Evaluation of Combined Sewer System Operation Strategies Based on Highly Resolved Online Data
Abstract
:1. Introduction
- How long are time series required to be to produce robust and reliable optimization results?
- What influence does the optimization objective have on the results?
- How great is the realistic optimization potential in conventionally operated sewer systems?
- What additional benefit does RTC bring in terms of reducing emissions?
2. Materials and Methods
2.1. Measured Data
2.2. Data Based Static Optimization
- Minimization of total overflow volume from both tanks
- Minimization of total TSS overflow load from both tanks
- Minimization of total overflow duration from both tanks
2.3. Data Based Evaluation of Dynamic RTC Strategies
2.4. Case Study
3. Results and Discussion
3.1. Robustness of Optimization Results
3.2. Evaluation of RTC Strategies
3.3. Estimation of Optimization Potential
3.4. Case Study
4. Conclusions
- In conventionally operated sewer systems, a simple static measured data-based optimization of the controlled outflows can reduce a major part of the emissions to the receiving water body (up to 17% of the emitted volume in the conceptual catchment).
- From a total emission perspective, the additional benefit of RTC compared to optimal static outflow settings is low (maximum 3% theoretical potential in this study). Therefore, a static outflow optimization should always be the first step of any operational improvement measured in sewer systems. Considering event-wise reductions, the real ecological benefit of RTC strategies may be higher.
- Data-based optimization has the largest benefit in sewer systems where the actual degree of development is unknown. In these systems, sensitive and hard to determine parameters required for hydrologic modelling, such as effective impervious area, are highly uncertain. With increasing use, low impact development (LID) parameters are even harder to determine since the degree of imperviousness can hardly be determined. However, to gain reliable results, the measured input data for the transport model has to be of good quality.
- An additional indicator for the optimization potential of a sewer system is the buffer capacity in the form of specific storage volumes. Systems with medium to low specific storage capacity have a larger optimization potential and should therefore be prioritized when performing optimization measures.
- For a reliable optimization of controlled outflows all flow components of the CSO tanks have to be considered. Neglecting components such as overflow volumes leads to invalid optimization results when optimizing the system for minimum CSO volumes.
- Different optimization objectives like minimization of overflow duration, load, and volume gave similar results in this study. Therefore, the additional benefit that costly quality measurements bring with them is usually not justified.
- In the investigated conceptual system, a time series of about four months with medium precipitation characteristics and about 10 precipitation events is sufficient. The investigation in the case study areas resulted in six months and a minimum of 200 mm cumulated rainfall. Further studies will show general conclusions regarding the influence of catchment and system characteristics on the required time series length.
- Instead of a uniform utilization of the storage volumes within sewer systems and an even distribution of overflows, the goal of sewer system operation may be the protection of particularly sensitive water bodies. A shift of the emission fractions from one CSO tank to another can be achieved by targeting a reduction at the relevant tank within the optimization. This can lead to a significant emission reduction at one CSO without major impact on total emissions.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borchardt, D.; Fischer, J.; Mauch, E. Auswirkungen von Mischwassereinleitungen auf den Stoffhaushalt und die Biozönose von Fließgewässern. Gwf Wasser-Abwasser 1998, 139, 342–395. [Google Scholar]
- Burton, G.A.; Pitt, R. Stormwater Effects Handbook: A Toolbox for Watershed Managers, Scientists, and Engineers; Lewis Pulishers: Boca Raton, FL, USA, 2002; ISBN 9780873719247. [Google Scholar]
- Ellis, J.; Hvitved-Jacobsen, T. Urban drainage impacts on receiving waters. J. Hydraul. Res. 1996, 34, 771–783. [Google Scholar] [CrossRef]
- Miskewitz, R.; Uchrin, C. In-Stream Dissolved Oxygen Impacts and Sediment Oxygen Demand Resulting from Combined Sewer Overflow Discharges. J. Environ. Eng. 2013, 139, 1307–1313. [Google Scholar] [CrossRef]
- David, T.; Borchardt, D.; Von Tümpling, W.; Krebs, P. Combined sewer overflows, sediment accumulation and element patterns of river bed sediments: A quantitative study based on mixing models of composite fingerprints. Environ. Earth Sci. 2013, 69, 479–489. [Google Scholar] [CrossRef]
- Borchardt, D.; Sperling, F. Urban stormwater discharges: Ecological effects on receiving waters and consequences for technical measures. Water Sci. Technol. 1997, 36, 173–178. [Google Scholar] [CrossRef]
- Casadio, A.; Maglionico, M.; Bolognesi, A.; Artina, S. Toxicity and pollutant impact analysis in an urban river due to combined sewer overflows loads. Water Sci. Technol. 2010, 61, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J. Risk assessment approaches for ecosystem responses to transient pollution events in urban receiving waters. Chemosphere 2000, 41, 85–91. [Google Scholar] [CrossRef]
- Passerat, J.; Ouattara, N.K.; Mouchel, J.-M.; Rocher, V.; Servais, P. Impact of an intense combined sewer overflow event on the microbiological water quality of the Seine River. Water Res. 2011, 45, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Willems, P.; Einfalt, T. Rainfall extremes and urban drainage. In Global Trends & Challenges in Water Science, Research and Management: A Compendium of Hot Topics and Features from IWA Specialist Groups; Li, H., Ed.; The International Water Association: London, UK, 2012; pp. 83–84. [Google Scholar]
- Gasperi, J.; Zgheib, S.; Cladière, M.; Rocher, V.; Moilleron, R.; Chebbo, G. Priority pollutants in urban stormwater: Part 2—Case of combined sewers. Water Res. 2012, 46, 6693–6703. [Google Scholar] [CrossRef] [Green Version]
- Launay, M.; Dittmer, U.; Steinmetz, H. Contribution of combined sewer overflows to micropollutant loads dis-charged into urban receiving water. In Proceedings of the Novatech 9th International Conference: Planning and Technologies for Sustainable Urban Water Management, Lyon, France, 28 June–1 July 2016. [Google Scholar]
- Scherer, U.; Fuchs, S.; Behrendt, H.; Hillenbrand, T. Emissions of heavy metals into river basins of Germany. Water Sci. Technol. 2003, 47, 251–257. [Google Scholar] [CrossRef] [PubMed]
- García, L.; Gómez, J.B.; Escobar, E.; Tellez, D.; Quijano, N.; Ocampo-Martínez, C. Modeling and real-time control of urban drainage systems: A review. Adv. Water Resour. 2015, 85, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Berggren, K.; Olofsson, M.; Viklander, M.; Svensson, G.; Gustafsson, A.-M. Hydraulic Impacts on Urban Drainage Systems due to Changes in Rainfall Caused by Climatic Change. J. Hydrol. Eng. 2012, 17, 92–98. [Google Scholar] [CrossRef]
- Denault, C.; Millar, R.G.; Lence, B.J. Assessment of Possible Impacts of Climate Change in an Urban Catchment. JAWRA J. Am. Water Resour. Assoc. 2006, 42, 685–697. [Google Scholar] [CrossRef]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.-G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system. J. Hydrol. 2008, 350, 100–113. [Google Scholar] [CrossRef]
- Nicklow, J.; Reed, P.; Savic, D.; Dessalegne, T.; Harrell, L.; Chan-Hilton, A.; Karamouz, M.; Minsker, B.; Ostfeld, A.; Singh, A.; et al. State of the Art for Genetic Algorithms and Beyond in Water Resources Planning and Management. J. Water Resour. Plan. Manag. 2010, 136, 412–432. [Google Scholar] [CrossRef]
- Maier, H.; Razavi, S.; Kapelan, Z.; Matott, L.; Kasprzyk, J.; Tolson, B. Introductory overview: Optimization using evolutionary algorithms and other metaheuristics. Environ. Model. Softw. 2019, 114, 195–213. [Google Scholar] [CrossRef]
- Maier, H.; Kapelan, Z.; Kasprzyk, J.; Kollat, J.; Matott, L.; Cunha, M.; Dandy, G.; Gibbs, M.; Keedwell, E.; Marchi, A.; et al. Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environ. Model. Softw. 2014, 62, 271–299. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.; Zhang, X.; Li, S.; Deng, S.; Chai, H. A Novel SWMM Based Algorithm Application to Storm Sewer Network Design. Water 2017, 9, 747. [Google Scholar] [CrossRef] [Green Version]
- Navin, P.K.; Mathur, Y.P. Layout and Component Size Optimization of Sewer Network Using Spanning Tree and Modified PSO Algorithm. Water Resour. Manag. 2016, 30, 3627–3643. [Google Scholar] [CrossRef]
- Steele, J.C.; Mahoney, K.; Karovic, O.; Mays, L.W. Heuristic Optimization Model for the Optimal Layout and Pipe Design of Sewer Systems. Water Resour. Manag. 2016, 30, 1605–1620. [Google Scholar] [CrossRef]
- Bakhshipour, A.E.; Bakhshizadeh, M.; Dittmer, U.; Haghighi, A.; Nowak, W. Hanging Gardens Algorithm to Generate Decentralized Layouts for the Optimization of Urban Drainage Systems. J. Water Resour. Plann. Manag. 2019, 145, 04019034. [Google Scholar] [CrossRef]
- Bakhshipour, A.; Hespen, J.; Haghighi, A.; Dittmer, U.; Nowak, W. Integrating Structural Resilience in the Design of Urban Drainage Networks in Flat Areas Using a Simplified Multi-Objective Optimization Framework. Water 2021, 13, 269. [Google Scholar] [CrossRef]
- Di Matteo, M.; Dandy, G.C.; Maier, H.R. Multiobjective Optimization of Distributed Stormwater Harvesting Systems. J. Water Resour. Plann. Manag. 2017, 143, 4017010. [Google Scholar] [CrossRef]
- Raei, E.; Alizadeh, M.R.; Nikoo, M.R.; Adamowski, J. Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty. J. Hydrol. 2019, 579, 124091. [Google Scholar] [CrossRef]
- Liu, Y.; Cibin, R.; Bralts, V.F.; Chaubey, I.; Bowling, L.C.; Engel, B.A. Optimal selection and placement of BMPs and LID practices with a rainfall-runoff model. Environ. Model. Softw. 2016, 80, 281–296. [Google Scholar] [CrossRef] [Green Version]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Multiobjective optimization of low impact development stormwater controls. J. Hydrol. 2018, 562, 564–576. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, Q.; Lei, X.; Savić, D.A. Comparison of Multiobjective Optimization Methods Applied to Urban Drainage Adaptation Problems. J. Water Resour. Plan. Manag. 2018, 144, 04018070. [Google Scholar] [CrossRef]
- Vojinovic, Z.; Sahlu, S.; Torres, A.S.; Seyoum, S.D.; AnvariFar, F.; Matungulu, H.; Barreto, W.; Savic, D.; Kapelan, Z. Multi-objective rehabilitation of urban drainage systems under uncertainties. J. Hydroinform. 2014, 16, 1044–1061. [Google Scholar] [CrossRef]
- Yazdi, J. Optimal Operation of Urban Storm Detention Ponds for Flood Management. Water Resour. Manag. 2019, 33, 2109–2121. [Google Scholar] [CrossRef]
- Ngamalieu-Nengoue, U.A.; Iglesias-Rey, P.L.; Martínez-Solano, F.J.; Mora-Meliá, D.; Valderrama, J.G.S. Urban Drainage Network Rehabilitation Considering Storm Tank Installation and Pipe Substitution. Water 2019, 11, 515. [Google Scholar] [CrossRef] [Green Version]
- Ngamalieu-Nengoue, U.A.; Martínez-Solano, F.J.; Iglesias-Rey, P.L.; Mora-Meliá, D. Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water 2019, 11, 935. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, W.; Chang, X.; Sharma, K.; Yuan, Z. Real-Time Predictive Control for Chemical Distribution in Sewer Net-works using Improved Elephant Herding Optimization. IEEE Trans. Ind. Inf. 2020, 1. [Google Scholar] [CrossRef]
- Li, J. A data-driven improved fuzzy logic control optimization-simulation tool for reducing flooding volume at downstream urban drainage systems. Sci. Total Environ. 2020, 732, 138931. [Google Scholar] [CrossRef]
- Butler, D.; Schütze, M. Integrating simulation models with a view to optimal control of urban wastewater systems. Environ. Model. Softw. 2005, 20, 415–426. [Google Scholar] [CrossRef]
- Zhao, W.; Beach, T.H.; Rezgui, Y. Automated Model Construction for Combined Sewer Overflow Prediction Based on Efficient LASSO Algorithm. IEEE Trans. Syst. Man Cybern. Syst. 2017, 49, 1254–1269. [Google Scholar] [CrossRef] [Green Version]
- Yazdi, J.; Yoo, D.G.; Kim, J.H. Comparative study of multi-objective evolutionary algorithms for hydraulic rehabilitation of urban drainage networks. Urban Water J. 2017, 14, 483–492. [Google Scholar] [CrossRef]
- Petri, I.; Yuce, B.; Kwan, A.; Rezgui, Y. An Intelligent Analytics System for Real-Time Catchment Regulation and Water Management. IEEE Trans. Ind. Infor. 2018, 14, 3970–3981. [Google Scholar] [CrossRef]
- Dirckx, G.; Schutze, M.; Kröll, S.; Thoeye, C.; De Gueldre, G.; Van De Steene, B. Cost-efficiency of RTC for CSO impact mitigation. Urban Water J. 2011, 8, 367–377. [Google Scholar] [CrossRef]
- Seggelke, K.; Lowe, R.; Beeneken, T.; Fuchs, L. Implementation of an integrated real-time control system of sewer system and waste water treatment plant in the city of Wilhelmshaven. Urban Water J. 2013, 10, 330–341. [Google Scholar] [CrossRef]
- Weinreich, G.; Schilling, W.; Birkely, A.; Moland, T. Pollution based real time control strategies for combined sewer systems. Water Sci. Technol. 1997, 36, 331–336. [Google Scholar] [CrossRef]
- Cembrano, G. Optimal control of urban drainage systems. A case study. Control. Eng. Pr. 2004, 12, 1–9. [Google Scholar] [CrossRef]
- Fiorelli, D.; Schutz, G.; Klepiszewski, K.; Regneri, M.; Seiffert, S. Optimised real time operation of a sewer network using a multi-goal objective function. Urban Water J. 2013, 10, 342–353. [Google Scholar] [CrossRef]
- Lacour, C.; Schütze, M. Real-time control of sewer systems using turbidity measurements. Water Sci. Technol. 2011, 63, 2628–2632. [Google Scholar] [CrossRef] [PubMed]
- Troutman, S.C.; Schambach, N.; Love, N.G.; Kerkez, B. An automated toolchain for the data-driven and dynamical modeling of combined sewer systems. Water Res. 2017, 126, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Mounce, S.R.; Shepherd, W.; Sailor, G.; Shucksmith, J.; Saul, A.J. Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data. Water Sci. Technol. 2014, 69, 1326–1333. [Google Scholar] [CrossRef]
- Dawson, C.W.; Wilby, R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. Earth Environ. 2001, 25, 80–108. [Google Scholar] [CrossRef]
- Kurth, A.; Saul, A.; Mounce, S.; Shepherd, W.; Hanson, D. Application of artificial neural networks (ANNs) for the prediction of CSO discharges. In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, UK, 31 August–5 September 2008. [Google Scholar]
- Ayazpour, Z.; Bakhshipour, A.E.; Dittmer, U. Combined Sewer Flow Prediction Using Hybrid Wavelet Artificial Neural Network Model. In International Conference on Urban Drainage Modelling; Springer: Berlin/Heidelberg, Germany, 2018; pp. 693–698. [Google Scholar]
- Ruano, A.E. Intelligent Control Systems Using Computational Intelligence Techniques; IET: London, UK, 2005; ISBN 0863414893. [Google Scholar]
- Pleau, M.; Colas, H.; Lavallee, P.; Pelletier, G.; Bonin, R. Global optimal real-time control of the Quebec urban drainage system. Environ. Model. Softw. 2005, 20, 401–413. [Google Scholar] [CrossRef]
- Lund, N.S.V.; Falk, A.K.V.; Borup, M.; Madsen, H.; Mikkelsen, P.S. Model predictive control of urban drainage systems: A review and perspective towards smart real-time water management. Crit. Rev. Environ. Sci. Technol. 2018, 48, 279–339. [Google Scholar] [CrossRef]
- Seggelke, K.; Fuchs, L.; Tränckner, J.; Krebs, P. Development of an integrated RTC system for full-scale implementation. In Proceedings of the11th International Conference on Urban Drainage, Edinburgh, UK, 31 August–5 September 2008. [Google Scholar]
- Dotto, C.B.S.; Kleidorfer, M.; Deletic, A.; Fletcher, T.D.; McCarthy, D.T.; Rauch, W. Stormwater quality models: Performance and sensitivity analysis. Water Sci. Technol. 2010, 62, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Kanso, A.; Chebbo, G.; Tassin, B. Stormwater quality modelling in combined sewers: Calibration and uncertainty analysis. Water Sci. Technol. 2005, 52, 63–71. [Google Scholar] [CrossRef]
- Bachmann-Machnik, A.; Meyer, D.; Waldhoff, A.; Fuchs, S.; Dittmer, U. Integrating retention soil filters into urban hydrologic models—Relevant processes and important parameters. J. Hydrol. 2018, 559, 442–453. [Google Scholar] [CrossRef]
- Korving, H.; Clemens, F. Impact of dimension uncertainty and model calibration on sewer system assessment. Water Sci. Technol. 2005, 52, 35–42. [Google Scholar] [CrossRef]
- Dotto, C.; Kleidorfer, M.; Deletic, A.; Rauch, W.; McCarthy, D.; Fletcher, T. Performance and sensitivity analysis of stormwater models using a Bayesian approach and long-term high resolution data. Environ. Model. Softw. 2011, 26, 1225–1239. [Google Scholar] [CrossRef]
- Kleidorfer, M.; Deletic, A.; Fletcher, T.D.; Rauch, W. Impact of input data uncertainties on urban stormwater model parameters. Water Sci. Technol. 2009, 60, 1545–1554. [Google Scholar] [CrossRef]
- Dittmer, U.; Bachmann-Machnik, A.; Lieb, W.; Giebl, B.; Weiß, G.; Wöhrle, C. Einflüsse auf die Einstau- und Entlastungsaktivität von Regenüberlaufbecken. In Proceedings of the Regenwasser in Urbanen Räumen, Aqua Urbanica Trifft RegenwasserTage, Landau, Germany, 18–19 June 2018; pp. 203–214, ISBN 978-3-95974-086-9. [Google Scholar]
- Korving, H.; van Gelder, P.; van Noortwijk, J.M.; Clemens, F. Influence of model parameter uncertainties on decision- making for sewer system management. In Proceedings of the Hydroinformatics 2002 the Fifth International Conference on Hydroinformatics, Cardiff, UK, 1–5 July 2002. [Google Scholar]
- Campisano, A.; Ple, J.C.; Muschalla, D.; Pleau, M.; Vanrolleghem, P. Potential and limitations of modern equipment for real time control of urban wastewater systems. Urban Water J. 2013, 10, 300–311. [Google Scholar] [CrossRef]
- Verordnung über Art und Häufigkeit der Selbstüberwachung von Kommunalen Abwasserbehandlungsanlagen und -Einleitungen (Selbstüberwachungsverordnung Kommunal—SüwV-kom). 2019. Available online: https://recht.nrw.de/lmi/owa/br_text_anzeigen? (accessed on 27 January 2021).
- Bachmann-Machnik, A. Optimierung des Betriebs von Kanalnetzen im Mischsystem auf Basis von Online-Messdaten: Schriftenreihe Wasser Infrastruktur Ressourcen—Band 7. Ph.D. Thesis, Technische Universität Kaiserslautern, Kaiserslautern, Germany, 2020. [Google Scholar]
- Bachmann, A.; Wetzel, J.; Dittmer, U. Assessing the potential of pollution based RTC in a combined sewer system based on highly resolved online quality data. In Proceedings of the SPN8 8th International Conference on Sewer Processes and Networks, Rotterdam, The Netherlands, 31 August–2 September 2016; pp. 286–290. [Google Scholar]
- EPA. SWMM; United States Environmental Protection Agency: Washington, DC, USA, 2014.
- MathWorks. MATLAB; MathWorks: Natick, MA, USA, 2018. [Google Scholar]
- Schütze, M. Integrale Abflusssteuerung in Mischsystemen: Abschätzung des Steuerungspotenzials; SAMUWA: Stuttgart, Germany, 2017. [Google Scholar]
- Einfalt, T.; Stölting, B. Real-Time Control for two communities—Technical and administrational aspects. In Proceedings of the Global Solutions for Urban Drainage Ninth International Conference on Urban Drainage (9ICUD), Portland, OR, USA, 8–13 September 2002; p. 1, ISBN 978-0-7844-0644-1. [Google Scholar]
- Lacour, C.; Joannis, C.; Schuetze, M.; Chebbo, G. Efficiency of a turbidity-based, real-time control strategy applied to a retention tank: A simulation study. Water Sci. Technol. 2011, 64, 1533–1539. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.; Keller, S.; Sieker, H.; Jekel, M. Potentials of real time control, stormwater infiltration and urine separation to minimize river impacts: Dynamic long term simulation of sewer network, pumping stations, pressure pipes and waste water treatment plant. Water Sci. Technol. 2007, 56, 1–10. [Google Scholar] [CrossRef]
- Borsányi, P.; Benedetti, L.; Dirckx, G.; De Keyser, W.; Muschalla, D.; Solvi, A.-M.; Vandenberghe, V.; Weyand, M.; Vanrolleghem, P.A. Modelling real-time control options on virtual sewer systems. J. Environ. Eng. Sci. 2008, 7, 395–410. [Google Scholar] [CrossRef]
- Van Daal, P.; Gruber, G.; Langeveld, J.; Muschalla, D.; Clemens, F. Performance evaluation of real time control in urban wastewater systems in practice: Review and perspective. Environ. Model. Softw. 2017, 95, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Harms, R.; Kenter, W. KOSIM; ITWH: Hannover, Germany, 1987. [Google Scholar]
- Brüning, Y.; Krauss, M.; Steinriede, D.; Weiß, G.; Marthaler, R.; Lieb, W.; Dittmer, U. Abschlussbericht Aktionsprogramm Jagst zur Wiederbelebung, Verbesserung und Ökologischen Stabilisierung der Jagst für die Zukunft: Modul M3-3 Punktquellen aus Siedlungsgebieten: Pilotmaßnahme Optimierung der Regenwasserbehandlung beim Abwasserzweckverband Mittleres Jagsttal; University of Stuttgart: Stuttgart, Germany, 2020. [Google Scholar]
- Müller, T. Generation of a Realistic Temporal Structure of Synthetic Precipitation Time Series for Sewer Applications. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2017. [Google Scholar]
CSO Tank 1 | CSO Tank 2 | |
---|---|---|
Connected area (ha) | 106 | 220 |
Connected impervious area (ha) | 34 | 75 |
Effective impervious area (ha) | 17 | 54 |
Inhabitants | 4770 | 10,985 |
Total tank volume (m3) | 713 | 1949 |
Controlled outflow (L/s) | 58 | 183 |
Optimization Objective | Controlled Outflow (L/s) | Totally Emitted | ||
---|---|---|---|---|
Tank 1 | Tank 2 | Volume (m3) | TSS Load (kg) | |
Minimum emitted volume | 70 | 171 | 171,339 | 19,188 |
Minimum total emitted load | 66 | 175 | 171,518 | 19,157 |
Minimum CSO duration | 78 | 164 | 171,871 | 19,299 |
Area weighted controlled outflows | 58 | 183 | 172,891 | 19,220 |
Error Type | Influence Evaluated by | Effect on Optimization Results |
---|---|---|
Undirected random errors | noise | none to minor |
Systematic errors | error factors, uncalibrated TSS probe, drifting of concentration | minor to medium |
Combined errors | combination of the error types mentioned above | medium to strong |
System simplifications | neglecting flow components as overflow | strong: unusable optimization results |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachmann-Machnik, A.; Brüning, Y.; Ebrahim Bakhshipour, A.; Krauss, M.; Dittmer, U. Evaluation of Combined Sewer System Operation Strategies Based on Highly Resolved Online Data. Water 2021, 13, 751. https://doi.org/10.3390/w13060751
Bachmann-Machnik A, Brüning Y, Ebrahim Bakhshipour A, Krauss M, Dittmer U. Evaluation of Combined Sewer System Operation Strategies Based on Highly Resolved Online Data. Water. 2021; 13(6):751. https://doi.org/10.3390/w13060751
Chicago/Turabian StyleBachmann-Machnik, Anna, Yannic Brüning, Amin Ebrahim Bakhshipour, Manuel Krauss, and Ulrich Dittmer. 2021. "Evaluation of Combined Sewer System Operation Strategies Based on Highly Resolved Online Data" Water 13, no. 6: 751. https://doi.org/10.3390/w13060751
APA StyleBachmann-Machnik, A., Brüning, Y., Ebrahim Bakhshipour, A., Krauss, M., & Dittmer, U. (2021). Evaluation of Combined Sewer System Operation Strategies Based on Highly Resolved Online Data. Water, 13(6), 751. https://doi.org/10.3390/w13060751