Landfill Pollution Plume Survey in the Moroccan Tadla Using Spontaneous Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Spontaneous Potential Measurement
2.3. Redox Potential and Physicochemical Measurements
2.4. Field Data Treatments
2.5. Mapping Tools
3. Results
3.1. Self Potential Survey
3.2. Redox Potential, pH and Electrical Conductivity
4. Discussion
4.1. Plume Detection and Stability throughout the Season
4.2. A Real but Fairly Moderate Contamination
4.3. Ongoing Processes in the Leachate
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jhamnani, B.; Singh, S.K. Groundwater Contamination due to Bhalaswa Landfill Site in New Delhi. Int. J. Civil Environ. Eng. 2009, 1, 121–125. [Google Scholar]
- Longe, E.O.; Balogun, M.R. Groundwater Quality Assessment near a Municipal Landfill, Lagos, Nigeria. Res. J. Appl. Sci. Eng. Technol. 2010, 2, 39–44. [Google Scholar]
- Fan, H.; Shu, H.-Y.; Yang, H.-S.; Chen, W.-C. Characteristics of landfill leachates in central Taiwan. Sci. Total Environ. 2006, 361, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Mena-Rivera, L.; Salgado-Silva, V.; Benavides-Benavides, C.; Coto-Campos, J.M.; Swinscoe, T.H.A. Spatial and Seasonal Surface Water Quality Assessment in a Tropical Urban Catchment: Burío River, Costa Rica. Water 2017, 9, 558. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Ma, H.; Shi, G.; He, L.; Wei, L.; Shi, Q. A review of groundwater contamination near municipal solid waste landfill sites in China. Sci. Total Environ. 2016, 569–570, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Christensen, T.H.; Kjeldsen, P.; Bjerg, P.L.; Jensen, D.L.; Christensen, J.B.; Baun, A.; Albrechtsen, H.-J.; Heron, G. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 2001, 16, 659–718. [Google Scholar] [CrossRef]
- Dvorski, S.E.-M.; Gonsior, M.; Hertkorn, N.; Uhl, J.; Müller, H.; Griebler, C.; Schmitt-Kopplin, P. Geochemistry of Dissolved Organic Matter in a Spatially Highly Resolved Groundwater Petroleum Hydrocarbon Plume Cross-Section. Environ. Sci. Technol. 2016, 50, 5536–5546. [Google Scholar] [CrossRef]
- Gu, X.; Xiao, Y.; Yin, S.; Shao, J.; Pan, X.; Niu, Y.; Huang, J. Groundwater level response to hydrogeological factors in a semi-arid basin of Beijing, China. J. Water Supply Res. Technol. 2017, 66, 266–278. [Google Scholar] [CrossRef]
- Arisalwadi, M. Rahmania Mapping leachate distribution based on the self-potential method in Manggar Landfill, Balikpapan Indonesia. J. Phys. Conf. Ser. 2021, 1763, 12013. [Google Scholar] [CrossRef]
- Stanly, R.; Yasala, S.; Oliver, D.H.; Nair, N.C.; Emperumal, K.; Subash, A. Hydrochemical appraisal of groundwater quality for drinking and irrigation: A case study in parts of southwest coast of Tamil Nadu, India. Appl. Water Sci. 2021, 11, 53. [Google Scholar] [CrossRef]
- Rani, P.; Piegari, E.; Di Maio, R.; Vitagliano, E.; Soupios, P.; Milano, L. Monitoring time evolution of self-potential anomaly sources by a new global optimization approach. Application to organic contaminant transport. J. Hydrol. 2019, 575, 955–964. [Google Scholar] [CrossRef]
- Arora, T.; Linde, N.; Revil, A.; Castermant, J. Non-intrusive characterization of the redox potential of landfill leachate plumes from self-potential data. J. Contam. Hydrol. 2007, 92, 274–292. [Google Scholar] [CrossRef]
- Gallas, J.D.F.; Taioli, F.; Malagutti Filho, W. Induced polarization, resistivity, and self-potential: A case history of contamination evaluation due to landfill leakage. Environ. Earth Sci. 2011, 63, 251–261. [Google Scholar] [CrossRef]
- Martínez-Pagán, P.; Jardani, A.; Revil, A.; Haas, A. Self-potential monitoring of a salt plume. Geophysics 2010, 75, WA17–WA25. [Google Scholar] [CrossRef] [Green Version]
- Naudet, V.; Revil, A.; Bottero, J.-Y.; Bégassat, P. Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Naudet, V.; Revil, A.; Rizzo, E.; Bottero, J.-Y.; Bégassat, P. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrol. Earth Syst. Sci. 2004, 8, 8–22. [Google Scholar] [CrossRef]
- Cui, Y.A.; Liu, L.; Zhu, X. Unscented Kalman filter assimilation of time-lapse self-potential data for monitoring solute transport. J. Geophys. Eng. 2017, 14, 920–929. [Google Scholar] [CrossRef]
- Rittgers, J.B.; Revil, A.; Karaoulis, M.; Mooney, M.A.; Slater, L.D.; Atekwana, E.A. Self-potential signals generated by the corrosion of buried metallic objects with application to contaminant plumes. Geophysics 2013, 78, EN65–EN82. [Google Scholar] [CrossRef]
- Naudet, V.; Gourry, J.C.; Girard, F.; Mathieu, F.; Saada, A. 3D electrical resistivity tomography to locate DNAPL contamination around a housing estate. Near Surf. Geophys. 2014, 12, 351–360. [Google Scholar] [CrossRef]
- Schüring, J.; Schlieker, M.; Hencke, J. Redox Fronts in Aquifer Systems and Parameters Controlling their Dimensions. In Redox: Fundamentals, Processes and Applications; Schüring, J., Schulz, H.D., Fischer, W.R., Böttcher, J., Duijnisveld, W.H.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 135–151. ISBN 978-3-662-04080-5. [Google Scholar]
- Water Basin Agency Oum Rabiaa. Etude D’actualisation du Plan Directeur D’aménagement Intègre des Ressources en eau (PDAIRE) de la Zone D’action de L’agence du Bassin Hydraulique de L’OUM Er Rbia: Données Génerales sur la Plaine du Tadla; Water Basin Agency: Rabat, Morocco, 2008. [Google Scholar]
- Massoni, C.; Missante, G.; Beaudet, G.; Combes, M.; Etienne, H.P.; Ionesco, T. La plaine du Tadla. Cah. Rech. Agron. 1967, 24, 163–194. [Google Scholar]
- Merzouki, H.; Hanine, H.; Lekhlif, B.; Latrache, L.; Mandi, L.; Sinan, M. Physicochemical Characterization of Leachate Discharge Fkih Ben Salah from Morocco. J. Mater. Environ. Sci. 2015, 6, 1354–1363. [Google Scholar]
- WHO. Millennium Development Goals (MDGs); World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Petiau, G. Second Generation of Lead-lead Chloride Electrodes for Geophysical Applications. Pure Appl. Geophys. 2000, 157, 357–382. [Google Scholar] [CrossRef]
- Van Loon, G.W.; Duffy, S.J. Environmental Chemistry: A Global Perspective, 4th ed.; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Naudet, V.; Revil, A. A sandbox experiment to investigate bacteria-mediated redox processes on self-potential signals. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Delong, E. L’électricité bactérienne,plus qu’une curiosité. Recherche 2002, 358, 17. [Google Scholar]
- Tender, L.M.; Reimers, C.E.; Stecher, H.A.; Holmes, D.E.; Bond, D.R.; Lowy, D.A.; Pilobello, K.; Fertig, S.J.; Lovley, D.R. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 2002, 20, 821–825. [Google Scholar] [CrossRef] [PubMed]
Self Potential mV | Mean | Standard Deviation | |
---|---|---|---|
Inside the Landfill | −6.37 | 5.62 | |
Outside the landfill | Inside plume | −7.3 | 4.41 |
Outside plume | +16.08 | 13.27 |
EC (mS cm−1) | Mean | Standard Deviation |
---|---|---|
leachate | 33.35 | 5.44 |
irrigation water | 0.52 | 0.01 |
watertable | 0.83 | 0.19 |
Drain water | 0.51 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Mouine, Y.; El Hamdi, A.; Morarech, M.; Kacimi, I.; Touzani, M.; Mohsine, I.; Tiouiouine, A.; Ouardi, J.; Zouahri, A.; Yachou, H.; et al. Landfill Pollution Plume Survey in the Moroccan Tadla Using Spontaneous Potential. Water 2021, 13, 910. https://doi.org/10.3390/w13070910
El Mouine Y, El Hamdi A, Morarech M, Kacimi I, Touzani M, Mohsine I, Tiouiouine A, Ouardi J, Zouahri A, Yachou H, et al. Landfill Pollution Plume Survey in the Moroccan Tadla Using Spontaneous Potential. Water. 2021; 13(7):910. https://doi.org/10.3390/w13070910
Chicago/Turabian StyleEl Mouine, Yousra, Amal El Hamdi, Moad Morarech, Ilias Kacimi, Meryem Touzani, Ismail Mohsine, Abdessamad Tiouiouine, Jamila Ouardi, Abdelmajid Zouahri, Hasna Yachou, and et al. 2021. "Landfill Pollution Plume Survey in the Moroccan Tadla Using Spontaneous Potential" Water 13, no. 7: 910. https://doi.org/10.3390/w13070910
APA StyleEl Mouine, Y., El Hamdi, A., Morarech, M., Kacimi, I., Touzani, M., Mohsine, I., Tiouiouine, A., Ouardi, J., Zouahri, A., Yachou, H., & Dakak, H. (2021). Landfill Pollution Plume Survey in the Moroccan Tadla Using Spontaneous Potential. Water, 13(7), 910. https://doi.org/10.3390/w13070910