Onsite Chlorination of Greywater in a Vertical Flow Constructed Wetland—Significance of Trihalomethane Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greywater and Its Treatment
2.2. Experimental Setup
2.3. Analytical Methods
3. Results
3.1. Influence of Greywater Treatment on THM Formation
3.2. Influence of Organic Matter on Residual Free Chlorine and THM Formation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maimon, A.; Gross, A. Greywater: Limitations and perspective. Curr. Opin. Environ. Sci. Health 2018, 2, 1–6. [Google Scholar] [CrossRef]
- Adel, M.; Shmueli, L.; Bas, Y.; Friedler, E. Onsite greywater recycling and its potential future impact on desalination and wastewater reuse in Israel. In Proceedings of the 4th International Conference on Drylands, Deserts and Desertification, Sede Boqer, Israel, 12–15 November 2021. [Google Scholar]
- Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Galvão, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Sci. Total Environ. 2020, 711, 134731. [Google Scholar] [CrossRef]
- Benami, M.; Gillor, O.; Gross, A. Potential microbial hazards from graywater reuse and associated matrices: A review. Water Res. 2016, 106, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Cecconet, D.; Callegari, A.; Hlavínek, P.; Capodaglio, A.G. Membrane bioreactors for sustainable, fit-for-purpose greywater treatment: A critical review. Clean Technol. Environ. Policy 2019, 21, 745–762. [Google Scholar] [CrossRef]
- Bogler, A.; Packman, A.; Furman, A.; Gross, A.; Kushmaro, A.; Ronen, A.; Dagot, C.; Hill, C.; Vaizel-Ohayon, D.; Morgenroth, E. Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nat. Sustain. 2020, 3, 981–990. [Google Scholar] [CrossRef]
- Benami, M.; Gross, A.; Herzberg, M.; Orlofsky, E.; Vonshak, A.; Gillor, O. Assessment of pathogenic bacteria in treated graywater and irrigated soils. Sci. Total Environ. 2013, 458, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Maimon, A.; Tal, A.; Friedler, E.; Gross, A. Safe on-site reuse of greywater for irrigation-a critical review of current guidelines. Environ. Sci. Technol. 2010, 44, 3213–3220. [Google Scholar] [CrossRef] [PubMed]
- Al-Gheethi, A.; Mohamed, R.R.; Efaq, A.; Hashim, M.A. Reduction of microbial risk associated with greywater by disinfection processes for irrigation. J. Water Health 2016, 14, 379–398. [Google Scholar] [CrossRef]
- Oron, G.; Adel, M.; Agmon, V.; Friedler, E.; Halperin, R.; Leshem, E.; Weinberg, D. Greywater use in Israel and worldwide: Standards and prospects. Water Res. 2014, 58, 92–101. [Google Scholar] [CrossRef]
- Halperin, R.; Aloni, U. Standards for treated wastewater reuse in the city, for recreation and in industry; Ministry of Health: Jerusalem, Israel , 2003; Volume 15. [Google Scholar]
- BS-2. Greywater Systems Part 2: Domestic Greywater Treatment Equipment, Requirements and Test Methods; British Standards Institution London: London, UK, 2011. [Google Scholar]
- Gilboa, Y.; Friedler, E. UV disinfection of RBC-treated light greywater effluent: Kinetics, survival and regrowth of selected microorganisms. Water Res. 2008, 42, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Winward, G.P.; Avery, L.M.; Stephenson, T.; Jefferson, B. Chlorine disinfection of grey water for reuse: Effect of organics and particles. Water Res. 2008, 42, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; DeMarini, D.M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res./Rev. Mutat. Res. 2007, 636, 178–242. [Google Scholar] [CrossRef] [PubMed]
- Deborde, M.; von Gunten, U. Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: A critical review. Water Res. 2008, 42, 13–51. [Google Scholar] [CrossRef]
- Richardson, S.D. Disinfection by-products and other emerging contaminants in drinking water. Trac Trends Anal. Chem. 2003, 22, 666–684. [Google Scholar] [CrossRef]
- Cortés, C.; Marcos, R. Genotoxicity of disinfection byproducts and disinfected waters: A review of recent literature. Mutat. Res./Genet. Toxicol. Environ. Mutagenesis 2018, 831, 1–12. [Google Scholar] [CrossRef]
- Yang, L.; Chen, X.; She, Q.; Cao, G.; Liu, Y.; Chang, V.W.-C.; Tang, C.Y. Regulation, formation, exposure, and treatment of disinfection by-products (DBPs) in swimming pool waters: A critical review. Environ. Int. 2018, 121, 1039–1057. [Google Scholar] [CrossRef]
- Krasner, S.W.; Westerhoff, P.; Chen, B.; Rittmann, B.E.; Amy, G. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents. Environ. Sci. Technol. 2009, 43, 8320–8325. [Google Scholar] [CrossRef]
- Benami, M.; Busgang, A.; Gillor, O.; Gross, A. Quantification and risks associated with bacterial aerosols near domestic greywater-treatment systems. Sci. Total Environ. 2016, 562, 344–352. [Google Scholar] [CrossRef]
- Tandlich, R.; Zuma, B.M.; Whittington-Jones, K.J.; Burgess, J.E. Mulch tower treatment system for greywater reuse Part II: Destructive testing and effluent treatment. Desalination 2009, 242, 57–69. [Google Scholar] [CrossRef]
- Gross, A.; Maimon, A.; Alfiya, Y.; Friedler, E. Greywater Reuse; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Gallard, H.; von Gunten, U. Chlorination of natural organic matter: Kinetics of chlorination and of THM formation. Water Res. 2002, 36, 65–74. [Google Scholar] [CrossRef]
- Sadiq, R.; Rodriguez, M.J. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: A review. Sci. Total Environ. 2004, 321, 21–46. [Google Scholar] [CrossRef]
- Arnold, W.A.; Bolotin, J.; Gunten, U.v.; Hofstetter, T.B. Evaluation of functional groups responsible for chloroform formation during water chlorination using compound specific isotope analysis. Environ. Sci. Technol. 2008, 42, 7778–7785. [Google Scholar] [CrossRef] [PubMed]
- Chow, A.T.; Gao, S.; Dahlgren, R.A. Physical and chemical fractionation of dissolved organic matter and trihalomethane precursors: A review. J. Water Supply: Res. Technol. -Aqua 2005, 54, 475–507. [Google Scholar] [CrossRef]
- Travis, M.J.; Weisbrod, N.; Gross, A. Accumulation of oil and grease in soils irrigated with greywater and their potential role in soil water repellency. Sci. Total Environ. 2008, 394, 68–74. [Google Scholar] [CrossRef]
- Shafran, A.; Gross, A.; Ronen, Z.; Weisbrod, N.; Adar, E. Effects of surfactants originating from reuse of greywater on capillary rise in the soil. Water Sci. Technol. 2005, 52, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Ramprasad, C.; Philip, L. Surfactants and personal care products removal in pilot scale horizontal and vertical flow constructed wetlands while treating greywater. Chem. Eng. J. 2016, 284, 458–468. [Google Scholar] [CrossRef]
- Rule, K.L.; Ebbett, V.R.; Vikesland, P.J. Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan. Environ. Sci. Technol. 2005, 39, 3176–3185. [Google Scholar] [CrossRef]
- Zapater, M.; Gross, A.; Soares, M. Capacity of an on-site recirculating vertical flow constructed wetland to withstand disturbances and highly variable influent quality. Ecol. Eng. 2011, 37, 1572–1577. [Google Scholar] [CrossRef]
- Díaz, F.J.; Chow, A.T.; O’Geen, A.T.; Dahlgren, R.A.; Wong, P.-K. Effect of constructed wetlands receiving agricultural return flows on disinfection byproduct precursors. Water Res. 2009, 43, 2750–2760. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, J.; Yu, H.; Yang, X. Characteristics of disinfection by-products precursors removal from micro-polluted water by constructed wetlands. Ecol. Eng. 2016, 93, 262–268. [Google Scholar] [CrossRef]
- Quanrud, D.M.; Karpiscak, M.M.; Lansey, K.E.; Arnold, R.G. Transformation of effluent organic matter during subsurface wetland treatment in the Sonoran Desert. Chemosphere 2004, 54, 777–788. [Google Scholar] [CrossRef]
- Domènech, L.; Saurí, D. Socio-technical transitions in water scarcity contexts: Public acceptance of greywater reuse technologies in the Metropolitan Area of Barcelona. Resour. Conserv. Recycl. 2010, 55, 53–62. [Google Scholar] [CrossRef]
- Gross, A.; Sklarz, M.; Yakirevich, A.; Soares, M. Small scale recirculating vertical flow constructed wetland (RVFCW) for the treatment and reuse of wastewater. Water Sci. Technol. 2008, 58, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Sklarz, M.; Gross, A.; Yakirevich, A.; Soares, M. A recirculating vertical flow constructed wetland for the treatment of domestic wastewater. Desalination 2009, 246, 617–624. [Google Scholar] [CrossRef]
- Benami, M.; Gillor, O.; Gross, A. The question of pathogen quantification in disinfected graywater. Sci. Total Environ. 2015, 506, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Troiano, E.; Beneduce, L.; Gross, A.; Ronen, Z. Antibiotic-resistant bacteria in greywater and greywater-irrigated soils. Front. Microbiol. 2018, 9, 2666. [Google Scholar] [CrossRef]
- Gross, A.; Shmueli, O.; Ronen, Z.; Raveh, E. Recycled vertical flow constructed wetland (RVFCW)—a novel method of recycling greywater for irrigation in small communities and households. Chemosphere 2007, 66, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Alfiya, Y.; Gross, A.; Sklarz, M.; Friedler, E. Reliability of on-site greywater treatment systems in Mediterranean and arid environments–a case study. Water Sci. Technol. 2013, 67, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef]
- EPA, U. National primary drinking water regulations: Disinfectants and disinfection byproducts. Final Rule 1998, 63, 69390–69476. [Google Scholar]
- WHO. Guidelines for drinking-water quality; World Health Organization: Geneva, Switzerland, 2011; Volume 216, pp. 303–304. [Google Scholar]
- Richardson, S.D.; Thruston, A.D.; Rav-Acha, C.; Groisman, L.; Popilevsky, I.; Juraev, O.; Glezer, V.; McKague, A.B.; Plewa, M.J.; Wagner, E.D. Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide. Environ. Sci. Technol. 2003, 37, 3782–3793. [Google Scholar] [CrossRef]
- Park, J.; Choi, M.; Cho, J.; Chon, K. Transformation of dissolved organic matter in a constructed wetland: A molecular-level composition analysis using pyrolysis-gas chromatography mass spectrometry. Environ. Eng. Res. 2018, 23, 390–396. [Google Scholar] [CrossRef]
- Wei, L.-L.; Zhao, Q.-L.; Xue, S.; Jia, T.; Tang, F.; You, P.-Y. Behavior and characteristics of DOM during a laboratory-scale horizontal subsurface flow wetland treatment: Effect of DOM derived from leaves and roots. Ecol. Eng. 2009, 35, 1405–1414. [Google Scholar] [CrossRef]
- Chowdhury, S.; Champagne, P.; McLellan, P.J. Models for predicting disinfection byproduct (DBP) formation in drinking waters: A chronological review. Sci. Total Environ. 2009, 407, 4189–4206. [Google Scholar] [CrossRef]
- Chen, B.; Westerhoff, P. Predicting disinfection by-product formation potential in water. Water Res. 2010, 44, 3755–3762. [Google Scholar] [CrossRef]
- March, J.; Gual, M. Studies on chlorination of greywater. Desalination 2009, 249, 317–322. [Google Scholar] [CrossRef]
- Duong, H.A.; Berg, M.; Hoang, M.H.; Pham, H.V.; Gallard, H.; Giger, W.; von Gunten, U. Trihalomethane formation by chlorination of ammonium-and bromide-containing groundwater in water supplies of Hanoi, Vietnam. Water Res. 2003, 37, 3242–3252. [Google Scholar] [CrossRef]
- Rebhun, M.; Heller-Grossman, L.; Manka, J. Formation of disinfection byproducts during chlorination of secondary effluent and renovated water. Water Environ. Res. 1997, 69, 1154–1162. [Google Scholar] [CrossRef]
System | pH Raw GW | EC Raw GW (μs/cm) | DO Raw GW (mg/L) | D°C (mg/L) | TSS (mg/L) | BOD5 (mg/L) | Fecal Coliforms (Log CFU/mL) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Raw GW | Treated | Raw GW | Treated | Raw GW | Treated | Raw GW | Treated | ||||
S1 | 7.6 | 555 | 0.84 | 10.8 ± 0.8 | 6.3 ± 0.7 | 115 ± 18 | 2.0 ± 2.2 | 221 ± 71 | 5.9 ± 8.9 | 4.1 ± 3.0 | 3.1 ± 3.1 |
S2 | 7.3 | 391 | 0.33 | 9.5 ± 1.0 | 6.7 ± 0.7 | 140 ± 85 | 17.6 ± 11.3 | 121 ± 20 | 5.0 ± 2.8 | 7.1 ± 6.8 | 6.6 ± 3.0 |
S3 | 7.2 | 357 | 0.06 | 7.2 ± 0.8 | 6.0 ± 0.7 | 260 ± 74 | 1.9 ± 1.6 | 92 ± 69 | 2.8 ± 2.5 | 3.3 ± 2.1 | 0.3 ± 0.1 |
S4 | 7.4 | 760 | 0.70 | 40.5 ± 3.1 | 12.6 ± 0.5 | 155 ± 73 | 2.1 ± 1.6 | 190 ± 13 | 2.6 ± 2.1 | 2.4 ± 2.2 | 0.4 ± 0.7 |
S5 | 6.8 | 663 | 0.50 | 130.9 ± 1.9 | 19.9 ± 0.2 | 365 ± 113 | 17.8 ± 11.3 | 208 ± 44 | 5.7 ± 3.0 | 4.5 ± 4.1 | 1.7 ± 0.7 |
S6 | 9.0 | 884 | 0.95 | 54.8 ± 1.8 | 9.4 ± 02 | 152 ± 22 | 8.1 ± 8.3 | 146 ± 51 | 4.9 ± 1.4 | 3.0 ± 3.2 | 0.2 ± 0.1 |
Recirculation Time (h) | DOC (mg/L) | SUVA (L/mg∙m) |
---|---|---|
Raw | 9.61 | 1.08 ± 0.04 |
0.5 | 5.56 | 2.09 ± 0.06 |
1.0 | 5.45 | 1.78 ± 0.12 |
1.5 | 4.97 | 2.91 ± 1.25 |
6.0 | 4.06 | 2.63 ± 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernstein, A.; Siebner, H.; Kaufman, A.G.; Gross, A. Onsite Chlorination of Greywater in a Vertical Flow Constructed Wetland—Significance of Trihalomethane Formation. Water 2021, 13, 903. https://doi.org/10.3390/w13070903
Bernstein A, Siebner H, Kaufman AG, Gross A. Onsite Chlorination of Greywater in a Vertical Flow Constructed Wetland—Significance of Trihalomethane Formation. Water. 2021; 13(7):903. https://doi.org/10.3390/w13070903
Chicago/Turabian StyleBernstein, Anat, Hagar Siebner, Andrew G. Kaufman, and Amit Gross. 2021. "Onsite Chlorination of Greywater in a Vertical Flow Constructed Wetland—Significance of Trihalomethane Formation" Water 13, no. 7: 903. https://doi.org/10.3390/w13070903
APA StyleBernstein, A., Siebner, H., Kaufman, A. G., & Gross, A. (2021). Onsite Chlorination of Greywater in a Vertical Flow Constructed Wetland—Significance of Trihalomethane Formation. Water, 13(7), 903. https://doi.org/10.3390/w13070903