Analysis of the Water Quality of the Ishim River within the Akmola Region (Kazakhstan) Using Hydrochemical Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. General Characteristics of the Water Quality of the Ishim River Basin
2.3. Collection of Samples and Laboratory Treatment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kannel, P.R.; Lee, S.; Lee, Y.S.; Kanel, S.R.; Khan, S.P. Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environ. Monit. Assess. 2007, 132, 93–110. [Google Scholar] [CrossRef]
- Debels, P.; Figueroa, R.; Urrutia, R.; Barra, R.; Niell, X. Evaluation of water quality in the Chillán River (Central Chile) using physicochemical parameters and a modified Water Quality Index. Environ. Monit. Assess. 2005, 110, 301–322. [Google Scholar] [CrossRef] [PubMed]
- Thotagamuwa, H.T.B.N.; Weerasinghe, V.P.A. Surface water quality assessment for the management of hydrological regimes: Kalu Oya and Mudun Ela catchment in Sri Lanka. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100402. [Google Scholar] [CrossRef]
- De Baat, M.L.; Van der Oost, R.; Van de Lee, G.H.; Wieringa, N.; Hamers, T.; Verdonschot, P.F.M.; De Voogt, P.; Kraak, M.H.S. Advancements in effect-based surface water quality assessment. Water Res. 2020, 183, 116017. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, E.S.; Rosi, E.J.; Gessner, M.O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 2017, 15, 84–90. [Google Scholar] [CrossRef]
- Evans, A.E.V.; Hanjra, M.A.; Jiang, Y.; Qadir, M.; Drechsel, P. Water Quality: Assessment of the Current Situation in Asia. Int. J. Water Resour. Dev. 2012, 28, 195–216. [Google Scholar] [CrossRef]
- Mustapha, A.; Aris, A.Z.; Juahir, H.; Ramli, M.F. Surface water quality contamination source assessment and physico-chemical characterization at the upper section of the Jakara Basin, Nigeria. Arab. J. Geosci. 2013, 6, 4903–4915. [Google Scholar] [CrossRef]
- Walker, D.B.; Baumgartner, D.J.; Gerba, C.P.; Fitzsimmons, K. Surface Water Pollution. In Environmental and Pollution Science; Brusseau, M.L., Pepper, I.L., Gerba, C.P., Eds.; Academic Press: London, UK, 2019; pp. 261–292. [Google Scholar]
- EEA. Chemicals in European Water—Knowledge Developments; European Environmental Agency: Copenhagen, Denmark, 2018; No 18/2018. [Google Scholar]
- Batheria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Nikanorov, A.M. Hydrochemistry; Gidrometeoizdat: St. Petersburg, Russia, 2001. [Google Scholar]
- Wu, N.; Liu, S.M.; Zhang, G.L.; Zhang, H.M. Anthropogenic impacts on nutrient variability in the lower Yellow River. Sci. Total Environ. 2021, 755, 142488. [Google Scholar] [CrossRef]
- Arenas-Sánchez, A.; Dolédec, S.; Vighi, M.; Rico, A. Effects of anthropogenic pollution and hydrological variation on macroinvertebrates in Mediterranean rivers: A case-study in the upper Tagus river basin (Spain). Sci. Total Environ. 2021, 766, 144044. [Google Scholar] [CrossRef] [PubMed]
- Ghazaryan, K.; Movsesyan, H.; Gevorgyan, A.; Minkina, T.; Sushkova, S.; Rajput, V.; Mandzhieva, S. Comparative hydrochemical assessment of groundwater quality from different aquifers for irrigation purposes using IWQI: A case-study from Masis province in Armenia. Groundw. Sustain. Dev. 2020, 11, 100459. [Google Scholar] [CrossRef]
- Gesels, J.; Dollé, F.; Leclercq, J.; Jurado, A.; Brouyère, S. Groundwater quality changes in peri-urban areas of the Walloon region of Belgium. J. Contam. Hydrol. 2021, 240, 103780. [Google Scholar] [CrossRef]
- Alshehri, F.; Almadani, S.; El-Sorogy, A.S.; Alwaqdani, E.; Alfaifi, H.J.; Alharbi, T. Influence of seawater intrusion and heavy metals contamination on groundwater quality, Red Sea coast, Saudi Arabia. Mar. Pollut. Bull. 2021, 165, 112094. [Google Scholar] [CrossRef]
- Zakaria, N.; Anornu, G.; Adomako, D.; Owusu-Nimo, F.; Gibrilla, A. Evolution of groundwater hydrogeochemistry and assessment of groundwater quality in the Anayari catchment. Groundw. Sustain. Dev. 2021, 12, 100489. [Google Scholar] [CrossRef]
- Nikanorov, A.M.; Khoruzhaya, T.A. Intra-water body processes in large reservoirs in the south of Russia (pollution, eutrophication, toxification). Geogr. Nat. Resour. 2014, 35, 135–142. [Google Scholar] [CrossRef]
- Nikanorov, A.M. Selective response of water ecosystems to the anthropogenic effect. Dokl. Earth Sci. 2015, 459, 1573–1575. [Google Scholar] [CrossRef]
- Kokhanistaya, E.V. Phytoplankton as an indicator of the state of aquatic ecosystems of the Proletarsky and Veselovsky reservoirs. Nat. Sci. Bull. Higer Educ. Inst. North Cauc. Reg. 2014, 5, 78–83. [Google Scholar]
- Peters, N.E.; Meybeck, M. Water Quality Degradation Effects on Freshwater Availability: Impacts of Human Activities. Water Int. 2000, 25, 185–193. [Google Scholar] [CrossRef]
- Parfenova, G.K. Anthropogenic Changes in Hydrochemical Indicators of Water Quality; Agraf Press: Tomsk, Russia, 2010. [Google Scholar]
- Buser, H.-R. Atrazine and Other s-Triazine Herbicides in Lakes and in Rain in Switzerland. Environ. Sci. Technol. 1990, 4, 1049–1058. [Google Scholar] [CrossRef]
- Kozhova, O.M. Microbiological characteristics of the Angara reservoirs and assessment of the quality of their waters. Nat. Resour. Ecol. Soc. Environ. Cisbaikalia 1995, 2, 50–55. [Google Scholar]
- Aktymbaeva, A.S. Modeling changes in dissolved oxygen and BOD5 in Alakol lake conditions. In Proceedings of the VI All-Russia Hydrological Congress, St. Petersburg, Russia, 28 September–1 October 2004; pp. 19–21. [Google Scholar]
- Karatayev, M.; Kapsalyamova, Z.; Spankulova, L.; Skakova, A.; Movkebayeva, G.; Kongyrbay, A. Priorities and challenges for a sustainable management of water resources in Kazakhstan. Sustain. Water Qual. Ecol. 2017, 9–10, 115–135. [Google Scholar] [CrossRef]
- Huang, W.; Duan, W.; Nover, D.; Sahu, N.; Chen, Y. An integrated assessment of surface water dynamics in the Irtysh River Basin during 1990–2019 and exploratory factor analyses. J. Hydrol. 2021, 593, 125905. [Google Scholar] [CrossRef]
- Snow, D.D.; Chakraborty, P.; Uralbekov, B.; Satybaldiev, B.; Sallach, J.B.; Thornton Hampton, L.M.; Jeffries, M.; Kolok, A.S.; Bartelt-Hunt, S.B. Legacy and current pesticide residues in Syr Darya, Kazakhstan: Contamination status, seasonal variation and preliminary ecological risk assessment. Water Res. 2020, 184, 116141. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, S.M.; Ilyushchenko, M.A.; Uskov, G.A.; Tanton, T.W. Mercury distribution and transport in a contaminated river system in Kazakhstan and associated impacts on aquatic biota. Appl. Geochem. 2007, 22, 2706–2734. [Google Scholar] [CrossRef]
- Rzymski, P.; Klimaszyk, P.; Niedzielski, P.; Marszelewski, W.; Borowiak, D.; Nowiński, K.; Baikenzheyeva, A.; Kurmanbayev, R.; Aladin, N. Pollution with trace elements and rare-earth metals in the lower course of Syr Darya River and Small Aral Sea, Kazakhstan. Chemosphere 2019, 234, 81–88. [Google Scholar] [CrossRef]
- Lovinskaya, A.; Kolumbayeva, S.; Begimbetova, D.; Suvorova, M.; Bekmagambetova, N.; Abilev, S. Toxic and genotoxic activity of river waters of Kazakhstan. Acta Ecol. Sin. 2021, in press. [Google Scholar] [CrossRef]
- State Committee for Hydrometeorological Monitoring. Guidelines for a Formalized Comprehensive Assessment of the Quality of Surface and Sea Waters by Hydrochemical Indicators; State Committee for Hydrometeorological Monitoring: Moscow, Russia, 1998. [Google Scholar]
- Kazakhstan Government. Environmental Monitoring Rules. Procedural Guidelines for Performing of Integrated Surveys of Environmental Pollution in the Areas Subjected to Intensive Anthropogenic Effect; PR RK 52.5.06-03; Ministry of Environment of the Republic of Kazakhstan: Astana, Kazakhstan, 2003.
- Georgiyevsky, V.Y.; Yezhov, A.V.; Shalygin, A.L.; Shiklomanov, A.I.; Shiklomanov, I.A. Evaluation of possible climate change impact on hydrological regime and water resources of the former USSR rivers. Russ. Meteorol. Hydrol. 1996, 11, 89–99. [Google Scholar]
- Skakun, V.A. Fishery in the basin of the Esil River. In Modern Problems of the Ishim Basin; Gylym: Almaty, Kazakhstan, 2007. [Google Scholar]
- Aytzhanova, D.A. Ecological and economic problems of water use in Kazakhstan. Ecol. Ind. Kazakhstan 2005, 3, 64–67. [Google Scholar]
- Doskaev, D.R.; Rakhmankulova, K.K. Status of monitoring surface water quality in the river basin Ishim. Bull. Al-FarabiKazNU.-Ecol. Ser. 2007, 1, 13–20. [Google Scholar]
- Ishkulova, N.P. Sustainable management of water resources of Kazakhstan. Ecol. Ind. Kazakhstan 2004, 3, 64–65. [Google Scholar]
- Tyumenev, S.D. Water Resources and Water Supply of the Territory of Kazakhstan; KazNTU: Almaty, Kazakhstan, 2008. [Google Scholar]
- Romanova, S.; Ryskaliveva, R. Hydrochemical regime and water quality of rivers and reservoirs of basins of Shu, Esyl, Tobol, Sirdariya rivers for long-term cycle. Chem. Bull. Kazakh Natl. Univ. 2012, 68, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Salikova, N.S.; Seidakhmetova, G.I.; Zhaparova, S.B.; Bayazitova, Z.E.; Kapbasova, G.A. Assessment of the conformity of the quality of decentralized sources of water supply to the sanitary and hygienic requirements for household and drinking purposes. Bull. Kazakh Natl. Res. Univ. 2020, 6, 109–113. [Google Scholar]
- Salikova, N.S.; Uralbaeva, A.A. Monitoring of hydrochemical indicators of surface water bodies of the Akmola region. Actual Probl. Humanit. Nat. Sci. 2016, 2, 185–188. [Google Scholar]
- Nor, P.E.; Fitisova, M. Assessment of the ecological state of the Ishim river basin. Young Sci. 2014, 5, 183–185. [Google Scholar]
- Mogilyuk, S.V. Geoecological Aspects of Water Management in the Basin of Transboundary Rivers. Master’s Thesis, Tomksiy State University, Tomsk, Russia, 2004. [Google Scholar]
- Puzanov, A.V.; Baboshkina, S.V. The peculiarities of macro- and microelemental composition of drinking water in the North Kazakhstan Oblast as an environmental factor affecting human health. In Proceedings of the Regional Workshop. Strengthening the Collaboration between the AASA Clean Water Program and the IAP Water Program, Barnaul, Russia, 20–23 October 2009; pp. 71–75. [Google Scholar]
- Klushev, S.L.; Arefieva, V.A.; Zatenatskaya, T.I.; Isachenko, N.P.; Pachikina, Y.I.; Rubinshtein, L.I.; Feldman, M.I. Brief information about natural conditions and knowledge of the Kokchetav region. In Natural Zoning of Northern Kazakhstan; AN SSSR: Moscow-Leningrad, Russia, 1960. [Google Scholar]
- Kaimirasov, M.G. Physical and Geographical Conditions and Their Influence on the Water Regime of the Kokchetav Region; C.M. Kirov Kazakh State University: Almaty, Kazakhstan, 1975. [Google Scholar]
- Kazgiprovodkhoz Institute (Production Cooperative). General Scheme of Integrated Use and Protection of Water Resources of the Republic of Kazakhstan. T II. Book 3; Kazakhstan State Institute of Water Management Design: Almaty, Kazakhstan, 2010. [Google Scholar]
- Kobetaeva, N.K. Monitoring of the Hydroecosystem on the Example of the Ishim River of the Republic of Kazakhstan. Bachelor’s Thesis, Krasnoyarsk State Agrarian University, Krasnoyarsk, Russia, 2012. [Google Scholar]
- Likhodumova, I.N.; Salikova, N.S. The influence of natural and anthropogenic factors on the quality of surface waters of the North Kazakhstan region. Water Chem. Ecol. 2015, 5, 9–14. [Google Scholar]
- Frolova, N.L.; Ivanovskaya, V.V. Peculiarities of water use inconditions of water resources deficit (on the example of the Ishim river. Water Manag. Russ. Probl. Technol. Manag. 2015, 2, 4–19. [Google Scholar]
- UNECE. Targets to the Protocol on Water and Health to the Convention on the Protection and Use of Transboundary Watercourses and International Lakes (Republic of Kazakhstan). 2017. Available online: https://unece.org/fileadmin/DAM/env/water/meetings/Water_Convention/2016/Projects_in_Central_Asia/Baseline_study_and_target_indicators_to_the_Protocol_on_Water_and_Health_May_2017_RUS.pdf (accessed on 28 March 2021).
- Kazakhstan Government. Official Statistics of the Bureau of National Statistics of the Agency for Strategic Planning and Reforms of the Republic of Kazakhstan. Available online: https://stat.gov.kz/ecologic/polluted_non_treat (accessed on 28 March 2021).
- Kazakhstan Government. Environmental Protection in the Republic of Kazakhstan. Statistical Collection in Kazakh and Russian Languages (2015–2020); Bureau of National Statistics of the Agency for Strategic Planning and Reforms of the Republic of Kazakhstan: Nur-Sultan, Kazakhstan, 2020.
- UNDP. Water Resources of Kazakhstan in the New Millennium; United Nations Development Programme: New York, NY, USA, 2004. [Google Scholar]
- Dolatova, L.A. Features of the hydrochemical composition of the middle reaches of the river. Ishim and the lakes of its basin. World Sci. Cult. Educ. 2011, 1, 347–351. [Google Scholar]
- Berkaliev, Z.T. Hydrological Regime of Rivers in Central, Northern, and Western Kazakhstan; Akad. Nauk KazSSR: Alma-Ata, Kazakhstan, 1959. [Google Scholar]
- Bazhieva, A.M.; Burlibaev, M.Z.; Tursunov, E.A. Suggestions and comments on methods for assessing surface water pollution by hydrochemical indicators. Hydrometeorol. Ecol. 2009, 1, 76–84. [Google Scholar]
- Voskresensky, K.P. Rate and Variability of the Annual Flow of Rivers in the Soviet Union; Gidrometeoizdat: St. Petersburg, Russia, 1962. [Google Scholar]
- Likhodumova, I.N.; Salikova, N.S. Features of the Formation of the Elemental Composition of Groundwater in the Kokshetau Hydrogeological Region within the North Kazakhstan Region; 8th Biogeochemical School Biogeochemistry and Biochemistry in the Conditions of Technogenesis of the Biosphere: Grodno-Moscow, Russia, 2013; pp. 123–129. [Google Scholar]
- Zatenatskaya, N.P. Pore Waters of Clay Rocks and Their Role in the Formation of Groundwater; AN SSSR: Moscow, Russia, 1963. [Google Scholar]
- Kazakhstan Government. Drinking Water General Requirements for the Organization and Methods of Quality Control; ST RK GOST R 51232; Committee for Standardization, Metrology and Certification: Astana, Kazakhstan, 2003.
- Minister of National Economy of the Republic of Kazakhstan, Order of the Minister of National Economy of the Republic of Kazakhstan No. 209 ‘On Approval of the Sanitary Rules’ Sanitary and Epidemiological Requirements for Water Sources, Water Intake Points for Domestic and Drinking Purposes, Domestic and Drinking. 2015. Available online: http://adilet.zan.kz/rus/docs/V1500010774 (accessed on 20 January 2021).
- Ministry of Fisheries of the USSR. A Generalized List of Maximum Permissible Concentrations (MPC) and Tentatively Safe Exposure Levels (TSEL) of Harmful Substances for the Water of Fishery Reservoirs; Ministry of Fisheries of the USSR: Moscow, Russia, 1990.
- Dmitriev, L.N.; Tverdovsky, A.I. General characteristics of the ecological state of the Ishim river basin. In Modern Problems of the Ishim Basin; Gylym: Almaty, Kazakhstan, 2007. [Google Scholar]
- Dudareva, I.A.; Alimova, G.S.; Tokareva, A.Y. Manganese in water and bottom sediments of the lower current of the Irtysh river. Adv. Mod. Nat. Sci. 2017, 8, 70–74. [Google Scholar]
- Sambito, M.; Freni, G. Strategies for Improving Optimal Positioning of Quality Sensors in Urban Drainage Systems for Non-Conservative Contaminants. Water 2021, 13, 934. [Google Scholar] [CrossRef]
Wastewater Discharge (Mm3/Year) | |||||
---|---|---|---|---|---|
Discharge Type | 2014 | 2015 | 2016 | 2017 | 2018 |
Water intake from natural surface water sources | 22,215 | 21,472 | 23,572 | 24,247 | 24,076 |
Total volume of untreated wastewater discharged into water bodies | 6205 | 5935 | 5205 | 5502 | 5408 |
Indicator | Measurement Method | Detection Limit |
---|---|---|
Temperature | Thermometric (GD 52.24.96-2018) | 0.2 °C |
pH | Potentiometric (GD 52.24.495-2005) | 0.1 units |
Color degree | Photometric (GD 52.24.497-2005) | 1 degree |
Transparency | Water column (GD 52.24.496-2018) | 0.5 cm |
Dissolved oxygen | Volumetric titrimetric (GD 52.24. 419-2005) | 0.01 mg/L |
Biological oxygen demand | Titrimetric (GD 52.24.420-2006) | 0.1 mg/L |
Total oxidizability (Chemical consumption of oxygen) | Volumetric titrimetric (GD 52.24.421-2012) | 0.1 mg/L |
Hydrocarbonates | Volumetric titrimetric (GD 52.24.493-2006) | 1 mg/L |
Nitrates | Photometric (GD 52.24.380-2006) | 0.001 mg/L |
Nitrites | Photometric (GD 52.24.381-2006) | 2 μg/L |
Ammonium ions | Photometric (GD 52.24.486-2009) | 0.001 mg/L |
Chlorides | Volumetric titrimetric (GD 52.24.407-2006) | 2 mg/L |
Sulfates | Volumetric titrimetric (GD 52.24.401-2006) | 10 mg/L |
Calcium ions | Volumetric titrimetric (GD 52.24.403-2007) | 0.1 mg/L |
Magnesium ions | Volumetric titrimetric (GD 52.24.395-2007) | 0.1 mg/L |
Mineralization | Gravimetric (GD 14.1:2:4.261-2010) | 1 mg/L |
Phosphate ions | Photometric (GD 52.24.382-2006) | 0.002 mg/L |
Sum of sodium and potassium ions | Calculated (52.24.514-2002) | 1 mg/L |
Iron total | Photometric (GD 52.24.358-2006) | 0.001 mg/L |
Manganese ions | Photometric (GD 52.24.467-2008) | 0.001 mg/L |
Chromium (IV) ions | Photometric (ST RK ISO 18412-2008) | 1 μg/L |
Synthetic surfactants | Extraction-photometric (GD 52.24.368-2006) | 6 μg/L |
Cu, Ni, Cd, Al, Pb, Co, Zn | Atomic absorption method (GD 52.24.377-95) | 0.1 μg/L |
Index | MPCsw/MPCw | Year | ||||||
---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | ||
Temperature, °C | -/- *** | |||||||
pH value | -/(6–9) | |||||||
Smell, points | -/2 | |||||||
Color degree | -/20 | |||||||
Transparency, cm | -/30 | |||||||
Dissolved oxygen, mg/L | 4/4 | |||||||
BOD5, mg O₂/dm3 | 3/3 | |||||||
Permanganate oxidation, mg/L | -/5 | |||||||
Mineralization, mg/L | -/1000 | |||||||
Ammonium salts, mg/L | 0.5/2 | |||||||
Nitrate ions, mg/L | 9.1/45 | |||||||
Nitrite ions, mg/L | 0.2/3.3 | |||||||
Phosphate ions, mg/L | 0.2/3.5 |
Index | MPCsw/MPCw | Monthly Values (Minimum–Maximum) | |||
---|---|---|---|---|---|
1–3 | 4–6 | 7–9 | 10–12 | ||
Temperature, °C | -/- * | 0 | 0.4–21.0 | 14.2–23.4 | 0–10.0 |
pH value | -/(6-9) | 7.1–8.7 | 7.9–8.4 | 8.1–8.9 | 8.2–8.5 |
Smell, points | -/2 | 0 | 0 | 0 | 0 |
Color degree | -/20 | 10–20 | 10–43 | 15–40 | 10–20 |
Transparency, cm | -/30 | 24.0–25.0 | 3.0–25.0 | 23.0–24.0 | 22.0–25.5 |
BOD5, mg O₂/dm3 | 3/3 | 0.79–3.04 | 0.92–3.57 | 0.32–2.12 | 1.21–3.12 |
Dissolved oxygen, mg/L | 4/4 | 4.47–10.85 | 8.06–12.20 | 5.49–10.20 | 8.44–13.16 |
Permanganate oxidation, mg/L | -/5 | 19.4–124.8 | 18.5–56.7 | 17.9–67.8 | 14.5–40.8 |
Mineralization, mg/L | -/1000 | 1326–1856 | 315–1623 | 648–1197 | 852–1367 |
Ammonium salts | 0.5/2 | 0.041–0.366 | 0.078–0.977 | 0.207–0.673 | 0.018–1.962 |
Nitrate ions | 9.1/45 | 0.105–1.931 | 0.023–0.743 | 0.017–0.212 | 0.003–0.132 |
Nitrite ions | 0.2/3.3 | 0.000–0.038 | 0.003–0.022 | 0.000–0.009 | 0.001–0.108 |
Phosphate ions | 0.2/3.5 | 0.002–0.037 | 0.003–0.458 | 0.003–0.148 | 0.003–0.054 |
Year | Quarter of the Year | |||
---|---|---|---|---|
January–March | April–June | July–September | October–December | |
2013 | 1500 | 400 | 740 | 1033 |
2014 | 1392 | 338 | 837 | 1178 |
2015 | 1848 | 353 | 472 | 1178 |
2016 | 1552 | 489 | 701 | 1134 |
2017 | 1635 | 320 | 900 | 1180 |
2018 | 1489 | 315 | 918 | 1021 |
Index | MPCsw /MPCw (*,**) | Year | ||||||
---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | ||
Ca2+ | 180/- *** | |||||||
Mg2+ | 40/- | |||||||
-/- | ||||||||
Cl− | 300/350 | |||||||
100/500 | ||||||||
Na+ + K+ | 170/- | |||||||
Cu | 0.001/1.0 | |||||||
Zn | 0.01/5.0 | |||||||
Mn | 0.01/0.1 | |||||||
Fe total | 0.1/0.3 | |||||||
Cd | 0.01/0.001 | |||||||
Pb | 0.1/0.03 | |||||||
Ni | 0.01/0.1 | |||||||
Co | 0.01/0.1 | |||||||
Al | 0.5/0.5 |
Index | MPCsw/ MPCw | Monthly Values (Minimum–Maximum) | |||
---|---|---|---|---|---|
1–3 | 4–6 | 7–9 | 10–12 | ||
Ca2+ | 180/- * | 42.4–180.1 | 33.6–104.0 | 28.4–90.7 | 34.0–102.0 |
Mg2+ | 40/- | 10.7–86.2 | 5.5–96.8 | 13.8–77.2 | 27.2–69.0 |
-/- | 304–496 | 123–380 | 26–329 | 123–458 | |
Cl− | 300/350 | 321–470 | 41–374 | 111–270 | 71–408 |
100/500 | 251–380 | 41–331 | 106–329 | 164–426 | |
Na++ K+ | 170/- | 247–380 | 43–193 | 126–331 | 171–306 |
Cu | 0.001/1.0 | 0.0006–0.0054 | 0.0006–0.0093 | 0.0001–0.0053 | 0.0004–0.0044 |
Zn | 0.01/5.0 | 0.0004–0.0241 | 0.0002–0.0463 | 0.0024–0.0690 | 0.0007–0.0204 |
Mn | 0.01/0.1 | 0.033–0.168 | 0.016–0.412 | 0.017–0.111 | 0.012–0.081 |
Fe total | 0.1/0.3 | 0.021–0.468 | 0.023–0.860 | 0.010–0.143 | 0.028–0.094 |
Cd | 0.01/0.001 | 0.0000–0.0012 | 0.0000–0.0002 | 0.0000–0.0001 | 0.0000–0.0006 |
Pb | 0.1/0.03 | 0.0001–0.0020 | 0.0006–0.0076 | 0.0003–0.0015 | 0.0003–0.0016 |
Ni | 0.01/0.1 | 0.0004–0.0042 | 0.0010–0.0089 | 0.0007–0.00086 | 0.0013–0.0056 |
Co | 0.01/0.1 | 0.001–0.0026 | 0.0002–0.0015 | 0.0003–0.0012 | 0.0004–0.0013 |
Al | 0.5/0.5 | 0.0338–0.2975 | 0.0610–0.3820 | 0.0073–0.2210 | 0.0339–0.2535 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salikova, N.S.; Rodrigo-Ilarri, J.; Alimova, K.K.; Rodrigo-Clavero, M.-E. Analysis of the Water Quality of the Ishim River within the Akmola Region (Kazakhstan) Using Hydrochemical Indicators. Water 2021, 13, 1243. https://doi.org/10.3390/w13091243
Salikova NS, Rodrigo-Ilarri J, Alimova KK, Rodrigo-Clavero M-E. Analysis of the Water Quality of the Ishim River within the Akmola Region (Kazakhstan) Using Hydrochemical Indicators. Water. 2021; 13(9):1243. https://doi.org/10.3390/w13091243
Chicago/Turabian StyleSalikova, Natalya S., Javier Rodrigo-Ilarri, Kulyash K. Alimova, and María-Elena Rodrigo-Clavero. 2021. "Analysis of the Water Quality of the Ishim River within the Akmola Region (Kazakhstan) Using Hydrochemical Indicators" Water 13, no. 9: 1243. https://doi.org/10.3390/w13091243
APA StyleSalikova, N. S., Rodrigo-Ilarri, J., Alimova, K. K., & Rodrigo-Clavero, M.-E. (2021). Analysis of the Water Quality of the Ishim River within the Akmola Region (Kazakhstan) Using Hydrochemical Indicators. Water, 13(9), 1243. https://doi.org/10.3390/w13091243