Learning Case Study of a Shallow-Water Model to Assess an Early-Warning System for Fast Alpine Muddy-Debris-Flow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical and Geological Setting of the Site Selected as Representative Test-Case (Marderello’s Basin Turin, Italy)
2.2. In Situ Measurement Devices
2.3. Measured Data
2.4. Selected Mathematical–Numerical Approach
2.4.1. Hydrodynamic Unsteady Flow Models
2.4.2. Mud and Debris Flow Model (RiverFlow2D MD Module)
- Full-Bingham (FB): for this option ; are the solutions of the following two equations:
- Coulomb-Turbulent-Yield (CTY): this was the most applied rheological law for this paper in which
2.4.3. Manning’s Coefficient
2.4.4. Infiltration
2.4.5. Numerical Solver
Optimal Time-Step Computation
2.5. Conceptual Model and Selected Inputs
2.5.1. Numerical Meshing and Spatial Rainfall Distribution
2.5.2. Rainfall Inputs
- Zone 1: an upstream area with rainfall inputs equal to the 100% of the measured data obtained from the Marderello station;
- Zone 2: a central area with input equal to 60–80% of the experimental data (for details see the caption of Figure 4d–f);
- Zone 3: the downstream area equal to 30–65% of the experimental data (caption of Figure 4d–f).
2.5.3. Rainfall Inputs Including 5 Available Rainfall Gauges Data
2.5.4. Computer Hardware Specifications
- CPU Intel i7-7700 3.6 GHz;
- #Cores: 4;
- #Threads: 8;
- GPU Nvidia GeForce GTX 1060 6 GB;
- #GPU Cores: 1280;
- Clock: 1506 MHz;
- Ram: 32 Gb.
3. Results and Discussion
3.1. First Attempts with Marderello’s Gauge Rainfall Inputs
3.2. Numerical Outcomes Resulting from the Inclusion of the 5 Available Rainfall Gauges
Simul. Figure | Mesh (m) Figure 5a | Rainfall (mm/h) All Gauges Figure 2a–e | Density (kg/m3) | Manning (n) | Debris (MD Module) | YS (Pa) | Angle (°) | Infiltration (Horton) | ||
---|---|---|---|---|---|---|---|---|---|---|
k (s−1) | Fc (10−6) (m/s) | Fo (10−6) (m/s) | ||||||||
S8, Figure 5a | F = 1.00 | Figure 6a | 2000 | 0.055 | CTY | 0.075 | 3 | - | - | |
S9, Figure 5a | F = 1.00 | Figure 6a | 2000 | 0.055 | CTY | 0.75 | 3 | - | - | - |
S10, Figure 5a | F = 1.00 | Figure 6a | 2000 | 0.055 | CTY | 15 | 3 | - | - | - |
S11, Figure 5b | F = 1.00 | Figure 6a | 1600 | 0.055 | CTY | 15 | 3 | - | - | - |
S12, Figure 5b | F = 1.00 | Figure 6a | 1600 | 0.055 | CTY | 19 | 3 | - | - | - |
S13, Figure 5b | F = 1.00 | Figure 6a | 1600 | 0.055 | CTY | 19 | 3 | 0.5 | 3.16 | 13.38 |
S14, Figure 5b | F = 1.00 | Figure 6a | 1600 | 0.055 | CTY | 19 | 3 | 0.5 | 1.58 | 7.06 |
S15, Figure 5c | F = 1.00 | Figure 6a | 1600 | 0.055 | CTY | 6 | 3 | 0.5 | 1.58 | 13.38 |
S16, Figure 5c | F = 1.00 | Figure 6a | 1600 | 0.055 | CTY | 5 | 3 | 0.5 | 4.00 | 7.06 |
S17, Figure 5c | F = 1.00 | Figure 6a | 1600 | 0.055 | CTY | 5 | 3 | 0.05 | 5.00 | 13.38 |
S18, Figure 5c | F = 1.00 | Figure 6a | 1600 | 0.055 | CTY | 3 | 3 | 0.5 | 4.00 | 13.38 |
S19, Figure 6a | F = 2.00 | Figure 6c | 1600 | 0.055 | CTY | 5 | 3 | 0.05 | 1.58 | 7.06 |
S20, Figure 6a | F = 1.75 | Figure 6c | 1600 | 0.055 | CTY | 5 | 3 | 0.05 | 1.58 | 7.06 |
S21, Figure 6a | F = 1.50 | Figure 6c | 1600 | 0.055 | CTY | 5 | 3 | 0.05 | 1.58 | 7.06 |
S22, Figure 6b | F = 1.25 | Figure 6c | 1600 | 0.055 | CTY | 5 | 3 | 0.05 | 1.58 | 7.06 |
S23, Figure 6b | F = 1.00 | Figure 6c | 1600 | 0.055 | CTY | 5 | 3 | 0.05 | 1.58 | 7.06 |
S24, Figure 6c | F = 0.75 | Figure 6c | 1600 | 0.055 | CTY | 5 | 3 | 0.05 | 1.58 | 7.06 |
S25, Figure 6c | F = 0.50 | Figure 6c | 1600 | 0.055 | CTY | 5 | 3 | 0.05 | 1.58 | 7.06 |
S26, Figure 7a | F = 0.50 | Figure 6c | 1600 | 0.15 | CTY | 19 | 3.5 | 0.05 | 1.58 | 7.06 |
S27, Figure 7a | F = 0.75 | Figure 6c | 1600 | 0.15 | CTY | 19 | 3 | 0.05 | 1.58 | 7.06 |
S28, Figure 7a | F = 0.50 | Figure 6c | 1600 | 0.15 | CTY | 19 | 3.5 | 0.05 | 2.5 | 8.50 |
S29, Figure 7b | F = 0.75 | Figure 6c | - | 0.15 | Turb | - | - | 0.05 | 1.65 | 7.48 |
S30, Figure 7b | F = 0.75 | Figure 6c | - | 0.15 | Turb | - | - | 0.05 | 2.5 | 8.5 |
3.3. Simulations Comparison
- rainfall data acquisition based on punctual measures;
- DTM’s scales coarser than those evidently necessary to capture the many details of the debris profile, in particular, the channeling of small quantities of water following different paths from those that can be measured by the only available hydrometer;
- variability of the density and the changing of the debris’ typology along its path, the actual rate of water infiltration into the soil;
- the use of a necessarily simplified CFD modelling, due to the large scale of the are under study.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Savage, S.B.; Hutter, K. The dynamics of avalanches of granular materials from initiation to run-out. Acta Mech. 1991, 86, 201–223. [Google Scholar] [CrossRef]
- Iverson, R.M. The physics of debris flows. Rev. Geophys. 1997, 35, 245–296. [Google Scholar] [CrossRef] [Green Version]
- Revellino, P.; Hungr, O.; Guadagno, F.M.; Evans, S.G. Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy. Environ. Geol. 2004, 45, 295–311. [Google Scholar] [CrossRef]
- Rickenmann, D.; Laigle, D.; McArdell, B.W.; Hubl, J. Comparison of 2D debris-flow simulation models with field events. Comput. Geosci. 2006, 10, 241–264. [Google Scholar] [CrossRef] [Green Version]
- Pastor, M.; Blanc, T.; Haddad, B.; Petrone, S.; Sanchez Morles, M.; Drempetic, V.; Issler, D.; Crosta, G.B.; Cascini, L.; Sorbino, G.; et al. Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 2014, 11, 793–812. [Google Scholar] [CrossRef] [Green Version]
- Hürlimann, M.; McArdell, B.W.; Rickli, C. Field and laboratory analysis of the runout characteristics of hillslope debris flows in Switzerland. Geomorphology 2015, 232, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Gregoretti, C.; Degetto, M.; Boreggio, M. GIS-based cell model for simulating debris flow runout on a fan. J. Hydrol. 2016, 534, 326–340. [Google Scholar] [CrossRef]
- Pasculli, A.; Cinosi, J.; Turconi, L.; Sciarra, N. Parametric study of an Alpine wet debris flow event (Novalesa, Torino, Italy) applying the Finite Volume Method (FVM). Comparison with available experimental data. In Proceedings of the IOP Conference Series: Earth and Environmental Science WMESS2018, Prague, Czech Republic, 3–7 September 2018; Volume 221, pp. 1–11. [Google Scholar] [CrossRef]
- De Luca, D.L.; Versace, P. Diversity of Rainfall Thresholds for early warning of hydro-geological disasters. Adv. Geosci. 2017, 44, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Pasculli, A. CFD-FEM 2D Modelling of a local water flow. Some numerical results. Alp. Mediterr. Quat. 2008, 21, 215–228. [Google Scholar]
- Termini, D.; Di Leonardo, A. Turbulence structure and implications in exchange processes in high-amplitude vegetated meanders: Experimental investigation. Adv. Water Resour. 2017, 120, 114–127. [Google Scholar] [CrossRef]
- Pasculli, A.; Sciarra, N. A Probabilistic Approach to Determine the Local Erosion of a Watery Debris Flow. In Proceedings of the XI IAEG International Congress, Liege, Belgium, 3–8 September 2006; p. S08-08. [Google Scholar]
- Pasculli, A.; Minatti, L. Dam break Smoothed Particle Hydrodynamic modeling based on Riemann solvers. WIT Trans. Eng. Sci. 2010, 69, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Pasculli, A.; Minatti, L.; Sciarra, N.; Paris, E. SPH modeling of fast muddy debris flow: Numerical and experimental comparison of certain commonly utilized approaches. Ital. J. Geosci. 2013, 132, 350–365. [Google Scholar] [CrossRef] [Green Version]
- Pasculli, A.; Audisio, C. Cellular Automata Modelling of Fluvial Evolution: Real and Parametric Numerical Results Comparison Along River Pellice (NW Italy). Environ. Modeling Assess. 2015, 20, 425–441. [Google Scholar] [CrossRef]
- Audisio, C.; Pasculli, A.; Sciarra, N. Conceptual and numerical models applied on the river pellice (North western italy). Eng. Geol. Soc. Territ. 2015, 3, 327–330. [Google Scholar]
- Pasculli, A.; Audisio, C.; Lollino, G. Application of cellular automaton model for river morphological studies: CAESAR and the Pellice River (Piedmont, Italy). Rend. Online Soc. Geol. Ital. 2010, 11, 118–119. [Google Scholar]
- Berardi, L.; Laucelli, D.; Simeone, V.; Giustolisi, O. Simulating floods in ephemeral streams in Southern Italy by full-2D hydraulic models. Int. J. River Basin Manag. 2013, 11, 1–17. [Google Scholar] [CrossRef]
- Hydronia, L.L.C. RiverFlow2D, Two-Dimensional Flood and River Dynamics Model, Reference Manual. Available online: www.hydronia.com (accessed on 15 December 2017).
- Van Emelen, S.; Zech, Y.; Soares-Frazão, S. Limitations of the shallow water assumptions for problems involving steep slopes: Application to a dike overtopping test case. In River Flow 2014; Taylor & Francis Group: London, UK, 2014; ISBN 978-1-138-02674-2. [Google Scholar]
- Esposito, L.; Esposito, A.W.; Pasculli, A.; Sciarra, N. Particular features of the physical and mechanical characteristics of certain Phlegraean pyroclastic soils. CATENA 2013, 104, 186–194. [Google Scholar] [CrossRef]
- Pasculli, A.; Sciarra, N.; Esposito, L.; Esposito, A.W. Effects of wetting and drying cycles on mechanical properties of pyroclastic soils. CATENA 2017, 156, 113–123. [Google Scholar] [CrossRef]
- Di Nucci, C.; Pasquali, D.; Celli, D.; Pasculli, A.; Fischione, P.; Di Risio, M. Turbulent bulk viscosity. Eur. J. Mech. B/Fluids 2020, 84, 446–454. [Google Scholar] [CrossRef]
- Pasculli, A. Viscosity variability impact on 2D laminar and turbulent Poiseuille velocity profiles; Characteristic-Based Split (CBS) stabilization. In Proceedings of the 5th International Conference on Mathematics and Computers in Sciences and Industry (MCSI), Corfu, Greece, 25–27 August 2018. [Google Scholar] [CrossRef]
- Coviello, V.; Arattano, M.; Turconi, L. Detecting torrential processes from a distance with a seismic monitoring network. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 2015, 78, 2055–2080. [Google Scholar] [CrossRef]
- Turconi, L.; Kumar De, S.; Tropeano, D.; Savio, G. Slope failure and related processes in the Mt. Rocciamelone area (Cenischia valley, Western Italian Alps). Geomorphology 2010, 114, 115–128. [Google Scholar] [CrossRef]
- Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS-A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0. US Geological Survey Open-File Report 2008–11592008–1159. 2008. Available online: http://pubs.usgs.gov/of/2008/1159/ (accessed on 15 November 2020).
- Rigon, R.; Bertoldi, G.; Over, T.M. GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets. J. Hydrometeorol. 2006, 7, 371–388. [Google Scholar] [CrossRef]
- Garcia-Navarro, P.; Murillo, J.; Fernandez-Pato, J.; Echeverribar, I.; Morales-Hernandez, M. The shallow water equations and their application to realistic cases. Environ. Fluid Mech. 2019, 19, 1235–1252. [Google Scholar] [CrossRef] [Green Version]
- Murillo, J.; Garcia-Navarro, P. Weak solutions for partial differential equations with source terms: Application to the shallow water equations. J. Comput. Phys. 2010, 229, 4327–4368. [Google Scholar] [CrossRef]
- Toro, E. Shock-Capturing Methods for Free-Surface Shallow Flows; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Vreugdenhil, C. Numerical Methods for Shallow Water Flow. Water Science and Technology Library; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; p. 272. [Google Scholar]
- Murillo, J.; Garcia-Navarro, P.; Burguete, J. Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 2012, 231, 1963–2001. [Google Scholar] [CrossRef]
- Chen, H.X.; Zhang, L.M. EDDA 1.0: Integrated simulation of debris flow erosion, deposition and property changes. Geosci. Model Dev. 2015, 8, 829–844. [Google Scholar] [CrossRef] [Green Version]
- Naef, D.; Rickenmann, D.; Rutschmann, P.; McArdell, B.W. Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat. Hazards Earth Syst. Sci. 2006, 6, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill Book Company: New York, NY, USA, 1959; p. 680. [Google Scholar]
- Horton, R. The role of infiltration in the hydrologic cycle. Trans. Am. Geophys. Union 1933, 14, 446–460. [Google Scholar] [CrossRef]
- Rawls, W.; Yates, P.; Asmussen, L. Calibration of Selected Infiltration Equation for the Georgia Coastal Plain; Report ARS-S-113; Agriculture Research Service: Washington, DC, USA, 1976.
- Akan, A.O. Urban Stormwater Hydrology: A Guide to Engineering Calculations; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Note Illustrative della Carta Geologica d’Italia, Progetto CARG 1999, F 154 SUSA, pp. 126. Ente Realizzatore: Regione Piemonte, Direzione Regionale Servizi Tecnici di Prevenzione; Italy. Available online: https://www.isprambiente.gov.it/Media/carg/note_illustrative/154_Susa.pdf (accessed on 20 February 2018).
- Rodriguez-Iturbe, I.; Mejia, J.M. On the transformation of point rainfall to areal rainfall. Water Resour. Res. 1974, 10, 729–735. [Google Scholar] [CrossRef]
- Pavlovic, S.; Perica, S.; St Laurent, M.; Mejia, A. Inter-comparison of selected fixed-area areal reduction factor methods. J. Hydrol. 2016, 537, 419–430. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Kim, D.; Kang, B. The role of rainfall spatial variability in estimating areal reduction factors. J. Hydrol. 2019, 568, 416–426. [Google Scholar] [CrossRef]
- Papadrakakis, M.; Stavroulakis, G.; Karatarakis, A. A new era in scientific computing: Domain decomposition methods in hybrid CPU–GPU architectures. Comput. Methods Appl. Mech. Eng. 2011, 200, 1490–1508. [Google Scholar] [CrossRef]
- Calista, M.; Pasculli, A.; Sciarra, N. Reconstruction of the geotechnical model considering random parameters distributions. In Engineering Geology for Society and Territory-Volume 2; Springer: Cham, Switzerland, 2015; pp. 1347–1351. ISBN 978-331909057-3. [Google Scholar] [CrossRef]
- Pasculli, A.; Calista, M.; Sciarra, N. Variability of local stress states resulting from the application of Monte Carlo and finite difference methods to the stability study of a selected slope. Eng. Geol. 2018, 245, 370–389. [Google Scholar] [CrossRef]
- Chiaudani, A.; Di Curzio, D.; Palmucci, W.; Pasculli, A.; Polemio, M.; Rusi, S. Statistical and Fractal Approaches on Long Time-Series to Surface-Water/Groundwater Relationship Assessment: A Central Italy Alluvial Plain Case Study. Water 2017, 9, 850. [Google Scholar] [CrossRef] [Green Version]
Simul. (Figure) | Rainfall Distribution Figure 2c Marderello Gauge Percentage (%) of TMR | Debris (MD Module) | Mesh (m) | Manning (n) | Density (kg/m3) | Yield stress (YS) | Viscosity (Pa·s) | Angle (°) |
---|---|---|---|---|---|---|---|---|
S1 Figure 4a | Uniform (100%) | no | Unif. 10. u.a.m.w. | 0.04 | 1000 | - | 0.01 | - |
S2 Figure 4b | Uniform (100%) | no | Unif. 5 u.a.m.w. | 0.04 | 1000 | - | 0.01 | - |
S3 Figure 4c | Uniform (100%) | no | Unif. 2.5 u.a.m.w. | 0.04 | 1000 | - | 0.01 | - |
S4 Figure 4d | Figure 3e VarRainDistr-1: areas ① ② ③ 100−60−30% | no | Figure 3d VarMeshDistr-1: areas ① ② ③ ④ u.a.m.w.: 10 m 5 m 2.5 m 2 m | 0.05 | 1000 | - | 0.01 | - |
S5 Figure 4e | Figure 3e VarRainDistr-2: 100−80−62% | FB | Figure 3d VarMeshDistr-1 | 0.055 | 1100 | 0.075 | 0.1 | - |
S6 Figure 4f | Figure 3e VarRainDistr-3: 100−80−64% | CTY | Figure 3d VarMeshDistr-1 | 0.055 | 1100 | 0.075 | - | 3 |
S7 Figure 4g | Figure 3e VarRainDistr-4: 100−80−66% | CTY | Figure 3d VarMeshDistr-1 | 0.055 | 1100 | 0.075 | - | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasculli, A.; Cinosi, J.; Turconi, L.; Sciarra, N. Learning Case Study of a Shallow-Water Model to Assess an Early-Warning System for Fast Alpine Muddy-Debris-Flow. Water 2021, 13, 750. https://doi.org/10.3390/w13060750
Pasculli A, Cinosi J, Turconi L, Sciarra N. Learning Case Study of a Shallow-Water Model to Assess an Early-Warning System for Fast Alpine Muddy-Debris-Flow. Water. 2021; 13(6):750. https://doi.org/10.3390/w13060750
Chicago/Turabian StylePasculli, Antonio, Jacopo Cinosi, Laura Turconi, and Nicola Sciarra. 2021. "Learning Case Study of a Shallow-Water Model to Assess an Early-Warning System for Fast Alpine Muddy-Debris-Flow" Water 13, no. 6: 750. https://doi.org/10.3390/w13060750
APA StylePasculli, A., Cinosi, J., Turconi, L., & Sciarra, N. (2021). Learning Case Study of a Shallow-Water Model to Assess an Early-Warning System for Fast Alpine Muddy-Debris-Flow. Water, 13(6), 750. https://doi.org/10.3390/w13060750