Risk and Impact Assessment of Dams in the Contiguous United States Using the 2018 National Inventory of Dams Database
Abstract
:1. Introduction
2. Data and Methods
2.1. Data: National Inventory of Dam Database
2.2. Evaluations of Potential Hydrologic Impact
2.3. Detection of the Dams within a River Forecast Center (RFC) Region
2.4. Economic Benefits in Each RFC Region
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Ward, J.V. Effects of flow patterns below large dams on stream benthos: A review. Instream Flow Needs Symp. 1976, 2, 235. Available online: https://scholarworks.umass.edu/fishpassage_conference_proceedings/247 (accessed on 25 August 2020).
- Vörösmarty, C.J.; Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. BioSci. Am. Inst. Biol. Sci. 2020, 50, 753–765. [Google Scholar] [CrossRef] [Green Version]
- Degu, A.M.; Hossain, F.; Niyogi, D.; Pielke, R.; Shepherd, J.M.; Voisin, N.; Chronis, T. The influence of large dams on surrounding climate and precipitation patterns. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Turvey, R. Analyzing the marginal cost of water supply. Land Econ. 1976, 52, 158. [Google Scholar] [CrossRef]
- Frederick, K.; VandenBerg, T.P.; Hanson, J. Economic Values of Freshwater in the United States, Discussion Paper 97-03. 1996. Available online: https://ageconsearch.umn.edu/record/10736/ (accessed on 25 August 2020).
- Graf, W.L. Dam nation: A geographic census of American dams and their large-scale hydrologic impacts. Water Resour. Res. 1999, 35, 1305–1311. [Google Scholar] [CrossRef]
- American Society of Civil Engineers. 2017 Report Card for America’s Infrastructure. 2017. Available online: https://www.infrastructurereportcard.org/wp-content/uploads/2016/10/2017-Infrastructure-Report-Card.pdf (accessed on 25 August 2020).
- Baecher, G.B.; Paté, M.E.; De Neufville, R. Risk of dam failure in benefit-cost analysis. Water Resour. Res. 1980, 16, 449–456. [Google Scholar] [CrossRef]
- Lee, B.S.; You, G.J.Y. An assessment of long-term overtopping risk and optimal termination time of dam under climate change. J. Environ. Manag. 2013, 121, 57–71. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity Is Dead: Whither Water Management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef]
- Hossain, F.; Degu, A.M.; Yigzaw, W.; Burian, S.; Niyogi, D.; Shepherd, J.M.; Pielke, R. Climate feedback–based provisions for dam design, operations, and water management in the 21st century. J. Hydrol. Eng. 2012, 17, 837–850. [Google Scholar] [CrossRef]
- Conker, A.; Hussein, H. Hydraulic mission at home, hydraulic mission abroad? Examining Turkey’s regional ‘pax-aquarum’and its limits. Sustainability 2019, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Conker, A.; Hussein, H. Hydropolitics and issue-linkage along the Orontes River Basin: An analysis of the Lebanon–Syria and Syria–Turkey hydropolitical relations. Int. Environ. Agreem. Polit. Law Econ. 2020, 20, 103–121. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Deng, Y.; Tuo, Y.; Yang, Y.; Liang, N. Impact of the dam construction on the down-stream thermal conditions of the Yangtze River. Int. J. Environ. Res. Public Health 2020, 17, 2973. [Google Scholar] [CrossRef]
- Lin, X.; Huang, G.; Piwowar, J.M.; Zhou, X.; Zhai, Y. Risk of hydrological failure under the com-pound effects of instant flow and precipitation peaks under climate change: A case study of Mountain Island Dam, North Carolina. J. Clean. Prod. 2021, 284, 125305. [Google Scholar] [CrossRef]
- Wohl, E. Rivers in the Anthropocene: The US perspective. Geomorphology 2018, 106600. [Google Scholar] [CrossRef]
- Fergus, C.E.; Brooks, J.R.; Kaufmann, P.R.; Pollard, A.I.; Herlihy, A.T.; Paulsen, S.G.; Weber, M.H. National framework for ranking lakes by potential for anthropogenic hydro-alteration. Ecol. Indic. 2021, 122, 107241. [Google Scholar] [CrossRef]
- USACE—U.S Army Corps of Engineers. National Inventory of Dams. 2018. Available online: http://nid.usace.army.mil/cm_apex/f?p=838:12:9728040732909 (accessed on 15 January 2020).
- Hussein, H.; Conker, A.; Grandi, M. Small is beautiful but not trendy: Understanding the allure of big hydraulic works in the Euphrates-Tigris and Nile waterscapes. Mediterr. Politics 2020, 1–24. [Google Scholar] [CrossRef]
- Swyngedouw, E. Chronicle of a Death Foretold: The Failure of Early Twentieth-Century Hydraulic Modernization. In Liquid Power: Contested Hydro-Modernities in Twentieth-Century Spain; MIT Press: Cambridge, MA, USA; London, UK, 2015; pp. 67–98. [Google Scholar] [CrossRef]
- Keys, P.W.; Galaz, V.; Dyer, M.; Matthews, N.; Folke, C.; Nyström, M.; Cornell, S.E. Anthropocene risk. Nat. Sustain. 2019, 2, 667–673. [Google Scholar] [CrossRef]
- FEMA. Dam Safety in the United States: A Progress Report on the National Dam Safety Program FY2008-International Water Power and Dam Construction. 2013. Available online: http://www.csa.com/partners/viewrecord.php?requester=gs&collection=TRD&recid=200154001798MT (accessed on 25 August 2020).
- Prat, O.P.; Nelson, B.R. Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012). Hydrol. Earth Syst. Sci. 2015, 19, 2037–2056. [Google Scholar] [CrossRef] [Green Version]
- Mini-Language Reference. NCAR command language. Natl. Center Atmos. Res. 2013, 1–2. [Google Scholar] [CrossRef]
- Munger, D.F.; Bowles, D.S.; Boyer, D.D.; Davis, D.W.; Margo, D.A.; Moser, D.A.; Snorteland, N. Interim Tolerable Guidelines for US Army Corps of Engineers Dams. Proceedings of the 2009 USSD Annual Lecture. 2009. Available online: https://www.researchgate.net/publication/267953850 (accessed on 25 August 2020).
- Milly, P.C.; Dunne, K.A. Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 2020, 367, 1252–1255. [Google Scholar] [CrossRef]
- Rogers, B.M.; Neilson, R.P.; Drapek, R.; Lenihan, J.M.; Wells, J.R.; Bachelet, D.; Law, B.E. Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.I.; Ault, T.R.; Smerdon, J.E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 2015, 1, e1400082. [Google Scholar] [CrossRef] [Green Version]
- Swain, D.; Tsiang, M.; Haugen, M.; Singh, D.; Charland, A.; Rajaratnam, B.; Diffenbaugh, N. The extraordinary California drought of 2013/2014: Character, context, and the role of climate change. Bull. Am. Meteorol. Soc. 2014, 95, S3. [Google Scholar]
- Vano, J.A.; Miller, K.; Dettinger, M.D.; Cifelli, R.; Curtis, D.; Dufour, A.; Olsen, J.R.; Wilson, A.M. Hydroclimatic extremes as challenges for the water management community: Lessons from oroville dam and hurricane harvey. Bull. Am. Meteorol. Soc. 2019, 100, S9–S14. [Google Scholar] [CrossRef] [Green Version]
ID | RFC Region | Number of Dams | Area | Cumulative Storage (a) | Annual Precipitation (b) | (a)/(b) | |||
---|---|---|---|---|---|---|---|---|---|
[106 acres] | [103 km2] | [106 acres-ft] | [km3] | [106 acres-ft] | [km3] | ||||
1 | Northeast | 4647 | 67 | 271.35 | 46.8 | 57.73 | 276.3 | 340.82 | 0.17 |
2 | Mid-Atlantic | 2735 | 53 | 214.65 | 15.7 | 19.37 | 207.7 | 256.20 | 0.08 |
3 | Southeast | 10,565 | 159 | 643.95 | 232.6 | 286.91 | 683.1 | 842.60 | 0.34 |
4 | Ohio | 4066 | 112 | 453.6 | 46.7 | 57.60 | 441.7 | 544.84 | 0.11 |
5 | North Central | 7796 | 217 | 878.85 | 338.4 | 417.42 | 629.3 | 776.24 | 0.54 |
6 | Lower Mississippi | 5124 | 131 | 530.55 | 95.4 | 117.68 | 586 | 722.83 | 0.16 |
7 | Missouri | 20,345 | 333 | 1348.65 | 207.6 | 256.07 | 634.6 | 782.78 | 0.33 |
8 | Arkansas | 8214 | 135 | 546.75 | 92.5 | 114.10 | 343.2 | 423.34 | 0.27 |
9 | West Gulf | 6198 | 257 | 1040.85 | 66.8 | 82.40 | 626.4 | 772.66 | 0.11 |
10 | Northwest | 2139 | 201 | 814.05 | 84 | 103.61 | 549 | 677.19 | 0.15 |
11 | Colorado | 1972 | 196 | 793.8 | 103.4 | 127.54 | 208.8 | 257.55 | 0.50 |
12 | California | 1700 | 160 | 648 | 43.2 | 53.29 | 279.4 | 344.64 | 0.15 |
Total (Contiguous United States) | 75,501 | 2021 | 8185.05 | 1373.1 | 1693.71885 | 5465.5 | 6741.69 | 0.25 |
ID | RFC Region | Number of Dams | Hazard Potential | Emergency Action Plan (EAP) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Required | Not Required | ||||||||||
High | Significant | Low | Undetermined | Missing | Yes (a) | No (b) | (b)/((a)+(b)) | ||||
1 | Northeast | 4647 | 1191 | 1571 | 1868 | 17 | 0 | 1893 | 363 | 0.16 | 2391 |
2 | Mid-Atlantic | 2735 | 1107 | 618 | 835 | 175 | 0 | 1687 | 258 | 0.13 | 793 |
3 | Southeast | 10,565 | 1694 | 1235 | 7420 | 216 | 0 | 1750 | 2840 | 0.62 | 5975 |
4 | Ohio | 4066 | 1314 | 1095 | 1632 | 25 | 0 | 1646 | 773 | 0.32 | 1647 |
5 | North Central | 7796 | 1182 | 870 | 5693 | 51 | 0 | 1531 | 1282 | 0.46 | 4983 |
6 | Lower Mississippi | 5124 | 950 | 590 | 3026 | 240 | 318 | 837 | 283 | 0.25 | 4004 |
7 | Missouri | 20,345 | 1551 | 1027 | 17,711 | 56 | 0 | 1337 | 344 | 0.20 | 18,664 |
8 | Arkansas | 8214 | 708 | 420 | 6260 | 69 | 757 | 851 | 115 | 0.12 | 7248 |
9 | West Gulf | 6198 | 215 | 52 | 153 | 0 | 5778 | 1480 | 425 | 0.22 | 4293 |
10 | Northwest | 2139 | 561 | 486 | 1085 | 7 | 0 | 716 | 479 | 0.40 | 944 |
11 | Colorado | 1972 | 685 | 410 | 873 | 3 | 1 | 982 | 105 | 0.10 | 885 |
12 | California | 1700 | 776 | 302 | 572 | 50 | 0 | 715 | 697 | 0.49 | 288 |
Total (CONUS) | 75,501 | 11,934 | 8676 | 47,128 | 909 | 6854 | 15,425 | 7964 | 0.34 | 52,115 |
ID | RFC Region | Number of Dams | Cumulative Storage | Cost Average | Potential Benefit | |||
---|---|---|---|---|---|---|---|---|
[-] | [106 acres-ft] | [km3] | $/Acre-ft | $/Million Liters | [Million US Dollars] | [Thousands US Dollars/dam] | ||
1 | Northeast | 4647 | 46.8 | 57.7278 | 20.9 | 16.94 | 978.12 | 210.48 |
2 | Mid-Atlantic | 2735 | 15.7 | 19.36595 | 40.8 | 33.08 | 640.56 | 234.21 |
3 | Southeast | 10,565 | 232.6 | 286.9121 | 19.6 | 15.89 | 4558.96 | 431.52 |
4 | Ohio | 4066 | 46.7 | 57.60445 | 37.8 | 30.65 | 1765.26 | 434.15 |
5 | North Central | 7796 | 338.4 | 417.4164 | 29.2 | 23.67 | 9881.28 | 1267.48 |
6 | Lower Mississippi | 5124 | 95.4 | 117.6759 | 34.4 | 27.89 | 3281.76 | 640.47 |
7 | Missouri | 20,345 | 207.6 | 256.0746 | 21.2 | 17.19 | 4401.12 | 216.32 |
8 | Arkansas | 8214 | 92.5 | 114.0988 | 50.5 | 40.94 | 4671.25 | 568.69 |
9 | West Gulf | 6198 | 66.8 | 82.3978 | 139.7 | 113.26 | 9331.96 | 1505.64 |
10 | Northwest | 2139 | 84 | 103.614 | 89.7 | 72.72 | 7534.80 | 3522.58 |
11 | Colorado | 1972 | 103.4 | 127.5439 | 122.4 | 99.23 | 12,656.16 | 6417.93 |
12 | California | 1700 | 43.2 | 53.2872 | 81.1 | 65.75 | 3503.52 | 2060.89 |
Total/Average (CONUS) | 75,501 | 1373.1 | 1693.719 | 57.28 | 46.43 | 63,204.75 | 837.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Sciubba, M.; Kam, J. Risk and Impact Assessment of Dams in the Contiguous United States Using the 2018 National Inventory of Dams Database. Water 2021, 13, 1066. https://doi.org/10.3390/w13081066
Song J, Sciubba M, Kam J. Risk and Impact Assessment of Dams in the Contiguous United States Using the 2018 National Inventory of Dams Database. Water. 2021; 13(8):1066. https://doi.org/10.3390/w13081066
Chicago/Turabian StyleSong, Junho, Madden Sciubba, and Jonghun Kam. 2021. "Risk and Impact Assessment of Dams in the Contiguous United States Using the 2018 National Inventory of Dams Database" Water 13, no. 8: 1066. https://doi.org/10.3390/w13081066