Evidence of Phosphate Mining and Agriculture Influence on Concentrations, Forms, and Ratios of Nitrogen and Phosphorus in a Florida River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Streamwater Sampling
2.3. Streamwater Chemical Analysis
2.4. Data Collections and Statistical Analyses
3. Results
3.1. Relationship between Rainfall and Surface Runoff
3.2. Nutrient Export
3.3. Changes in Streamwater Chemistry across Land Uses
3.4. Changes in Concentrations, Forms, and Ratios of N and P in Streamwaters
3.5. Temporal Variability of Water Quality Variables and Nutrient Concentrations in Selected Sub-Basins
4. Discussion
4.1. Effect of Phosphate-Mining Reclamation on Stream Hydrology and Nutrient Exports
4.2. Effect of Phosphate-Mining on Streamwater P Concentrations and Forms
4.3. Possible Controls on Streamwater N Concentrations and Forms
4.4. Molar N:P Ratio and Implications for Nutrient Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melilo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Wang, P.F.; Martin, J.; Morrison, G. Water quality and eutrophication in Tampa Bay, Florida. Estuar. Coast. Shelf Sci. 1999, 49, 1–20. [Google Scholar] [CrossRef]
- Johansson, J.O.R. Historical overview of Tampa Bay water quality and seagrass issues and trends. In Proceedings of the Seagrass Management, It’s Not Just Nutrients! Symposium, St. Petersburg, FL, USA, 22–24 August 2000; Tampa Bay Estuary Program: St. Petersburg, FL, USA, 2002; pp. 1–10. [Google Scholar]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Yang, Y.; Toor, G.S. Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater from residential catchments. Water Res. 2017, 112, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Asal, S.; Toor, G.S. Residential catchments to coastal waters: Forms, fluxes, and mechanisms of phosphorus transport. Sci. Total Environ. 2021, 142767. [Google Scholar] [CrossRef] [PubMed]
- Groffman, P.M.; Law, N.L.; Belt, K.T.; Band, L.E.; Fisher, G.T. Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems 2004, 7, 393–403. [Google Scholar] [CrossRef]
- Royer, T.V.; David, M.B.; Gentry, L.E. Timing of riverine export of nitrate and phosphorus from agricultural watersheds in Illinois: Implications for reducing nutrient loading to the Mississippi River. Environ. Sci. Technol. 2006, 40, 4126–4131. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.S.; Groffman, P.M.; Band, L.E.; Shields, C.A.; Morgan, R.P.; Palmer, M.A.; Belt, K.T.; Swan, C.M.; Findlay, S.E.G.; Fisher, G.T. Interaction between urbanization and climate variability amplifies watershed nitrate export in Maryland. Environ. Sci. Technol. 2008, 42, 5872–5878. [Google Scholar] [CrossRef]
- Arnold, C.L.; Gibbons, C.J. Impervious surface coverage—The emergence of a key environmental indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Ann. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Lee, J.G.; Heaney, J.P. Estimation of urban imperviousness and its impacts on storm water systems. J. Water Res. Pl-ASCE 2003, 129, 419–426. [Google Scholar] [CrossRef]
- Khare, Y.P.; Martinez, C.J.; Toor, G.S. Water quality and land use changes in the Alafia and Hillsborough River watersheds, Florida, USA. J. Am. Water Res. Assoc. 2012, 48, 1276–1293. [Google Scholar] [CrossRef]
- Beavers, C.; Ellis, R.; Hanlon, E.; Macdonald, G. An Overview of Phosphate Mining and Reclamation in Florida. 2013. Available online: https://soils.ifas.ufl.edu/media/soilsifasufledu/sws-main-site/pdf/technical-papers/Beavers_Casey_No_Embargo.pdf (accessed on 16 December 2020).
- Jasinski, S.M. Phosphate Rock. In 2010 Minerals Yearbook; U.S. Geological Survey: Reston, VA, USA, 2010; Volume I, pp. 56.1–56.10. [Google Scholar]
- FDEP. Implementation of Florida’s Numeric Nutrient Standards. 2013. Available online: https://floridadep.gov/sites/default/files/NNC_Implementation.pdf (accessed on 16 December 2020).
- Yang, Y.; Toor, G.S.; Williams, C.F. Pharmaceuticals and organochlorine pesticides in sediments of an urban river in Florida, USA. J. Soils Sediments 2015, 15, 993–1004. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). National Resource Conservation Service. Available online: https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/florida/FL057/0/hillsborough.pdf (accessed on 16 December 2020).
- United States Environmental Protection Agency. Method 350.1: Determination of Ammonia Nitrogen by Semi-Automated Colorimetry; USEPA, Environmental Monitoring Systems Laboratory, Office of Research and Development: Cincinnati, OH, USA, 1993.
- United States Environmental Protection Agency. Method 353.2: Determination of Nitrate-Nitrite Nitrogen by Automated Colorimetry; USEPA, Environmental Monitoring Systems Laboratory, Office of Research and Development: Cincinnati, OH, USA, 1993.
- United States Environmental Protection Agency. Method 325.2: Chloride by Automated Colorimetry. Methods for the Chemical Analysis of Water and Wastes (MCAWW), (EPA/600/4-79/020); USEPA, Environmental Monitoring Systems Laboratory, Office of Research and Development: Washington, DC, USA, 1983.
- Ebina, J.; Tsutsui, T.; Shirai, T. Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Res. 1983, 17, 1721–1726. [Google Scholar] [CrossRef]
- O’Dell, J.W. Method 365.1. In Determination of Phosphorus by Semi-Automated Colorimetry; USEPA, Environmental Monitoring Systems Laboratory, Office of Research and Development: Cincinnati, OH, USA, 1993. [Google Scholar]
- U.S. Geological Survey. Available online: https://maps.waterdata.usgs.gov/mapper/index.html?state=fl (accessed on 25 October 2020).
- National Oceanic and Atmospheric Administration. National Centers for Environmental Information. Available online: https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00087205/detail (accessed on 25 October 2020).
- U.S. Geological Survey. Load Estimator (LOADEST): A Program for Estimating Constituent Loads in Streams and Rivers. Available online: http://water.usgs.gov/software/loadest/ (accessed on 25 October 2020).
- Duan, S.; Kaushal, S.S.; Groffman, P.; Band, L.E.; Belt, K. Phosphorus export across an urban to rural gradient in the Chesapeake Bay watershed. J. Geophys. Res. Biogeosci. 2012, 117, G01025. [Google Scholar] [CrossRef] [Green Version]
- Shields, C.A.; Band, L.E.; Law, N.; Groffman, P.M.; Kaushal, S.S.; Savvas, K.; Fisher, G.T.; Belt, K.T. Streamflow distribution of non–point source nitrogen export from urban-rural catchments in the Chesapeake Bay watershed. Water Resour. Res. 2008, 44, W09416. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Kelble, C.R.; Fischer, C.J.; Moore, L. Hurricane Katrina induced nutrient runoff from an agricultural area to coastal waters in Biscayne Bay, Florida. Estuar. Coast. Shelf Sci. 2009, 84, 209–218. [Google Scholar] [CrossRef]
- Miller, J.A.; Hughes, G.H.; Hull, R.W.; Vecchioli, J.; Seaber, P.R. Impact of Potential Phosphate Mining on the Hydrology of Osceola National Forest, Florida; Water-Resources Investigations Report 78-6; U.S. Geological Survey, Water Resources Division: Reston, VA, USA, 1978. [CrossRef]
- Ferrari, J.R.; Lookingbill, T.R.; McCormick, B.; Townsend, P.A.; Eshleman, K.N. Surface mining and reclamation effects on flood response of watersheds in the central Appalachian Plateau region. Water Resour. Res. 2009, 45, W04407. [Google Scholar] [CrossRef]
- Dodds, W.K.; Bouska, W.W.; Eitzmann, J.L.; Pilger, T.J.; Pitts, K.L.; Riley, A.J.; Schloesser, J.T.; Thornbrugh, D.J. Eutrophication of US freshwaters: Analysis of potential economic damages. Environ. Sci. Technol. 2009, 43, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Boyer, E.W.; Goodale, C.L.; Jaworsk, N.A.; Howarth, R.W. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry 2002, 57, 137–169. [Google Scholar] [CrossRef]
- Russell, M.J.; Weller, D.E.; Jordan, T.E.; Sigwart, K.J.; Sullivan, K.J. Net anthropogenic phosphorus inputs: Spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 2008, 88, 285–304. [Google Scholar] [CrossRef]
- Lane, E. (Ed.) Florida’s Geologic History and Geologic Resources, Special Publication No. 35; Florida Geological Survey: Tallahassee, FL, USA, 1994; p. 64.
- Vidon, P.; Tedesco, L.P.; Pascual, D.L.; Campbell, M.A.; Casey, L.R.; Wilson, J.; Gray, M. Seasonal changes in stream water quality along an agricultural/urban land-use gradient. Proceed. Indiana Acad. Sci. 2008, 117, 107–123. [Google Scholar]
- Brett, M.T.; Arhonditsis, G.B.; Mueller, S.E.; Hartley, D.M.; Frodge, J.D.; Funke, D.E. Non-point-source impacts on stream nutrient concentrations along a forest to urban gradient. Environ. Manag. 2005, 35, 330–342. [Google Scholar] [CrossRef]
- Southwest Florida Water Management District (SWFWMD). The Determination of Minimum Flows for the Lower Alafia River Estuary; Southwest Florida Water Management District: Brooksville, FL, USA, 2007. [Google Scholar]
- National Pollution Discharge Elimination Systems (NPDES). Available online: http://cfpub.epa.gov/npdes/ (accessed on 16 December 2020).
- Shenker, M.; Seitelbach, S.; Brand, S.; Haim, A.; Litaor, M.I. Redox reactions and phosphorus release in re-flooded soils of an altered wetland. Eur. J. Soil Sci. 2005, 56, 515–525. [Google Scholar] [CrossRef]
- Palmer-Felgate, E.; Bowes, M.; Stratford, C.; Neal, C.; Mackenzie, S. Phosphorus release from sediments in a treatment wetland: Contrast between DET and EPC0 methodologies. Ecol. Eng. 2011, 37, 826–832. [Google Scholar] [CrossRef]
- Wang, D.; Xie, Y.; Jaisi, D.P.; Jin, Y. Effects of low-molecular-weight organic acids on the dissolution of hydroxyapatite nanoparticles. Environ. Sci. Nano 2016, 3, 768–779. [Google Scholar] [CrossRef] [Green Version]
- Van Kauwenbergh, S.J.; Cathcart, J.B.; McClellan, G.H. Mineralogy and Alteration of the Phosphate Deposits of Florida, Bulletin 1914; U.S. Department of Interior: Washington, DC, USA, 1990.
- Kaushal, S.S.; Lewis, W.M., Jr. Patterns in the chemical fractionation of organic nitrogen in Rocky Mountain streams. Ecosystems 2003, 6, 483–492. [Google Scholar] [CrossRef]
- Michalzik, B.; Kalbitz, K.; Park, J.H.; Matzner, E. Fluxes and concentrations of dissolved organic carbon and nitrogen—A synthesis for temperate forests. Biogeochemistry 2001, 52, 173–205. [Google Scholar] [CrossRef]
- Stanley, E.H.; Maxted, J.T. Changes in the dissolved nitrogen pool across land cover gradients in Wisconsin streams. Ecol. Appl. 2008, 18, 1579–1590. [Google Scholar] [CrossRef] [PubMed]
- Leff, J.W.; Wieder, W.R.; Taylor, P.G.; Townsend, A.R.; Nemergut, D.R.; Grandy, A.S.; Cleveland, C.C. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Glob. Chang. Biol. 2012, 18, 2969–2979. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.T.; Townsend, A.R. Stoichiometric controls over carbon-nitrate relationships from soils to the sea. Nature 2010, 464, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, L.A.; Bott, T.L. Diel fluctuations of DOC generated by algae in a piedmont stream. Limnol. Oceanogr. 1982, 27, 1091–1100. [Google Scholar] [CrossRef]
- Lusk, M.G.; Toor, G.S. Biodegradability and molecular composition of dissolved organic nitrogen in urban stormwater runoff and outflow water from a stormwater retention pond. Environ. Sci. Technol. 2016, 50, 3391–3398. [Google Scholar] [CrossRef]
- Jani, J.; Toor, G.S. Composition, sources, and bioavailability of nitrogen in a longitudinal gradient from freshwater to estuarine waters. Water Res. 2018, 137, 344–354. [Google Scholar] [CrossRef]
- Redfield, A.C. On the proportions of organic derivations in sea water and their relation to the composition of plankton. In James Johnstone Memorial Volume; Daniel, R.J., Ed.; University Press of Liverpool: Liverpool, UK, 1934; pp. 177–192. [Google Scholar]
- Howarth, R.W.; Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol. Oceanogr. 2006, 51, 364–376. [Google Scholar] [CrossRef] [Green Version]
- De, M.; Toor, G.S. Fate of effluent-borne nitrogen in the mounded drainfield of an onsite wastewater treatment system. Vadose Zone J. 2015. [Google Scholar] [CrossRef]
Sub-Basin | Type | Lati-Tude | Longi-Tude | Drainage Area (km2) | Septic Systems 1 | Land-Use in 2009 (% of Total Sub-Basin) 2 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Urban | Agriculture | Wetland | Forest | Mined | ||||||
Lithia (M3) | Mainstem | 27.86 | −82.16 | 860 | - | 19 | 13 | 13 | 6 | 39 |
Bell Shoals (M2) | Mainstem | 27.86 | −82.26 | 974 | - | 19 | 13 | 13 | 6 | 36 |
Alafia (M1) | Mainstem | 27.87 | −82.32 | 1072 | - | 20 | 12 | 13 | 6 | 35 |
South Prong | Trib._mined | 27.86 | −82.13 | 277 | 0.01 | 4 | 11 | 13 | 4 | 59 |
North Prong | Trib_mined | 27.86 | −82.13 | 350 | 0.57 | 24 | 10 | 13 | 16 | 36 |
Turkey Creek | Trib_agr. | 27.91 | −82.18 | 128 | 0.11 | 25 | 30 | 10 | 4 | 19 |
English Creek | Trib_agr/urban | 27.93 | −82.06 | 99 | 0.10 | 27 | 22 | 14 | 6 | 10 |
Buckhorn Creek | Trib_urban | 27.90 | −82.17 | 19 | 0.37 | 66 | 10 | 8 | 12 | 0 |
Bell Creek | Trib_forest | 27.80 | −82.18 | 90 | 0.12 | 26 | 12 | 10 | 37 | 1 |
Fishhawk Creek | Trib_forest | 27.85 | −82.24 | 70.6 | 0.007 | 14 | 12 | 5 | 32 | 0 |
Sites | Water (106 m3) | TN (Metric Ton) | TP (Metric Ton) | TN:TP (Molar) |
---|---|---|---|---|
South Prong | 41 (17%) | 86 (12%) | 56 (21%) | 3.4:1 |
North Prong | 68 (28%) | 182 (27%) | 143 (54%) | 2.8:1 |
Lithia (M3) | 142 (59%) | 333 (49%) | 243 (91%) | 3.0:1 |
Alafia (M1) | 241 | 683 | 266 | 5.7:1 |
Land Use | SC | pH | NOx | PON | DRP | DUP | PRP | DIN/DRP | TN/TP |
---|---|---|---|---|---|---|---|---|---|
Urban | 0.91 | 0.86 | |||||||
Agricultural | 0.82 | 0.55 | |||||||
Wetland | 0.73 | 0.75 | 0.70 | 0.76 | −0.58 | ||||
Forest | −0.60 | −0.77 | −0.68 | −0.65 | −0.61 | ||||
P-mined | 0.90 | 0.85 | 0.64 | −0.55 | −0.60 |
Sources | TP | DRP | TN | NO3–N |
---|---|---|---|---|
Alafia River (This study) | 1.14 ± 0.05 | 0.74 ± 0.04 | 2.90 ± 0.14 | 0.52 ± 0.03 |
USEPA criteria this region [17] | 0.49 | 1.65 | ||
Criteria for other across USA [33] | 0.01–0.05 | 0.04–0.63 | ||
Indiana, USA (agricultural) [37] | 0.13–0.23 | 6.9–9.2 | 5.6–7.6 | |
Seattle, USA (urban) [38] | 0.03–0.07 | 0.01–0.04 | 1.1–1.5 | 0.9–1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, S.; Banger, K.; Toor, G.S. Evidence of Phosphate Mining and Agriculture Influence on Concentrations, Forms, and Ratios of Nitrogen and Phosphorus in a Florida River. Water 2021, 13, 1064. https://doi.org/10.3390/w13081064
Duan S, Banger K, Toor GS. Evidence of Phosphate Mining and Agriculture Influence on Concentrations, Forms, and Ratios of Nitrogen and Phosphorus in a Florida River. Water. 2021; 13(8):1064. https://doi.org/10.3390/w13081064
Chicago/Turabian StyleDuan, Shuiwang, Kamaljit Banger, and Gurpal S. Toor. 2021. "Evidence of Phosphate Mining and Agriculture Influence on Concentrations, Forms, and Ratios of Nitrogen and Phosphorus in a Florida River" Water 13, no. 8: 1064. https://doi.org/10.3390/w13081064
APA StyleDuan, S., Banger, K., & Toor, G. S. (2021). Evidence of Phosphate Mining and Agriculture Influence on Concentrations, Forms, and Ratios of Nitrogen and Phosphorus in a Florida River. Water, 13(8), 1064. https://doi.org/10.3390/w13081064