Modeling of Flow and Transport in Saturated and Unsaturated Porous Media
Abstract
:1. Introduction
- -
- Physical and theoretical analysis to improve our understanding of physical processes and key factors that control these processes.
- -
- Mathematical analysis to establish the equations that can describe these processes and to investigate the solution characteristics of these equations (i.e., solution singularity and multiple solution characteristics).
- -
- Computational analysis to develop advanced numerical methods, techniques, procedures, and algorithms to improve the accuracy and the efficiency of the numerical models on the basis of contemporary computational science knowledge and expertise.
- -
- Experimental studies (either at laboratory or field scale) to provide data and information required for process understanding, field characterization, or for the validation of the numerical results.
- -
- Development of synthetic benchmarks with exact solution (analytical, semianalytical or reference solutions) in order to verify the accuracy and the robustness of the developed numerical models through the comparison between numerical and benchmark solutions.
- -
- Inverse modeling to estimate indirectly, using appropriate optimization algorithms, model parameters if they are missing or incomplete.
- -
- Uncertainty and sensitivity analysis in order to estimate the effect of the physical parameters on the model outputs.
2. Improved Numerical Methods for Flow and Mass Transport Simulation
3. Looking for Reliable Models and Parameters
4. Laboratory Scale Experiments and Simulations
5. Modeling and Simulations for Improved Process Understanding
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Q.; Abily, M.; Du, M.; Gourbesville, P.; Fouché, O. Integrated Groundwater Resources Management: Spatially-Nested Modelling Approach for Water Cycle Simulation. Water Resour. Manag. 2020, 34, 1319–1333. [Google Scholar] [CrossRef]
- Singh, A. Groundwater Resources Management through the Applications of Simulation Modeling: A Review. Sci. Total Environ. 2014, 499, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Vereecken, H.; Schnepf, A.; Hopmans, J.W.; Javaux, M.; Or, D.; Roose, T.; Vanderborght, J.; Young, M.H.; Amelung, W.; Aitkenhead, M.; et al. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 2016, 15, vzj2015.09.0131. [Google Scholar] [CrossRef] [Green Version]
- Meixner, T.; Manning, A.H.; Stonestrom, D.A.; Allen, D.M.; Ajami, H.; Blasch, K.W.; Brookfield, A.E.; Castro, C.L.; Clark, J.F.; Gochis, D.J.; et al. Implications of Projected Climate Change for Groundwater Recharge in the Western United States. J. Hydrol. 2016, 534, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Green, T.R. Linking Climate Change and Groundwater. In Integrated Groundwater Management; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.-D., Ross, A., Eds.; Springer International Publishing: Cham, Switzerlands, 2016; pp. 97–141. ISBN 978-3-319-23575-2. [Google Scholar]
- Li, R.; Merchant, J.W. Modeling Vulnerability of Groundwater to Pollution under Future Scenarios of Climate Change and Biofuels-Related Land Use Change: A Case Study in North Dakota, USA. Sci. Total Environ. 2013, 447, 32–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater Intrusion Processes, Investigation and Management: Recent Advances and Future Challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Yoon, W.S.; Jeon, J.S.; Koo, M.-H.; Keehm, Y. Numerical Modeling of Aquifer Thermal Energy Storage System. Energy 2010, 35, 4955–4965. [Google Scholar] [CrossRef]
- De Schepper, G.; Paulus, C.; Bolly, P.-Y.; Hermans, T.; Lesparre, N.; Robert, T. Assessment of Short-Term Aquifer Thermal Energy Storage for Demand-Side Management Perspectives: Experimental and Numerical Developments. Appl. Energy 2019, 242, 534–546. [Google Scholar] [CrossRef] [Green Version]
- Todorov, O.; Alanne, K.; Virtanen, M.; Kosonen, R. A Method and Analysis of Aquifer Thermal Energy Storage (ATES) System for District Heating and Cooling: A Case Study in Finland. Sustain. Cities Soc. 2020, 53, 101977. [Google Scholar] [CrossRef]
- Maples, S.R.; Fogg, G.E.; Maxwell, R.M. Modeling Managed Aquifer Recharge Processes in a Highly Heterogeneous, Semi-Confined Aquifer System. Hydrogeol. J 2019, 27, 2869–2888. [Google Scholar] [CrossRef] [Green Version]
- Koohbor, B.; Fahs, M.; Hoteit, H.; Doummar, J.; Younes, A.; Belfort, B. An Advanced Discrete Fracture Model for Variably Saturated Flow in Fractured Porous Media. Adv. Water Resour. 2020, 140, 103602. [Google Scholar] [CrossRef]
- Emami-Meybodi, H.; Hassanzadeh, H.; Green, C.P.; Ennis-King, J. Convective Dissolution of CO2 in Saline Aquifers: Progress in Modeling and Experiments. Int. J. Greenh. Gas Control 2015, 40, 238–266. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Amooie, M.A.; Gershenzon, N.; Dai, Z.; Ritzi, R.; Xiong, F.; Cole, D.; Moortgat, J. Dissolution Trapping of Carbon Dioxide in Heterogeneous Aquifers. Environ. Sci. Technol. 2017, 51, 7732–7741. [Google Scholar] [CrossRef] [PubMed]
- Ouangrawa, M.; Molson, J.; Aubertin, M.; Bussière, B.; Zagury, G.J. Reactive Transport Modelling of Mine Tailings Columns with Capillarity-Induced High Water Saturation for Preventing Sulfide Oxidation. Appl. Geochem. 2009, 24, 1312–1323. [Google Scholar] [CrossRef]
- Drouin, G.; Fahs, M.; Droz, B.; Younes, A.; Imfeld, G.; Payraudeau, S. Pollutant Dissipation at the Sediment-Water Interface: A Robust Discrete Continuum Numerical Model and Recirculating Laboratory Experiments. Water Res 2021, 57. [Google Scholar] [CrossRef]
- Carter, A.; Kelly, M.; Bailey, L. Radioactive High Level Waste Insight Modelling for Geological Disposal Facilities. Phys. Chem. Earth Parts A/B/C 2013, 64, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kourakos, G.; Mantoglou, A. Inverse Groundwater Modeling with Emphasis on Model Parameterization: INVERSE GROUNDWATER MODELING. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Rajabi, M.M.; Ataie-Ashtiani, B.; Simmons, C.T. Model-Data Interaction in Groundwater Studies: Review of Methods, Applications and Future Directions. J. Hydrol. 2018, 567, 457–477. [Google Scholar] [CrossRef]
- Zhao, C. Computational Methods for Simulating Some Typical Problems in Computational Geosciences. Int. J. Comput. Methods 2016, 13, 1640016. [Google Scholar] [CrossRef]
- Miller, C.T.; Dawson, C.N.; Farthing, M.W.; Hou, T.Y.; Huang, J.; Kees, C.E.; Kelley, C.T.; Langtangen, H.P. Numerical Simulation of Water Resources Problems: Models, Methods, and Trends. Adv. Water Resour. 2013, 51, 405–437. [Google Scholar] [CrossRef]
- Ku, C.-Y.; Xiao, J.-E.; Liu, C.-Y. On Solving Nonlinear Moving Boundary Problems with Heterogeneity Using the Collocation Meshless Method. Water 2019, 11, 835. [Google Scholar] [CrossRef] [Green Version]
- Ku, C.-Y.; Liu, C.-Y.; Xiao, J.-E.; Yeih, W.; Fan, C.-M. A Spacetime Meshless Method for Modeling Subsurface Flow with a Transient Moving Boundary. Water 2019, 11, 2595. [Google Scholar] [CrossRef] [Green Version]
- Aharmouch, A.; Amaziane, B.; El Ossmani, M.; Talali, K. A Fully Implicit Finite Volume Scheme for a Seawater Intrusion Problem in Coastal Aquifers. Water 2020, 12, 1639. [Google Scholar] [CrossRef]
- Wu, M.C.; Hsieh, P.C. Improved Solutions to the Linearized Boussinesq Equation with Temporally Varied Rainfall Recharge for a Sloping Aquifer. Water 2019, 11, 826. [Google Scholar] [CrossRef] [Green Version]
- Bahar, E.; Gurarslan, G. B-Spline Method of Lines for Simulation of Contaminant Transport in Groundwater. Water 2020, 12, 1607. [Google Scholar] [CrossRef]
- Amir, L.; Kern, M. Jacobian Free Methods for Coupling Transport with Chemistry in Heterogenous Porous Media. Water 2021, 13, 370. [Google Scholar] [CrossRef]
- Fallico, C.; Lauria, A.; Aristodemo, F. Porous Medium Typology Influence on the Scaling Laws of Confined Aquifer Characteristic Parameters. Water 2020, 12, 1166. [Google Scholar] [CrossRef]
- Guérillot, D.; Bruyelle, J. Transmissibility Upscaling on Unstructured Grids for Highly Heterogeneous Reservoirs. Water 2019, 11, 2647. [Google Scholar] [CrossRef] [Green Version]
- Kozlowski, T.; Ludynia, A. Permeability Coefficient of Low Permeable Soils as a Single-Variable Function of Soil Parameter. Water 2019, 11, 2500. [Google Scholar] [CrossRef] [Green Version]
- Aristodemo, F.; Lauria, A.; Tripepi, G.; Rivera-Velasquéz, M.F.; Fallico, C. Smoothing of Slug Tests for Laboratory Scale Aquifer Assessment—A Comparison Among Different Porous Media. Water 2019, 11, 1569. [Google Scholar] [CrossRef] [Green Version]
- Yin, P.; Zhao, C.; Ma, J.; Huang, L. A Unified Equation to Predict the Permeability of Rough Fractures via Lattice Boltzmann Simulation. Water 2019, 11, 1081. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Guo, C.; Tang, Y.; Guo, J.; Cao, L. Experimental Study on the Permeability Characteristic of Fused Quartz Sand and Mixed Oil as a Transparent Soil. Water 2019, 11, 2514. [Google Scholar] [CrossRef] [Green Version]
- Ercan, A.; Kavvas, M.L. Numerical Evaluation of Fractional Vertical Soil Water Flow Equations. Water 2021, 13, 511. [Google Scholar] [CrossRef]
- Baalousha, H.; Fahs, M.; Ramasomanana, F.; Younes, A. Effect of Pilot-Points Location on Model Calibration: Application to the Northern Karst Aquifer of Qatar. Water 2019, 11, 679. [Google Scholar] [CrossRef] [Green Version]
- Belfort, B.; Weill, S.; Fahs, M.; Lehmann, F. Laboratory Experiments of Drainage, Imbibition and Infiltration under Artificial Rainfall Characterized by Image Analysis Method and Numerical Simulations. Water 2019, 11, 2232. [Google Scholar] [CrossRef] [Green Version]
- Isch, A.; Montenach, D.; Hammel, F.; Ackerer, P.; Coquet, Y. A Comparative Study of Water and Bromide Transport in a Bare Loam Soil Using Lysimeters and Field Plots. Water 2019, 11, 1199. [Google Scholar] [CrossRef] [Green Version]
- Kanzari, S.; Daghari, I.; Šimůnek, J.; Younes, A.; Ilahy, R.; Ben Mariem, S.; Rezig, M.; Ben Nouna, B.; Bahrouni, H.; Ben Abdallah, M.A. Simulation of Water and Salt Dynamics in the Soil Profile in the Semi-Arid Region of Tunisia—Evaluation of the Irrigation Method for a Tomato Crop. Water 2020, 12, 1594. [Google Scholar] [CrossRef]
- Younes, A.; Zaouali, J.; Kanzari, S.; Lehmann, F.; Fahs, M. Bayesian Simultaneous Estimation of Unsaturated Flow and Solute Transport Parameters from a Laboratory Infiltration Experiment. Water 2019, 11, 1660. [Google Scholar] [CrossRef] [Green Version]
- Emadi-Tafti, M.; Ataie-Ashtiani, B. A Modeling Platform for Landslide Stability: A Hydrological Approach. Water 2019, 11, 2146. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wallace, C.D.; Zhou, Y.; Ershadnia, R.; Behzadi, F.; Dwivedi, D.; Xue, L.; Soltanian, M.R. Influence of Streambed Heterogeneity on Hyporheic Flow and Sorptive Solute Transport. Water 2020, 12, 1547. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, Z.; Sheng, Z.; Huang, M.; Zhang, Z. Assess Effectiveness of Salt Removal by a Subsurface Drainage with Bundled Crop Straws in Coastal Saline Soil Using HYDRUS-3D. Water 2019, 11, 943. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Lei, M.; Cao, C.; Shi, C. Dewatering Characteristics and Inflow Prediction of Deep Foundation Pits with Partial Penetrating Curtains in Sand and Gravel Strata. Water 2019, 11, 2182. [Google Scholar] [CrossRef] [Green Version]
- Steding, S.; Kempka, T.; Zirkler, A.; Kühn, M. Spatial and Temporal Evolution of Leaching Zones within Potash Seams Reproduced by Reactive Transport Simulations. Water 2021, 13, 168. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Huang, B.; Hu, T.; Ling, D. Review on Numerical Simulation of the Internal Soil Erosion Mechanisms Using the Discrete Element Method. Water 2021, 13, 169. [Google Scholar] [CrossRef]
- Ding, L.; Wu, Q.; Zhang, L.; Guérillot, D. Application of Fractional Flow Theory for Analytical Modeling of Surfactant Flooding, Polymer Flooding, and Surfactant/Polymer Flooding for Chemical Enhanced Oil Recovery. Water 2020, 12, 2195. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younes, A.; Fahs, M.; Ackerer, P. Modeling of Flow and Transport in Saturated and Unsaturated Porous Media. Water 2021, 13, 1088. https://doi.org/10.3390/w13081088
Younes A, Fahs M, Ackerer P. Modeling of Flow and Transport in Saturated and Unsaturated Porous Media. Water. 2021; 13(8):1088. https://doi.org/10.3390/w13081088
Chicago/Turabian StyleYounes, Anis, Marwan Fahs, and Philippe Ackerer. 2021. "Modeling of Flow and Transport in Saturated and Unsaturated Porous Media" Water 13, no. 8: 1088. https://doi.org/10.3390/w13081088
APA StyleYounes, A., Fahs, M., & Ackerer, P. (2021). Modeling of Flow and Transport in Saturated and Unsaturated Porous Media. Water, 13(8), 1088. https://doi.org/10.3390/w13081088