Estimation of Groundwater Depletion in Iran’s Catchments Using Well Data
Abstract
:1. Introduction
2. Data and Analysis Method
2.1. Data
2.2. Analysis Method
- The gauge network is plotted on a map of the catchment area of interest.
- Adjacent stations are connected with lines.
- Perpendicular bisectors of each line are constructed (perpendicular line at the midpoint of each line connecting two stations).
- The bisectors are extended and used to form the polygon around each gauge station.
- The water table value for each gauge station is multiplied by the area of each polygon.
- All values from previous step are summed and divided by the total basin area.
3. Results and Discussion
3.1. Spatial Dependence of Groundwater Storage
3.2. Time Series Estimates
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Acronyms
GWS | Groundwater Storage |
TWI | Topographic Wetness Index |
FAO | Food and Agriculture Organization |
GDP | Gross Domestic Product |
References
- Joodaki, G.; Wahr, J.; Swenson, S. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour. Res. 2014, 50, 2679–2692. [Google Scholar] [CrossRef]
- Amery, H.A.; Wolf, A.T. Water in the Middle East: A Geography of Peace; University of Texas Press: Austin, TX, USA, 2000. [Google Scholar]
- Wolf, A.T.; Newton, J.T. Case Study Transboundary Dispute Resolution: The Tigris-Euphrates Basin, Transboundary Freshwater Dispute Database (TFDD); Oregon State University: Corvallis, OR, USA, 2007; Available online: https://www.transboundarywaters.orst.edu/ (accessed on 20 June 2021).
- Mahdavi, M. Applied Hydrology, 5th ed.; University of Tehran Press: Tehran, Iran, 2004; Volume 2, p. 420. (In Persian) [Google Scholar]
- Alemohammad, H.; Gharari, S. Qanat: An Ancient Invention for Water Management in Iran. In Proceedings of the Water History Conference, Delft, The Netherland, 24–26 June 2015. [Google Scholar]
- Jamab Consulting Engineers Company. National Master Plan of Water: Final Report; Iranian Ministry of Energy Press: Tehran, Iran, 1998. (In Persian) [Google Scholar]
- Brown, L. Water tables falling and rivers running dry: International situation. Int. J. Environ. 2007, 3, 1–5. [Google Scholar]
- Moridi, A. State of water resources in Iran. Int. J. Hydrol. 2017, 1, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Iran is draining its aquifers dry. Nature 2021, 594, 476. [CrossRef]
- Safdari, Z. Groundwater Level Monitoring across Iran’s Main Water Basins Using Temporal Satellite Gravity Solutions and Well Data. Ph.D. Thesis, Norwegian University of Science and Technology’s, Trondheim, Norway, 2021. [Google Scholar]
- IPRC (Iranian Parliament Research Center). An Analysis of Iran’s Water Crisis and its Impacts; IPRC (Iranian Parliament Research Center): Eslam, Iran. Available online: https://rc.majlis.ir/fa/report/show/1040201 (accessed on 15 June 2021). (In Persian).
- Madani, K. Water management in Iran: What is causing the looming crisis? J. Environ. Stud. Sci. 2014, 4, 315–328. [Google Scholar] [CrossRef]
- Madani, K.; AghaKouchak, A.; Mirchi, A. Iran’s socio-economic drought: Challenges of a water-bankrupt nation. Iran. Stud. 2016, 49, 997–1016. [Google Scholar] [CrossRef]
- Danaei, G.; Farzadfar, F.G.; Kelishadi, P.R.; Rashidian, A.; Rouhani, O.M.; Ahmadnia, S.; Ahmadvand, A.; Arabi, M.; Ardalan, A.; Arhami, M.; et al. Iran in transition. Lancet 2019, 393, 1984–2005. [Google Scholar] [CrossRef]
- Motevalli, A.; Moradi, H.R.; Javadi, S. A comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer). J. Hydrol. 2018, 557, 753–773. [Google Scholar] [CrossRef]
- Ghahremanzadeh, H.; Noori, R.; Baghvand, A.; Nasrabadi, T. Evaluating the main sources of groundwater pollution in the southern Tehran aquifer using principal component factor analysis. Environ. Geochem. Health 2018, 40, 1317–1328. [Google Scholar] [CrossRef]
- Sinéad, L. The Iranian Water Crisis; Strategic Analysis Paper, Future Directions International Pty Ltd.: Perth, Australia, 2014; p. 11. [Google Scholar]
- Mahmoudpour, M.; Khamehchiyan, M.; Nikudel, M.R.; Ghassemi, M.R. Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran. Eng. Geol. 2016, 201, 6–28. [Google Scholar] [CrossRef]
- Nabavi, E. Failed policies, falling aquifers: Unpacking groundwater overabstraction in Iran. Water Altern. 2018, 11, 699–724. [Google Scholar]
- Shiklomanov, I.A.; Penkova, N.V. Methods for assessing and forecasting global water use and water availability. In World Water Resources at the Beginning of the 21st Century; Shiklomanov, I.A., Rodda, J.C., Eds.; Cambridge University Press: Cambridge, UK, 2003; p. 452. [Google Scholar]
- Alley, W.M. Tracking, U.S. Groundwater: Reserves for the Future? Environ. Sci. Policy Sustain. Dev. 2006, 48, 10–25. [Google Scholar] [CrossRef]
- Shah, T.; Molden, D.; Sakthivadivel, R.; Seckler, D. The Global Groundwater Situation: Overview of Opportunities and Challenge; International Water Management Institute: Colombo, Sri Lanka, 2000. [Google Scholar]
- Jackson, R.B.; Carpenter, S.R.; Dahm, C.N.; McKnight, D.M.; Naiman, R.J.; Postel, S.L.; Running, S.W. Water in a Changing World. Ecol. Appl. 2001, 11, 1027–1045. [Google Scholar] [CrossRef]
- Hadi Pour, S.; Wahab, A.A.; Shahid, S.; Wang, X. Spatial Pattern of the Unidirectional Trends in Thermal Bioclimatic Indicators in Iran. Sustainability 2019, 11, 2287. [Google Scholar] [CrossRef] [Green Version]
- Shafizadeh-Moghadam, H.; Minaei, M.; Shahabi, H.; Hagenauer, J. Big data in Geohazard; pattern mining and large scale analysis of landslides in Iran. Earth Sci. Inform. 2018, 12, 1–17. [Google Scholar] [CrossRef]
- Khalili, A.; Rahimi, J.; Climate, B.T. The Soils of Iran; Roozitalab, M.H., Siadat, H., Farshad, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 19–33. [Google Scholar]
- Ghasemifar, E.; Mohammadi, C.; Farajzadeh, M. Spatiotemporal analysis of snow cover in Iran based on topographic characteristics. Theor. Appl. Climatol. 2019, 137, 1855–1867. [Google Scholar] [CrossRef]
- Noori, R.; Maghrebi, M.; Mirchi, A.; Tang, Q.; Bhattarai, R.; Sadegh, M.; Noury, M.; Haghighi, A.T.; Kløve, B.; Madani, K. Anthropogenic depletion of Iran’s aquifers. Proc. Natl. Acad. Sci. USA 2021, 118, e2024221118. [Google Scholar] [CrossRef]
- Diskin, M. On the computer evaluation of Thiessen weights. J. Hydrol. 1970, 11, 69–78. [Google Scholar] [CrossRef]
- Olawoyin, R.; Acheampong, P.K. Objective assessment of the Thiessen polygon method for estimating areal rainfall depths in the River Volta catchment in Ghana. Ghana J. Geogr. 2017, 9, 151–174. [Google Scholar]
- Weier, J. From Wetland to Wasteland; Destruction of the Hamon Oasis. NASA Earth Observatory. 2002. Available online: https://earthobservatory.nasa.gov/features/hamoun (accessed on 22 June 2021).
- Maghsoudi, T.; Yazdi, F.K.; Joneydi, M.S.; Sedighi, N.T.; Davodi, H. Sustainability of agricultural water management associations in Iran (Case study of Khuzestan Province). Eur. J. Exp. Biol. 2013, 3, 545–550. [Google Scholar]
- Ashraf, S.; Nazemi, A.; AghaKouchak, A. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 2021, 11, 9135. [Google Scholar] [CrossRef]
- Motagh, M.; Walter, T.R.; Sharifi, M.A.; Fielding, E.; Schenk, A.; Anderssohn, J.; Zschau, J. Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophys. Res. Lett. 2008, 35, L16403. [Google Scholar] [CrossRef] [Green Version]
- Edalat, A.; Khodaparast, M.; Rajabi, A.M. Detecting land subsidence due to groundwater withdrawal in Aliabad Plain, Iran, using ESA sentinel-1 satellite data. Nat. Resour. Res. 2019, 29, 1935–1950. [Google Scholar] [CrossRef]
- Haghighi, M.H.; Motagh, M. Ground surface response to continuous compaction of aquifer system in Tehran, Iran: Results from a long-term multi-sensor InSAR analysis. Remote Sens. Environ. 2019, 221, 534–550. [Google Scholar] [CrossRef]
- FAO. Water Report 34; FAO: Rome, Italy, 2008; Available online: http://www.fao.org/nr/water/aquastat/countries_regions/irn/index.stm (accessed on 16 March 2017).
Main Basin | Number of Sub-Basins | Number of Study Areas | Number of Observation Wells |
---|---|---|---|
Caspian Sea (code 1) | 7 | 31 | 3280 |
Persian Gulf and Oman Sea (code 2) | 9 | 256 | 5404 |
Urmieh (code 3) | 9 | 1308 | 25 |
Central Plateau (code 4) | 9 | 233 | 13,000 |
Eastern Boundary (code 5) | 9 | 23 | 498 |
Ghareghom (code 6) | 13 | 23 | 295 |
Iran | 32 | 641 | 17,865 |
Sub-Basins | Code | Trend (Mm3/yr) | Sub-Basins | Code | Trend (Mm3/yr) |
---|---|---|---|---|---|
Aras | 11 | −63.107 | Urmieh | 30 | −535.362 |
Anzali | 12 | −13.873 | Daryache Namak | 41 | −2881.360 |
Sefidrood Bozorg | 13 | −281.418 | Gav khooni | 42 | −465.545 |
Sefidrood-Haraz | 14 | −31.955 | Tashtak | 43 | −695.810 |
Gharasoo-Haraz | 15 | −16.708 | Abarghoo | 44 | −1521.080 |
Gharasoo-Gorganrood | 16 | −50.125 | Hamoon | 45 | −1039.140 |
Atrak | 17 | −3867 | Kavir loot | 46 | −1399.170 |
Marzi-e-Gharb | 21 | −240.328 | Kavir Markazi | 47 | −4502.970 |
Karkheh | 22 | −591.728 | Kavir Siahkooh | 48 | −185.784 |
Karoon | 23 | 34.798 | Kavir Daranjir | 49 | −933.010 |
Hendijan-Jarahi | 24 | −247.809 | Khaf | 51 | −368.318 |
Hele | 25 | −100.770 | Hirmand | 52 | 7.842 |
Mand | 26 | −567.042 | Mashkil | 53 | −209.970 |
Mehran | 27 | −830.647 | Ghareghome | 60 | −2178.660 |
Bandar Abbas | 28 | −441.877 | |||
Baloochestan Jonubi | 29 | −20.909 |
Main Basins | Area (km2) | Average Groundwater Depletion Trend (mm/yr) | Groundwater Depletion Trend (Mm3) | Groundwater Depletion Trend (Mm3/yr) | Groundwater Depletion Trend (GT/yr) |
---|---|---|---|---|---|
Caspian Sea (code 1) | 17,5051 | −20,565 | −5.40 × 104 | −3.60 × 103 | −3.60 |
Persian Gulf and Oman Sea (code 2) | 424,029.6 | −7.075 | −4.50 × 104 | −3.0 × 103 | −3.0 |
Urmieh (code 3) | 52,000 | −10.192 | −0.79 × 104 | −0.53 × 103 | −0.53 |
Central Plateau(code 4) | 825,000 | −14,0 | −17.25 × 104 | −11.55 × 103 | −11.55 |
Eastern Boundary(code 5) | 106,000 | −5377 | −0.85 × 104 | −0.57 × 103 | −0.57 |
Ghareghom (code 6) | 44,295.5 | −18,738 | −1.24 × 104 | −0.83 × 103 | −0.83 |
Iran | 1,626,376.1 | −12,346 | −3.01 × 105 | −20.08 × 103 | −20.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safdari, Z.; Nahavandchi, H.; Joodaki, G. Estimation of Groundwater Depletion in Iran’s Catchments Using Well Data. Water 2022, 14, 131. https://doi.org/10.3390/w14010131
Safdari Z, Nahavandchi H, Joodaki G. Estimation of Groundwater Depletion in Iran’s Catchments Using Well Data. Water. 2022; 14(1):131. https://doi.org/10.3390/w14010131
Chicago/Turabian StyleSafdari, Zohreh, Hossein Nahavandchi, and Gholamreza Joodaki. 2022. "Estimation of Groundwater Depletion in Iran’s Catchments Using Well Data" Water 14, no. 1: 131. https://doi.org/10.3390/w14010131
APA StyleSafdari, Z., Nahavandchi, H., & Joodaki, G. (2022). Estimation of Groundwater Depletion in Iran’s Catchments Using Well Data. Water, 14(1), 131. https://doi.org/10.3390/w14010131