Record |
---|---|---|---|---|---|
Choctawhatchee River (Newton, AL) | 02361000 | 31°20′34″ N | 85°36′38″ W | 1777 | 1936–2016 |
Choctawhatchee River (Bruce, FL) | 02366500 | 30°27′03″ N | 85°3′54″ W | 11,355 | 1931–1982 |
Conecuh River (Brantley, AL) | 02371500 | 31°34′24″ N | 86°15′06″ W | 1295 | 1938–2015 |
Escambia River (Century, FL) | 02375500 | 30°57′54″ N | 87°14′03″ W | 9886 | 1935–2018 |
Perdido River (Barrineau Park, FL) | 02376500 | 30°41′25″ N | 87°26′25″ W | 1020 | 1942–2017 |
Pascagoula River (Merrill, MS) | 02479000 | 30°58′40″ N | 88°43′35″ W | 17,068 | 1931–2019 |
Code | ITRDB Code | Chronology | State | Species | Chronology Length |
---|---|---|---|---|---|
CHKEW | FL001 | Choctawhatchee Earlywood [33,51] | FL | TADI | 920–2014 |
CHK | FL001 | Choctawhatchee Total Ringwidth [33,51] | FL | TADI | 920–2014 |
EBE | GA003 | Ebenezer Creek Total Ringwidth [52] | GA | TADI | 990–1985 |
OCM1 | GA004 | Ocmulgee River Total Ringwidth +1 [53] | GA | TADI | 1203–1985 |
SKY | MS003 | Sky Lake Swamp Total Ringwidth [54] | MS | TADI | 1238–2010 |
PNC1 | TN005 | Piney Creek Total Ringwidth +1 [55] | TN | QUAL | 1652–1983 |
SUW | FL005 | Suwannee River Total Ringwidth +1 [56] | FL | QULY | 1725–1993 |
IOL1 | TBD | Iola Lake Total Ringwidth +1 [57] | FL | NYOG | 1867–2011 |
PAS | MS002 | Pascagoula River Total Ringwidth [58] | MS | TADI | 1540–2014 |
Gage | Reconstruction Period | R2 (p) | R2 | R2adj | VIF | D–W | Sign Test +/− | TRCs Retained |
---|---|---|---|---|---|---|---|---|
Choctawhatchee at Newton | 1203–1985 | 0.48 | 0.56 | 0.54 | 1.0 | 2.2 | 26/24 | EBE, CHK, OCM1 |
Choctawhatchee at Bruce | 1238–1983 | 0.47 | 0.51 | 0.49 | 1.2 | 2.3 | 24/28 | SKY, CHK |
Conecuh | 1652–1983 | 0.41 | 0.51 | 0.49 | 1.1 | 2.1 | 23/23 | PNC1 CHKEW, OCM1 |
Escambia | 1725–1993 | 0.48 | 0.57 | 0.55 | 1.2 | 1.9 | 30/29 | CHKEW, SUW, SKY |
Perdido | 1867–2011 | 0.43 | 0.50 | 0.49 | 1.1 | 2.0 | 39/31 | CHKEW, IOL1 |
Pascagoula | 1238–1985 | 0.42 | 0.50 | 0.48 | 1.1 | 2.1 | 31/24 | SKY, CHKEW, OCM1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vines, M.; Tootle, G.; Terry, L.; Elliott, E.; Corbin, J.; Harley, G.L.; Kam, J.; Sadeghi, S.; Therrell, M. A Paleo Perspective of Alabama and Florida (USA) Interstate Streamflow. Water 2021, 13, 657. https://doi.org/10.3390/w13050657
Vines M, Tootle G, Terry L, Elliott E, Corbin J, Harley GL, Kam J, Sadeghi S, Therrell M. A Paleo Perspective of Alabama and Florida (USA) Interstate Streamflow. Water. 2021; 13(5):657. https://doi.org/10.3390/w13050657
Chicago/Turabian StyleVines, Melanie, Glenn Tootle, Leigh Terry, Emily Elliott, Joni Corbin, Grant L. Harley, Jonghun Kam, Sahar Sadeghi, and Matthew Therrell. 2021. "A Paleo Perspective of Alabama and Florida (USA) Interstate Streamflow" Water 13, no. 5: 657. https://doi.org/10.3390/w13050657
APA StyleVines, M., Tootle, G., Terry, L., Elliott, E., Corbin, J., Harley, G. L., Kam, J., Sadeghi, S., & Therrell, M. (2021). A Paleo Perspective of Alabama and Florida (USA) Interstate Streamflow. Water, 13(5), 657. https://doi.org/10.3390/w13050657