How Can Be Lotic Ecosystem Size More Precisely Estimated? Comparing Different Approximations in Pre-Pyrenean and Pyrenean Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods: Size Estimation
2.3. Methods: Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Downes, B.J.; Barmuta, L.A.; Fairweather, P.G.; Faith, D.P.; Keough, M.J.; Lake, P.S.; Mapstone, B.D.; Quinn, G.P. Monitoring Ecological Impacts. Concepts and Practice in Flowing Waters; Cambridge University Press: Cambridge, UK, 2004; ISBN 978-0-521-06529-0. [Google Scholar]
- Allan, J.D. Stream Ecology. Structure and Function of Running Waters, 1st ed.; Chapman and Hall: London, UK, 1995; ISBN 978-0-412-35530-1. [Google Scholar]
- Shiklomanov, I.A. World Freshwater Resources. In Water in Crisis: A Guide to World’s Freshwater Resources; Gleick, P.H., Ed.; Oxford University Press Inc.: New York, NY, USA, 1993; pp. 13–24. ISBN 0-19-507628-1. [Google Scholar]
- Malmqvist, B.; Rundle, S. Threats to the running water ecosystems of the world. Environ. Conserv. 2002, 29, 134–153. [Google Scholar] [CrossRef]
- Gleick, P.H. Water Resources. In Encyclopedia of Climate and Weather; Shneider, S.H., Ed.; Oxford University Press: New York, NY, USA, 1996; pp. 817–823. [Google Scholar]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Strayer, D.L.; Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. North Am. Benthol. Soc. 2010, 29, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Hawksworth, D.J.; Kalin-Arroyo, M.T. Magnitude and Distribution of Biodiversity. In Global Biodiversity Assessment; Heywood, V.H., Ed.; Cambridge University Press: Cambridge, UK, 1995; pp. 107–191. [Google Scholar]
- Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist. Available online: www.catalogueoflife.org/annual-checklist/2019 (accessed on 19 December 2020).
- Grizzetti, B.; Liquete, C.; Pistocchi, A.; Vigiak, O.; Zulian, G.; Bouraoui, F.; De Roo, A.; Cardoso, A.C. Relationship between ecological condition and ecosystem services in European rivers, lakes and coastal waters. Sci. Total Environ. 2019, 671, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; Maccormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzybowski, M.; Glińska-Lewczuk, K. Principal threats to the conservation of freshwater habitats in the continental biogeographical region of Central Europe. Biodivers. Conserv. 2019, 28, 4065–4097. [Google Scholar] [CrossRef] [Green Version]
- Dudgeon, D. Anthropocene Extinction: Global Threats to Riverine Biodiversity and the Tragedy of the Freshwater Commons. In River Conservation. Challenges and Opportunities; Sabater, S., Elosegi, A., Eds.; Bilbao: Bloomington, IN, USA, 2013; pp. 129–167. [Google Scholar]
- Sala, O.E.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime. Bioscience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Poff, N.L. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 2018, 63, 1011–1021. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef] [Green Version]
- Monk, W.A.; Wood, P.J.; Hannah, D.M.; Wilson, D.A.; Extence, C.A.; Chadd, R.P. Flow variability and macroinvertebrate community response within riverine systems. River Res. Appl. 2006, 22, 595–615. [Google Scholar] [CrossRef] [Green Version]
- Belmar, O.; Velasco, J.; Gutiérrez-Cánovas, C.; Mellado-Díaz, A.; Millán, A.; Wood, P.J. The influence of natural flow regimes on macroinvertebrate assemblages in a semiarid Mediterranean basin. Ecohydrology 2013, 6, 363–379. [Google Scholar] [CrossRef] [Green Version]
- Solans, M.A.; Mellado-Díaz, A. A Landscape-Based Regionalization of Natural Flow Regimes in the Ebro River Basin and Its Biological Validation. River Res. Appl. 2015, 31, 457–469. [Google Scholar] [CrossRef]
- Mellado-Díaz, A.; Sánchez-González, J.R.; Guareschi, S.; Magdaleno, F.; Toro Velasco, M. Exploring longitudinal trends and recovery gradients in macroinvertebrate communities and biomonitoring tools along regulated rivers. Sci. Total Environ. 2019, 695, 133774. [Google Scholar] [CrossRef] [PubMed]
- Barbarossa, V.; Schmitt, R.J.P.; Huijbregts, M.A.J.; Zarfl, C.; King, H.; Schipper, A.M. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl. Acad. Sci. USA 2020, 117, 3648–3655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tockner, K.; Uehlinger, U.; Robinson, T.R. Rivers of Europe, 1st ed.; Elsevier: London, UK, 2009; ISBN 978-0-12-369449-2. [Google Scholar]
- Gough, P.; Fernandez Garrido, P.; Van Herk, J. Dam Removal. A Viable Solution for the Future of our European Rivers. Available online: https://damremoval.eu/wp-content/uploads/2018/07/Dam-Removal-Europe-Report-2018-DEF-1.pdf (accessed on 19 December 2020).
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Poff, N.L. A river that flows free connects up in 4D. Nature 2019, 569, 201–202. [Google Scholar] [CrossRef] [Green Version]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river & floodplain systems. Can. Spec. Pub. Aquat. Sci. 1989, 106, 110–127. [Google Scholar]
- Tockner, K.; Malard, F.; Ward, J.V. An extension of the Flood Pulse Concept. Hydrol. Process. 2000, 14, 2861–2883. [Google Scholar] [CrossRef]
- Belletti, B.; Garcia de Leaniz, C.; Jones, J.; Bizzi, S.; Börger, L.; Segura, G.; Castelletti, A.; van de Bund, W.; Aarestrup, K.; Barry, J.; et al. More than one million barriers fragment Europe’s rivers. Nature 2020, 588, 436–441. [Google Scholar] [CrossRef]
- Batalla, R.J.; Gómez, C.M.; Kondolf, G.M. Reservoir-induced hydrological changes in the Ebro River basin (NE Spain). J. Hydrol. 2004, 290, 117–136. [Google Scholar] [CrossRef]
- DG Environment. Links between the Water Framework Directive (WFD 2000/60/EC) and Nature Directives (Birds Directive 2009/147/EC and Habitats Directive 92/43/EEC) Frequently Asked Questions; EC Europa: Brussels, Belgium, 2011. [Google Scholar]
- European Community. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora; European Community: Brussels, Belgium, 1992; pp. 568–583. [Google Scholar]
- European Commission. Reporting under Article 17 of the Habitats Directive Explanatory Notes and Guidelines for the Period 2013–2018; European Commision: Brussels, Belgium, 2017. [Google Scholar]
- European Commission. Directive 2000/60/EC oftThe European Parlamient And of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Commision: Brussels, Belgium, 2000; pp. 1–71. [Google Scholar]
- Allen, G.H.; Pavelsky, T. Global extent of rivers and streams. Science 2018, 361, 585–588. [Google Scholar] [CrossRef] [Green Version]
- Downing, J.A.; Cole, J.J.; Duarte, C.M.; Middelburg, J.J.; Melack, J.M.; Prairie, Y.T.; Kortelainen, P.; Striegl, R.G.; McDowell, W.H.; Tranvik, L.J. Global abundance and size distribution of streams and rivers. Inl. Waters 2012, 2, 229–236. [Google Scholar] [CrossRef]
- Oberdorff, T.; Guilbert, E.; Lucchetta, J.C. Patterns of fish species richness in the Seine River basin, France. Hydrobiologia 1993, 259, 157–167. [Google Scholar] [CrossRef]
- Wollheim, W.M.; Vörösmarty, C.J.; Peterson, B.J.; Seitzinger, S.P.; Hopkinson, C.S. Relationship between river size and nutrient removal. Geophys. Res. Lett. 2006, 33, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Dynesius, M.; Nilsson, C. Fragmentation and flow regulation of river systems in the northern third of the world. Science 1994, 266, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Hauer, F.R.; Lamberti, G.A. Methods in Stream Ecology, 2nd ed.; Hauer, F.R., Lamberti, G.A., Eds.; Academic Press: San Diego, CA, USA, 2007; ISBN 9780123329080. [Google Scholar]
- Leopold, L.B.; Maddock, T.J. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications; US Government Printing Office: Washington, DC, USA, 1953; Volume 252.
- Lin, P.; Pan, M.; Allen, G.H.; de Frasson, R.P.; Zeng, Z.; Yamazaki, D.; Wood, E.F. Global Estimates of Reach—Level Bankfull River Width Leveraging Big Data Geospatial Analysis. Geophys. Res. Lett. 2020, 47, 1–12. [Google Scholar] [CrossRef]
- Demarchi, L.; Bizzi, S.; Piégay, H. Hierarchical object-based mapping of riverscape units and in-stream mesohabitats using lidar and VHR imagery. Remote Sens. 2016, 8, 97. [Google Scholar] [CrossRef] [Green Version]
- Tomsett, C.; Leyland, J. Remote sensing of river corridors: A review of current trends and future directions. River Res. Appl. 2019, 35, 779–803. [Google Scholar] [CrossRef]
- Andreadis, K.M.; Schumann, G.J.P.; Pavelsky, T. A simple global river bankfull width and depth database. Water Resour. Res. 2013, 49, 7164–7168. [Google Scholar] [CrossRef]
- Thoms, M.C. Floodplain–river ecosystems: Lateral connections and the implications of human interference. Geomorphology 2003, 56, 335–349. [Google Scholar] [CrossRef]
- Scown, M.W.; Thoms, M.C.; De Jager, N.R. An index of floodplain surface complexity. Hydrol. Earth Syst. Sci. 2016, 20, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Evans, D. The habitats of the European union habitats directive. Biol. Environ. 2006, 106, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Thorp, J.H.; Delong, M.D. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 2002, 96, 543–550. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Wadeable Streams Assessment: A Collaborative Survey of the Nation’s Streams; US Environmental Protection Agency: Washington, DC, USA, 2006; p. 113.
- Vianello, A.; D’Agostino, V. Bankfull width and morphological units in an alpine stream of the dolomites (Northern Italy). Geomorphology 2007, 83, 266–281. [Google Scholar] [CrossRef]
- Mount, N.J.; Louis, J.; Teeuw, R.M.; Zukowskyj, P.M.; Stott, T. Estimation of error in bankfull width comparisons from temporally sequenced raw and corrected aerial photographs. Geomorphology 2003, 56, 65–77. [Google Scholar] [CrossRef]
- Gleason, C.J. Hydraulic geometry of natural rivers: A review and future directions. Prog. Phys. Geogr. 2015, 39, 337–360. [Google Scholar] [CrossRef]
- Blackburn-Lynch, W.; Agouridis, C.T.; Barton, C.D. Development of Regional Curves for Hydrologic Landscape Regions (HLR) in the Contiguous United States. J. Am. Water Resour. Assoc. 2017, 53, 903–928. [Google Scholar] [CrossRef]
- Bieger, K.; Rathjens, H.; Allen, P.M.; Arnold, J.G. Development and Evaluation of Bankfull Hydraulic Geometry Relationships for the Physiographic Regions of the United States. J. Am. Water Resour. Assoc. 2015, 51, 842–858. [Google Scholar] [CrossRef] [Green Version]
- Faustini, J.M.; Kaufmann, P.R.; Herlihy, A.T. Downstream variation in bankfull width of wadeable streams across the conterminous United States. Geomorphology 2009, 108, 292–311. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-González, J.-R.; Mellado-Díaz, A. Descripción de un Procedimiento para Generar una Tipología de Hábitats Lóticos Existentes en España; Ministerio para la Transición Ecológica: Madrid, Spain, 2019.
- MITERD. Cauces con DPH Cartográfico. Available online: https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/agua/dph-cartografico.aspx (accessed on 1 August 2020).
- MARM. Guía Metodológica para el Desarrollo del Sistema Nacional de Cartografía de Zonas Inundables; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2011.
- MITERD. Superficie de Cuenca Vertiente a Cada Celda de 25 × 25 m. Available online: https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/agua/superficie-cuenca-25x25.aspx (accessed on 1 August 2020).
- Environmental System Research Institute (ESRI). ArcGIS Desktop: Release 10.5; Environmental Systems Research Institute: Redlands, CA, USA, 2016. [Google Scholar]
- Moody, J.A.; Meade, R.H.; Jones, D.R. Lewis and Clarke’s Observations and Measurements of Geomorphology and Hidrology, and Changes with Time; U.S. Geological Survey Circular 1246: Reston, VA, USA, 2003. [Google Scholar]
- Castro, J.M.; Jackson, P.L. Bankfull discharge recurrence interval and regional hidraulic geometric relationship: Patterns in the pacific northwest, USA. J. Am. Water Resour. Assoc. 2001, 37, 1249–1262. [Google Scholar] [CrossRef]
- Metcalf, C.K.; Wilkerson, S.D.; Harman, W.A. Bankfull regional curves for north and Northwest Florida streams. J. Am. Water Resour. Assoc. 2009, 45, 1260–1272. [Google Scholar] [CrossRef]
- Krstolic, J.L.; Chaplin, J.J. Bankfull Regional Curves for Streams in the Non-Urban, Non-Tidal Coastal Plain Physiographic Province, Virginia and Maryland Scientific Investigations Report 2007–5162; US Geological Survey: Washington, DC, USA, 2007.
- Brockman, R.R.; Agouridis, C.T.; Workman, S.R.; Ormsbee, L.E.; Fogle, A.W. Bankfull regional curves for the inner and the outer bluegrass regions of kentucky. J. Am. Water Resour. Assoc. 2012, 48, 391–406. [Google Scholar] [CrossRef]
- Mohamoud, Y.M.; Parmar, R.S. Estimating streamflow and associated hydraulic geometry, the mid-Atlantic region, USA. J. Am. Water Resour. Assoc. 2006, 5017, 755–768. [Google Scholar] [CrossRef]
- Lee, W.H.; Choi, H.S. Characteristics of Bankfull Discharge and its Estimation using Hydraulic Geometry in the Han River Basin. J. Civ. Eng. 2018, 22, 2290–2299. [Google Scholar] [CrossRef]
- Hession, W.C.; Pizzuto, J.E.; Johnson, T.E.; Horwitz, R.J. Influence of bank vegetation on channel morphology in rural and urban watersheds. Geology 2003, 31, 147–150. [Google Scholar] [CrossRef]
- Doll, B.A.; Wise-Frederick, D.E.; Buckner, C.M.; Wilkerson, S.D.; Harman, W.A.; Smith, R.E.; Spooner, J. Hydraulic geometry relationships for urban streams throughout the piedmont of North Carolina. J. Am. Water Resour. Assoc. 2002, 38, 641–651. [Google Scholar] [CrossRef]
- Sweet, W.V.; Geratz, J.W. Bankfull hydraulic geometry relationship and recurrence intervals for North Carolina’s coasta plain 1. JAWRA 2003, 39, 861–871. [Google Scholar]
- Golden, L.A.; Springer, G.S. Channel geometry, median grain size, and stream power in small mountain streams. Geomorphology 2006, 78, 64–76. [Google Scholar] [CrossRef]
- Johnson, P.A.; Fecko, B.J. Regional channel geometry equations: A statiscial comparison for physiographic provinces in the Eastern US. River Res. Appl. 2008, 24, 823–834. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing. R version 4.0.2 “Taking Off Again”; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Rosenfeld, J.S.; Post, J.; Robins, G.; Hatfield, T. Hydraulic geometry as a physical template for the River Continuum: Application to optimal flows and longitudinal trends in salmonid habitat. Can. J. Fish. Aquat. Sci. 2007, 64, 755–767. [Google Scholar] [CrossRef] [Green Version]
- ASCE Task Committee on Hydraulics, Bank Mechanics, and Model of River Width Adjust. River Width Adjustment. Processes and Mechanisms. J. Hydraul. Eng. 1998, 124, 881–902. [Google Scholar] [CrossRef]
- Eke, E.C.; Czapiga, M.J.; Viparelli, E.; Shimizu, Y.; Imran, J. Coevolution of width and sinuosity in meandering rivers. J. Fluid Mech. 2014, 127–174. [Google Scholar] [CrossRef]
- Demarchi, L.; Bizzi, S.; Piégay, H. Regional hydromorphological characterization with continuous and automated remote sensing analysis based on VHR imagery and low-resolution LiDAR data. Earth Surf. Process. Landf. 2017, 42, 531–551. [Google Scholar] [CrossRef]
- Allan, J.D.; Castillo, M.M. Stream Ecology. Structure and Function of Running Waters; Springer: Dordrecht, The Netherlands, 2007; p. 436. ISBN 9781402055829. [Google Scholar]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Newbold, J.D.; Elwood, J.W.; O’Neill, R.V.; Van Winkle, W. Measuring Nutrient Spiralling in Streams. Can. J. Fish. Aquat. Sci. 1981, 38, 860–863. [Google Scholar] [CrossRef]
Candidate Model | K | r2adj | AICc | ∆AICc | wAICc | ER |
---|---|---|---|---|---|---|
log10(Wb) ~ log10(A) + log10(MS) + log10(MP) + MA | 6 | 0.45 | −232.26 | 3.83 | 0.10 | 6.80 |
log10(Wb) ~ log10(A) + log10(MS) + log10(MP) | 5 | 0.45 | −233.99 | 2.10 | 0.23 | 2.86 |
log10(Wb) ~ log10(A) + log10(MS) | 4 | 0.46 | −236.66 | 0 | 0.67 | 1 |
log10(Wb) ~ log10(A) | 3 | 0.45 | −236.03 | 0.07 | 0.65 | 1.03 |
Candidate Model | K | r2adj | AICc | ∆AICc | wAICc | ER |
---|---|---|---|---|---|---|
(Sb−Sbe) ~ Wb + SI + L + Sb | 6 | 0.71 | 1482.24 | 4.26 | 0.08 | 8.43 |
(Sb−Sbe) ~ Wb *** + SI * + L | 5 | 0.71 | 1480.10 | 2.12 | 0.23 | 2.89 |
(Sb−Sbe) ~ Wb *** + SI ** | 4 | 0.71 | 1477.97 | 0 | 0.67 | 1 |
(Sb−Sbe) ~ Wb *** | 3 | 0.68 | 1485.79 | 7.81 | 0.01 | 49.70 |
(Sb−Sbe) ~ SI | 3 | 0.01 | 1571.23 | 93.25 | 0.00 | >100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coello Sanz, F.; Casals, F.; Sánchez-González, J.R. How Can Be Lotic Ecosystem Size More Precisely Estimated? Comparing Different Approximations in Pre-Pyrenean and Pyrenean Mountains. Water 2021, 13, 721. https://doi.org/10.3390/w13050721
Coello Sanz F, Casals F, Sánchez-González JR. How Can Be Lotic Ecosystem Size More Precisely Estimated? Comparing Different Approximations in Pre-Pyrenean and Pyrenean Mountains. Water. 2021; 13(5):721. https://doi.org/10.3390/w13050721
Chicago/Turabian StyleCoello Sanz, Fernando, Frederic Casals, and Jorge Rubén Sánchez-González. 2021. "How Can Be Lotic Ecosystem Size More Precisely Estimated? Comparing Different Approximations in Pre-Pyrenean and Pyrenean Mountains" Water 13, no. 5: 721. https://doi.org/10.3390/w13050721
APA StyleCoello Sanz, F., Casals, F., & Sánchez-González, J. R. (2021). How Can Be Lotic Ecosystem Size More Precisely Estimated? Comparing Different Approximations in Pre-Pyrenean and Pyrenean Mountains. Water, 13(5), 721. https://doi.org/10.3390/w13050721