Using Remote Sensing and Multivariate Statistics in Analyzing the Relationship between Land Use Pattern and Water Quality in Tien Giang Province, Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Water Sampling and Analysis
2.3. Land Use/Land Cover Classification
2.4. Data Processing
2.4.1. Assessment of Surface Water Quality
2.4.2. Assessment of Surface Water Quality
3. Results and Discussion
3.1. Water Quality Characteristics of Tien Giang Province in 2019
3.2. Distribution of Land Use Patterns
3.3. Clustering Surface Water Quality in Tien Giang Province
3.4. Identification of Critical Water Parameters and Potential Sources of Water Variation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herojeet, R.; Rishi, M.S.; Lata, R.; Dolma, K. Quality characterization and pollution source identification of surface water using multivariate statistical techniques, Nalagarh Valley, Himachal Pradesh, India. Appl. Water Sci. 2017, 7, 2137–2156. [Google Scholar] [CrossRef]
- Sharma, C.M.; Kang, S.; Tripathee, L.; Paudyal, R.; Sillanpaa, M. Major ions and irrigation water quality assessment of the Nepalese Himalayan rivers. Environ. Dev. Sustain. 2021, 23, 2668–2680. [Google Scholar] [CrossRef]
- Amiri, S.; Mazaheri, M.; Samani, J.M.V. Introducing a general framework for pollution source identification in surface water resources (theory and application). J. Environ. Manag. 2019, 248, 109281. [Google Scholar] [CrossRef] [PubMed]
- Kuwayama, Y.; Olmstead, S.M.; Wietelman, D.C.; Zheng, J. Trends in nutrient-related pollution as a source of potential water quality damages: A case study of Texas, USA. Sci. Total Environ. 2020, 724, 137962. [Google Scholar] [CrossRef]
- Howladar, M.F.; Chakma, E.; Koley, N.J.; Islam, S.; Numanbakth, M.A.A.; Ahmed, Z.; Chowdhury, T.R.l.; Akter, S. The water quality and pollution sources assessment of Surma river, Bangladesh using, hydrochemical, multivariate statistical and water quality index methods. Groundw. Sustain. Dev. 2021, 12, 100523. [Google Scholar] [CrossRef]
- Pesce, S.F.; Wunderlin, D.A. Use of water quality indices to verify the impact of Cordoba City (Argentina) on Suquia River. Water Res. 2000, 34, 2915–2926. [Google Scholar] [CrossRef]
- Ouyang, Y.; Nkedi-Kizza, P.; Wu, Q.T.; Shinde, D.; Huang, C.H. Assessment of seasonal variations in surface water quality. Water Res. 2006, 40, 3800–3810. [Google Scholar] [CrossRef]
- Razmkhah, H.; Abrishamchi, A.; Torkian, A. Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: A case study on Jajrood River (Tehran, Iran). J. Environ. Manag. 2010, 91, 852–860. [Google Scholar] [CrossRef]
- Ban, X.; Wu, Q.; Pan, B.; Pan, B.; Du, Y.; Feng, Q. Application of Composite Water Quality Identification Index on the water quality evaluation in spatial and temporal variations: A case study in Honghu Lake, China. Environ. Monit. Assess. 2014, 186, 4237–4247. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, V.; Kanga, S. Land use/land cover change dynamics and river water quality assessment using geospatial technique: A case study of Harmu River, Ranchi (India). Int. J. Sci. Res. Comput. Sci. Eng. 2017, 5, 17–24. [Google Scholar]
- Soltani, A.A.; Bermad, A.; Boutaghane, H.; Oukil, A.; Abdalla, O.; Hasbaia, M.; Oulebsir, R.; Zeroual, S.; Lefkir, A. An integrated approach for assessing surface water quality: Case of Beni Haroun dam (Northeast Algeria). Environ. Monit. Assess. 2020, 192, 630. [Google Scholar] [CrossRef]
- Bonansea, M.; Bazan, R.; German, A.; Ferral, A.; Beltramone, G.; Cosavella, A.; Pinotti, L. Assessing land use and land cover change in Los Molinos reservoir watershed and the effect on the reservoir water quality. J. S. Am. Earth Sci. 2021, 108, 103243. [Google Scholar] [CrossRef]
- Zavareh, M.; Maggioni, V.; Sokolov, V. Investigating water quality data using principal component analysis and granger causality. Water 2021, 13, 343. [Google Scholar] [CrossRef]
- Kim, T.; Kim, Y.; Shin, J.; Go, B.; Cha, Y. Assessing Land-Cover Effects on Stream Water Quality in Metropolitan Areas Using the Water Quality Index. Water 2020, 12, 3294. [Google Scholar] [CrossRef]
- Kronvang, B.; Wendland, F.; Kovar, K.; Fraters, D. Land Use and Water Quality. Water 2020, 12, 2412. [Google Scholar] [CrossRef]
- Palma, P.; Fialho, S.; Lima, A.; Mourinha, C.; Penha, A.; Novais, M.H.; Rosado, A.; Morais, M.; Potes, M.; Costa, M.J.; et al. Land-cover patterns and hydrogeomorphology of tributaries: Are these important stressors for the water quality of reservoirs in the mediterranean region? Water 2020, 12, 2665. [Google Scholar] [CrossRef]
- Tu, J. Spatial variations in the relationships between land use and water quality across an urbanization gradient in the Watersheds of Northern Georgia, USA. Environ. Manag. 2013, 51, 1–17. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Wu, B.; Pan, G.; Xu, J.; Wu, S. Spatial scale and seasonal dependence of land use impacts on riverine water quality in the Huai River basin, China. Environ. Sci. Pollut. Res. 2017, 24, 20995–21010. [Google Scholar] [CrossRef]
- Lin, Y.; Han, P.; Huang, Y.; Yuan, G.L.; Guo, X.; Li, J. Source identification of potentially hazardous elements and their relationships with soil properties in agricultural soil of the Pinggu district of Beijing, China: Multivariate statistical analysis and redundancy analysis. J. Geochem. Explor. 2017, 173, 110–118. [Google Scholar] [CrossRef]
- Misaghi, F.; Delgosha, F.; Razzaghmanesh, M.; Myers, B. Introducing a water quality index for assessing water for irrigation purposes: A case study of the Ghezel Ozan River. Sci. Total Environ. 2017, 589, 107–116. [Google Scholar] [CrossRef]
- Fathi, E.; Zamani-Ahmadmahmoodi, R.; Zare-Bidaki, R. Water quality evaluation using water quality index and multivariate methods, Beheshtabad River, Iran. Appl. Water Sci. 2018, 8, 210. [Google Scholar] [CrossRef] [Green Version]
- Thuong, T.V.; Ngoc, P.V.; Hung, D.N. Manifestations of climate change and sea level rise in Tien giang province during the period of 1978–2015. J. Sci. Ho Chi Minh City Univ. Educ. 2016, 9, 188–200. [Google Scholar]
- Vietnam Environment Administration (VEA). Guidance on Sampling of Rivers and Streams (TCVN 6663-6:2018); Ministry of Science and Technology: Hanoi, Vietnam, 2018.
- Vietnam Environment Administration (VEA). Preservation and Handling of Water Samples; Ministry of Science and Technology: Hanoi, Vietnam, 2018.
- APHA; AWWA; WEF. Standard Methods of for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project; QGIS Development Team: Chicago, IL, USA, 2016; Available online: https://qgis.org/en/site/forusers/download.html (accessed on 10 February 2020).
- Jureckova, J.; Picek, J. Shapiro-Wilk-type test of normality under nuisance regression and scale. Comput. Stat. Data Anal. 2007, 51, 5184–5191. [Google Scholar] [CrossRef]
- Ward, J.H. Ward’s method. J. Am. Stat. Assoc. 1963, 58, 236–246. [Google Scholar] [CrossRef]
- Nosrati, K.; Van, D.E.M. Assessment of groundwater quality using multivariate statistical techniques in Hashtgerd Plain, Iran. Environ. Earth Sci. Vol. 2012, 65, 331–344. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; SAGE: London, UK, 2009. [Google Scholar]
- Li, Q.; Zhang, H.; Gou, S.; Fu, K.; Liao, L.; Cheng, S. Groundwater pollution source apportionment using principal component analysis in a multiple land-use area in southwestern China. Environ. Sci. Pollut. Res. 2020, 27, 9000–9011. [Google Scholar] [CrossRef] [PubMed]
- Felipe-Sotelo, M.; Andrade, J.M.; Carlosena, A.; Tauler, R. Temporal characterisation of river waters in urban and semi-urban areas using physico-chemical parameters and chemometric methods. Anal. Chim. Acta 2007, 583, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.W.; Lin, K.H.; Kuo, Y.M. Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar] [CrossRef]
- Shamsuddin, M.K.N.; Sulaiman, W.N.N.A.; Ramli, M.F.B.; Kusin, F.M. Geochemical characteristic and water quality index of groundwater and surface water at Lower River Muda Basin, Malaysia. Arab. J. Geosci. 2019, 12, 309. [Google Scholar] [CrossRef]
- Kukrer, S.; Mutlu, E. Assessment of surface water quality using water quality index and multivariate statistical analyses in Saraydüzü Dam Lake, Turkey. Environ. Monit. Assess. 2019, 191, 71. [Google Scholar] [CrossRef] [PubMed]
- Obiri, S.; Addico, G.; Mohammed, S.; Anku, W.W.; Darko, H.; Collins, O. Water quality assessment of the Tano Basin in Ghana: A multivariate statistical approach. Appl. Water Sci. 2021, 11, 49. [Google Scholar] [CrossRef]
- Giao, N.T.; Anh, P.K.; Nhien, H.T.H. Spatiotemporal analysis of surface water quality in Dong Thap province, Vietnam using water quality index and statistical approaches. Water 2021, 13, 336. [Google Scholar] [CrossRef]
- Hung, N.Q. Evaluate Changes in Surface Water Quality in a Number of Major Rivers and Canals in Tien Giang Province. Master’s Thesis, Can Tho University, Can Tho, Vietnam, 2016. [Google Scholar]
- Dieu, H.T.Q.; Phong, N.H.; Hop, N.V. Study on Tien river water quality assessment. J. Anal. Sci. 2016, 21, 38–48. [Google Scholar]
- Yen, T.T.H.; Thai, T.T.; Lam, N.L.Q.; Quang, N.X.; Luu, P.T. The planktonic diatom community structure and the water quality in the Ba Lai and Ham Luong rivers, Ben Tre province. Ho Chi Minh City Univ. Educ. J. Sci. 2018, 15, 144–154. [Google Scholar]
- Chikogu, V.; Adamu, I.C.; Vivan, E.L. Public health effects of effluent discharge of kaduna refinery into river Romi. Greener J. Med. Sci. 2012, 2, 64–69. [Google Scholar]
- Guettaf, M.; Maoui, A.; Ihdene, Z. Assessment of water quality: A case study of the Seybouse River (North East of Algeria). Appl. Water Sci. 2017, 7, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Beshiru, A.; Okareh, O.T.; Chigor, V.N.; Igbinosa, E.O. Assessment of water quality of rivers that serve as water sources for drinking and domestic functions in rural and pre-urban communities in Edo North, Nigeria. Environ. Monit. Assess. 2018, 190, 387. [Google Scholar] [CrossRef]
- Vietnam Environmental Protection Agency. National Technical Regulation on Surface Water Quality (QCVN 08-2015/BTNMT); Vietnam Environmental Protection Agency: Hanoi, Vietnam, 2015. [Google Scholar]
- Taoufik, G.; Khouni, I.; Ghrabi, A. Assessment of physico-chemical and microbiological surface water quality using multivariate statistical techniques: A case study of the Wadi El-Bey River, Tunisia. Arab. J. Geosci. 2017, 10, 181. [Google Scholar] [CrossRef]
- Chadli, K.; Boufala, M. Assessment of water quality using Moroccan WQI and multivariate statistics in the Sebou watershed (Morocco). Arab. J. Geosci. 2021, 14, 27. [Google Scholar] [CrossRef]
- Wan, J.; Bu, H.; Zhang, Y.; Meng, W. Classification of rivers based on water quality assessment using factor analysis in Taizi River basin, northeast China. Environ. Earth Sci. 2013, 69, 909–919. [Google Scholar] [CrossRef]
- Qin, G.; Liu, J.; Xu, S.; Wang, T. Water quality assessment and pollution source apportionment in a highly regulated river of Northeast China. Environ. Monit. Assess. 2020, 192, 446. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Hassan, M.Q.; Islam, M.S.; Shamsad, S.Z.K.M. Environmental impact assessment on water quality deterioration caused by the decreased Ganges outflow and saline water intrusion in south-western Bangladesh. Environ. Geol. 2020, 40, 31–40. [Google Scholar] [CrossRef]
- Naseem, S.; Hamza, S.; Bashir, E. Groundwater geochemistry of Winder agricultural farms, Balochistan, Pakistan and assessment for irrigation water quality. Eur. Water 2010, 31, 21–32. [Google Scholar]
- Tuan, D.D.A.; Thu, B.A.; Trung, N.H. Assessing quality of surface water for urban water supply source for Soc Trang City. Sci. J. Can Tho Univ. 2019, 4A, 61–70. [Google Scholar]
- Giao, N.T. Spatial variations of surface water quality in Hau giang province, Vietnam using multivariate statistical techniques. Environ. Nat. Resour. J. 2020, 18, 400–410. [Google Scholar] [CrossRef]
- Giao, N.T. Surface water quality at the branches adjacent to Hau river in Can Tho city. Sci. Technol. J. Agric. Rural Dev. 2020, 15, 79–86. [Google Scholar]
- Feld, C.; Birk, S.; Eme, D.; Gerisch, M.; Hering, D.; Kernan, M.; Maileht, K.; Mischke, U.; Ott, I.; Pletterbauer, F.; et al. Disentangling the effects of land use and geo-climatic factors on diversity in European freshwater ecosystems. Ecol. Indic. 2016, 60, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Hobbie, S.E.; Finlay, J.C.; Benjamin, D.; Nidzgorski, D.A.; Millet, D.B.; Baker, L.A. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl. Acad. Sci. USA 2017, 114, 4177–4182. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.; Hasan, M.E.; Abdullah-Al-Mamun, M.M. Land use/land cover change assessment of Halda watershed using remote sensing and GIS. Egypt. J. Remote Sens. Space Sci. 2020, 23, 63–75. [Google Scholar] [CrossRef]
- Camara, M.; Jamil, N.R.; Abdullah, A.F.B. Impact of land uses on water quality in Malaysia: A review. Ecol. Process. 2019, 8, 10. [Google Scholar] [CrossRef]
- Mainali, J.; Chang, H. Environmental and spatial factors affecting surface water quality in a Himalayan watershed, Central Nepal. Indicators 2021, 9, 100096. [Google Scholar]
- Robert, W.H.; Mario, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems:Evolving views over three decades. Limnol. Oceanogr. 2006, 51, 364–376. [Google Scholar]
- Barakat, A.; Baghdadi, M.E.; Rais, J.; Aghezzaf, B.; Slassi, M. Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. Int. Soil Water Conserv. Res. 2016, 4, 284–292. [Google Scholar] [CrossRef]
- Harilal, C.C.; Hashim, A.; Arun, P.R.; Baji, S. Hydrogeochemistry of two rivers of Kerala with special reference to drinking water quality. Ecol. Environ. Conserv. 2004, 10, 187–192. [Google Scholar]
- Neissi, L.; Tishehzan, P.; Albaji, M. Chemical assessment of surface water quality in upstream and downstream of Jare Dam, Khuzestan, Iran. Environ. Earth Sci. 2019, 78, 83. [Google Scholar] [CrossRef]
- Ly, K.; Metternicht, G.; Marshall, L. Linking changes in land cover and land use of the lower mekong basin to instream nitrate and total suspended solids variations. Sustainability 2020, 12, 2992. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cuthbertson, A.; Gualtieri, C.; Shao, D. A review on mariculture effluent: Characterization and management tools. Water 2020, 12, 2991. [Google Scholar] [CrossRef]
- Song, Y.; Song, X.; Shao, G.; Hu, T. Effects of land use on stream water quality in the rapidly urbanized areas: A multiscale analysis. Water 2020, 12, 1123. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.; Weng, Q. Assessing surface water quality and its relation with urban land cover changes in the lake Calumet area, Greater Chicago. Environ. Manag. 2010, 45, 1096–1111. [Google Scholar] [CrossRef]
- Giao, N.T. Surface water quality in aquacultural areas in An Giang province, Vietnam. Int. J. Environ. Agric. Biotechnol. 2020, 5, 1054–1061. [Google Scholar] [CrossRef]
- Ignatius, A.R.; Rasmussen, T.C. Small reservoir effects on headwater water quality in the rural-urban fringe, Georgia Piedmont, USA. J. Hydrol. Reg. Stud. 2016, 8, 145–161. [Google Scholar] [CrossRef] [Green Version]
- Ly, N.H.T.; Giao, N.T. Surface water quality in canals in An Giang province, Viet Nam, from 2009 to 2016. J. Vietnam. Environ. 2018, 10, 113–119. [Google Scholar] [CrossRef]
- Giao, N.T. Evaluating current water quality monitoring system on Hau river, Mekong Delta, Vietnam using multivariate statistical techniques. Appl. Environ. Res. 2020, 42, 14–25. [Google Scholar]
Parameter | Unit | March | June | September | November | Asymp. Sig. | Decision |
---|---|---|---|---|---|---|---|
pH | - | 7.2 ± 0.5 | 7.5 ± 1.1 | 7.8 ± 0.6 | 7.8 ± 0.2 | 0.0 | * |
Temp | °C | 30.2 ± 0.7 | 31.2 ± 1.0 | 29.0 ± 1.4 | 29.9 ± 0.9 | 0.0 | * |
EC | μS cm−1 | 540.6 ± 473.1 | 992.8 ± 1273.6 | 405.9 ± 537.0 | 432.0 ± 665.7 | 0.0 | * |
TSS | mg L−1 | 78.9 ± 53.2 | 121.8 ± 50.1 | 77.7 ± 21.3 | 103.7 ± 34.7 | 0.0 | * |
DO | mg L−1 | 4.0 ± 1.2 | 3.6 ± 1.1 | 3.9 ± 0.9 | 3.32 ± 1.1 | 0.0 | * |
COD | mg L−1 | 14.4 ± 4.8 | 16.6 ± 5.1 | 15.4 ± 3.8 | 17.3 ± 4.4 | 0.0 | * |
BOD | mg L−1 | 8.0 ± 2.7 | 8.9 ± 2.6 | 8.3 ± 2.4 | 8.7 ± 2.1 | 0.3 | |
N-NH4+ | mg L−1 | 0.3 ± 0.1 | 0.5 ± 0.5 | 0.5 ± 0.5 | 0.3 ± 0.4 | 0.0 | * |
N-NO2− | mg L−1 | 0.1 ± 0.2 | 0.2 ± 0.3 | 0.0 ± 0.0 | 0.2 ± 0.3 | 0.0 | * |
N-NO3− | mg L−1 | 0.4 ± 0.2 | 0.4 ± 0.2 | 0.3 ± 0.1 | 0.1 ± 0.1 | 0.0 | * |
P-PO43− | mg L−1 | 0.1 ± 0.2 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.0 | * |
TN | mg L−1 | 3.8 ± 1.5 | 3.2 ± 1.5 | 3.5 ± 1.3 | 3.1 ± 1.3 | 0.3 | |
TP | mg L−1 | 0.1 ± 0.2 | 0.3 ± 0.2 | 0.2 ± 0.1 | 0.1 ± 0.2 | 0.0 | * |
Cl− | mg L−1 | 366.4 ± 1104.5 | 254.2 ± 641.9 | 118.7 ± 261.9 | 86.0 ± 235.7 | 0.0 | * |
SO42− | mg L−1 | 61.9 ± 31.5 | 67.6 ± 41.5 | 57.4 ± 21.9 | 39.0 ± 15.4 | 0.0 | * |
Coliform | MPN 100 mL−1 | 972.9 ± 718.3 | 1556.3 ± 1023.7 | 1762.33 ± 790.9 | 2261.2 ± 1349.0 | 0.0 | * |
Parameter. | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6 | Cluster 7 | Cluster 8 | Cluster 9 | QCVN 08-MT (1) |
---|---|---|---|---|---|---|---|---|---|---|
pH | 7.9 | 7.5 | 7.5 | 7.3 | 7.9 | 7.5 | 7.7 | 7.8 | 7.5 | 6–8.5 |
Temp | 30.3 | 30.2 | 31.0 | 29.7 | 29.8 | 31.5 | 30.0 | 29.7 | 30.1 | - |
EC | 1394.5 | 2915.0 | 494.0 | 456.6 | 892.3 | 991.5 | 340.3 | 258.2 | 358.5 | - |
DO | 3.1 | 5.1 | 2.5 | 3.7 | 3.2 | 4.7 | 3.4 | 4.0 | 3.5 | ≥ 6 |
TSS | 76.8 | 89.9 | 137.3 | 87.9 | 124.5 | 61.3 | 102.5 | 99.6 | 95.5 | 20 |
COD | 23.8 | 20.6 | 17.8 | 13.8 | 13.5 | 14.8 | 15.0 | 13.6 | 16.7 | 10 |
BOD | 13.0 | 11.4 | 10.0 | 7.3 | 7.5 | 8.3 | 8.1 | 6.8 | 8.7 | 4 |
N-NH4+ | 0.8 | 0.6 | 0.3 | 0.5 | 0.5 | 0.3 | 0.4 | 0.2 | 0.4 | 0.3 |
N-NO2− | 0.5 | 0.1 | 0.7 | 0.1 | 0.0 | 0.1 | 0.2 | 0.1 | 0.1 | 0.05 |
N-NO3− | 0.3 | 0.2 | 0.4 | 0.3 | 0.3 | 0.2 | 0.4 | 0.3 | 0.3 | 2 |
P-PO43− | 0.1 | 0.1 | 0.0 | 0.1 | 0.2 | 0.0 | 0.2 | 0.1 | 0.1 | 0.1 |
TN | 3.8 | 3.2 | 4.2 | 3.1 | 4.1 | 4.4 | 3.6 | 3.4 | 3.1 | − |
TP | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.3 | 0.2 | 0.2 | − |
SO42− | 58.1 | 69.8 | 125.2 | 64.3 | 66.2 | 51.8 | 65.3 | 44.4 | 46.1 | 2–80 (2) |
Cl− | 430.4 | 2332.1 | 44.5 | 92.3 | 78.5 | 224.9 | 28.2 | 26.4 | 54.1 | 250 |
Coliform | 2170.0 | 3366.7 | 3150.0 | 928.8 | 847.5 | 1275.0 | 2355.0 | 766.3 | 1413.7 | 2500 |
Parameters | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 |
---|---|---|---|---|---|---|
pH | 0.13 | −0.06 | 0.35 | −0.35 | −0.29 | 0.46 |
Temp | −0.17 | −0.10 | −0.19 | −0.19 | −0.64 | 0.05 |
EC | −0.32 | −0.34 | 0.23 | 0.06 | −0.02 | −0.16 |
DO | 0.08 | −0.44 | 0.26 | 0.03 | −0.21 | −0.22 |
TSS | −0.07 | 0.39 | 0.30 | 0.00 | −0.12 | −0.12 |
COD | −0.39 | 0.06 | 0.12 | 0.13 | 0.12 | 0.26 |
BOD | −0.41 | 0.04 | 0.11 | 0.07 | 0.01 | 0.27 |
N-NH4+ | −0.31 | 0.13 | −0.06 | 0.47 | 0.16 | 0.19 |
N-NO2− | −0.29 | 0.31 | −0.10 | −0.33 | 0.01 | 0.08 |
N-NO3− | 0.12 | 0.16 | 0.29 | −0.36 | 0.45 | −0.23 |
P-PO43− | 0.16 | 0.24 | 0.42 | 0.20 | −0.11 | −0.20 |
Cl− | −0.27 | −0.36 | 0.26 | 0.08 | 0.04 | −0.23 |
SO42− | −0.28 | 0.14 | −0.11 | −0.43 | −0.07 | −0.24 |
TN | −0.15 | 0.24 | −0.25 | 0.18 | −0.26 | −0.55 |
TP | 0.12 | 0.35 | 0.33 | 0.26 | −0.35 | 0.07 |
Coliform | −0.33 | 0.05 | 0.29 | −0.18 | 0.07 | −0.13 |
Eigenvalues | 4.63 | 2.59 | 2.36 | 1.52 | 1.24 | 1.02 |
%Variation | 29.0 | 16.2 | 14.7 | 9.5 | 7.8 | 6.4 |
Cum. %Var | 29.0 | 45.2 | 59.9 | 69.4 | 77.1 | 83.5 |
Land Use | Residential- Aquaculture | Residential-Paddy Rice Cultivation | Residential-Perennial Crops | Residential- Perennial Crops-Paddy Rice Cultivation | Residential-Perennial Crops-Paddy Rice Cultivation- Aquaculture | |||||
---|---|---|---|---|---|---|---|---|---|---|
Hi | wi | Hi | wi | Hi | wi | Hi | wi | Hi | wi | |
Temp | 0.97 | 0.04 | 0.95 | 0.03 | 0.98 | 0.01 | 0.89 | 0.05 | 0.93 | 0.04 |
pH | 0.94 | 0.06 | 0.97 | 0.02 | 1.00 | 0.00 | 0.91 | 0.04 | 1.00 | 0.00 |
EC | 0.96 | 0.04 | 0.97 | 0.02 | 0.80 | 0.09 | 0.88 | 0.06 | 0.91 | 0.06 |
DO | 0.96 | 0.04 | 0.96 | 0.03 | 0.44 | 0.25 | 0.93 | 0.03 | 0.97 | 0.02 |
BOD5 | 0.95 | 0.05 | 0.96 | 0.02 | 0.98 | 0.01 | 0.88 | 0.06 | 0.91 | 0.06 |
COD | 0.95 | 0.05 | 0.97 | 0.02 | 0.98 | 0.01 | 0.97 | 0.01 | 0.94 | 0.04 |
TSS | 0.86 | 0.15 | 0.83 | 0.11 | 0.99 | 0.00 | 0.97 | 0.01 | 0.89 | 0.07 |
N-NH4+ | 0.95 | 0.06 | 0.96 | 0.02 | 0.75 | 0.11 | 0.88 | 0.06 | 0.82 | 0.12 |
N-NO2− | 0.92 | 0.09 | 0.71 | 0.18 | 0.73 | 0.12 | 0.68 | 0.15 | 0.83 | 0.11 |
N-NO3− | 0.97 | 0.04 | 0.97 | 0.02 | 0.93 | 0.03 | 0.91 | 0.04 | 0.98 | 0.01 |
P-PO43− | 0.97 | 0.04 | 0.91 | 0.05 | 0.97 | 0.01 | 0.64 | 0.17 | 0.94 | 0.04 |
Cl− | 0.96 | 0.04 | 0.95 | 0.03 | 0.64 | 0.16 | 0.86 | 0.07 | 0.84 | 0.11 |
SO42− | 0.96 | 0.04 | 0.96 | 0.03 | 0.95 | 0.02 | 0.94 | 0.03 | 0.93 | 0.05 |
TN | 0.96 | 0.04 | 0.96 | 0.03 | 0.83 | 0.08 | 0.92 | 0.04 | 0.99 | 0.01 |
TP | 0.95 | 0.05 | 0.72 | 0.18 | 0.99 | 0.00 | 0.78 | 0.10 | 0.94 | 0.04 |
Coliform | 0.84 | 0.17 | 0.68 | 0.20 | 0.79 | 0.09 | 0.88 | 0.06 | 0.69 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giao, N.T.; Cong, N.V.; Nhien, H.T.H. Using Remote Sensing and Multivariate Statistics in Analyzing the Relationship between Land Use Pattern and Water Quality in Tien Giang Province, Vietnam. Water 2021, 13, 1093. https://doi.org/10.3390/w13081093
Giao NT, Cong NV, Nhien HTH. Using Remote Sensing and Multivariate Statistics in Analyzing the Relationship between Land Use Pattern and Water Quality in Tien Giang Province, Vietnam. Water. 2021; 13(8):1093. https://doi.org/10.3390/w13081093
Chicago/Turabian StyleGiao, Nguyen Thanh, Nguyen Van Cong, and Huynh Thi Hong Nhien. 2021. "Using Remote Sensing and Multivariate Statistics in Analyzing the Relationship between Land Use Pattern and Water Quality in Tien Giang Province, Vietnam" Water 13, no. 8: 1093. https://doi.org/10.3390/w13081093
APA StyleGiao, N. T., Cong, N. V., & Nhien, H. T. H. (2021). Using Remote Sensing and Multivariate Statistics in Analyzing the Relationship between Land Use Pattern and Water Quality in Tien Giang Province, Vietnam. Water, 13(8), 1093. https://doi.org/10.3390/w13081093